
P H Y S I C A L R E V I E W L E T T E R S week ending
23 APRIL 2004VOLUME 92, NUMBER 16
Manipulating Small Particles in Mixtures far from Equilibrium
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The motion of two interacting species of small particles, coupled differently to their environment, is
studied both analytically and via numerical simulations. We find three ways of controlling the particle
motion of one (passive) B species by means of another (active) A species: (i) dragging the target
particles B by driving the auxiliary particles A, (ii) rectifying the motion of the B species on the
asymmetric potential created by the A-B interactions, and (iii) dynamically modifying (pulsating) this
potential by controlling the motion of the A particles. This allows easy control of the magnitude and
direction of the velocity of the target particles by changing the ac drive(s).
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species in the same or opposite direction by changing the the B species is not subject to an asymmetric substrate
The manipulation of tiny particles, which are strongly
influenced by their noisy environment, has required novel
approaches to control their motion [1]. If small particles
are driven by an ac external force on an asymmetric
substrate, their ac motion can be rectified, thus providing
useful work [1]. The interaction among particles diffusing
through a ratchet has been neglected in theoretical studies
(with the exception of very few special systems [2] or few
numerical studies [3,4]). Indeed, as shown here, particle-
particle interactions produce unusual dynamics.

Recent experiments on transport of K and Rb ions in an
ion channel [5] and particles of different size in asym-
metric silicon pores [6] pose the question of how directed
motion of two or more species affect one another. More
interestingly, one might wonder how to induce and control
the net transport of passive particles, which are insensi-
tive to the applied drives and/or substrates. A way to
tackle this challenging problem is to employ auxiliary
particles A that (i) interact with the target species (the B
particles) and (ii) are easy to drive by means of external
forces. By driving the auxiliary particles A one can
regulate the motion of otherwise passive particles B
through experimentally accessible systems, like ion chan-
nels [5], artificial pores [6,7], arrays of optical tweezers
[8], or certain superconducting devices [4].

In order to study the influence of the interspecies
interaction on particle transport in a binary mixture, we
consider external forces applied either to the A particles
only or simultaneously to both A and B species. We have
found that (1) with increasing the intensity of an applied
dc driving force, there is a dynamical phase transition
from a ‘‘clustered’’ motion of A and B particles to a
regime of weakly coupled motion; (2) by applying a
time-asymmetric zero-mean drive to the A species only,
we can obtain a net current for both the A and B species;
(3) when two ac signals fA�t� and fB�t� act independently
on the A and B particles, respectively, and the A particles
feel the asymmetric substrate, we can deliver these two
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relative phase of the signals fA�t� and fB�t� for both
attractive and repulsive A-B interactions. Systems where
our two-species transport technique might be useful are
the focus of ongoing experimental work (e.g., supercon-
ducting samples penetrated by topologically different
vortices [9], ion channels with different ions [5]).

Model.—We consider transport in quasi-one-
dimensional geometries, thus including the wide category
of fabricated devices and nanobiological systems ad-
dressed in the recent ratchet literature [10]. Since the
dragging effect implies ‘‘trapping’’ the target species B
by another species A, we need first to take into account
the local change in the distribution of B particles near
an A particle. This can be done by considering the bi-
nary distribution function FAB�x; x

0�, which describes
the probability of finding an A particle near x and a B
particle near x0. A partial differential equation for FAB
can be constructed by averaging the time derivative of the
microscopic binary distribution NAB�

P
i;j��x�xA;i�t���

��x0�xB;j�t�� over different stochastic realizations. Here,
the sum has to be taken over the coordinates xA;i and xB;j
of all the A and B particles at time t. As the main goal of
this paper is to study the behavior of one species relative
to the other, we further neglect the interaction among
particles of the same type. This simplification, reminis-
cent of the so-called ‘‘color charge’’ scheme for binary
colloidal mixtures [11], does not appreciably affect our
major conclusions [see discussion of Fig. 1(a)].

The relevant Langevin equations are dxa;i=dt �
�@=@xa;i�Ua 	

P
j;j0W�xA;j � xB;j0 �� 	

������
2T

p
��i�
a , where T

is the temperature, ��i�
a are white noises with h��i�

a i � 0,
h��i�

a �t���j�
b �0�i � �a;b�i;j��t�, and a; b � A or B, and

W�xA;j � xB;j0 � denotes the interaction between the jth A
particle and the j0th B particle. We assume that the A
species is driven by the time-dependent force fA�t�, pos-
sibly in the presence of a periodic asymmetric substrate
Uas�x� with period l, say Uas�0< x< l1� � Qx=l1,
Uas�l1 < x< l� � Q�l� x�=�l� l1�, and Q  0, while
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but only to the external force fB�t�; namely, UA � Uas � fA�t� x, and UB � �fB�t� x. The Langevin equations can be
manipulated to determine the time evolution of FAB at B densities nB much lower than the A density nA:

@tFAB � @xfFAB@xEA 	 T@xFABg 	 @x0 fFAB@x0EB 	
Z

dx00FABA�x; x0; x00�@x0W�x0 � x00� 	 T@x0FABg; (1)
where EA�UA�x�	W�x�x0�, EB�UB�x
0�	W�x�x0�,

and FABA�x; x
0; x00� is the three-particle distribution func-

tion related to the probability of finding two A particles
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FIG. 1 (color). Dragging particles B by auxiliary particles A
in the case of no substrate, Uas � 0, and interaction strength
g � �0:02. (a) Symbols are from molecular dynamics (MD)
simulations (red and blue symbols for repulsive and attractive
A-B interactions, respectively) with time step dt � 47� 10�5;
black lines are the results of analytical calculations. The green/
magenta and olive/orange symbols are data for nA � 40, g �
�0:02 and nonzero interactions between the same particles
ga � 0:01=� 0:005. (b) The mobility of A and B particles
versus dc force Adc obtained from the MD simulations for
lower temperature and repulsive interactions. The different
numbers of particles in a cluster are chosen as �NA;NB� �
�1; 1� red, (2,2) brown, (2,1) magenta, (3,1) green. For com-
parison, the case of attractive interaction and �NA;NB� � �1; 1�
is shown in blue. Open (filled) symbols refer to active (passive)
particles. (d),(e) The net velocities VA and VB, from MD, versus
driving amplitude A (d) or frequencies !2=!1 (e) for � �
0:075. The time-asymmetric signal used in (d) is shown in
(c). Red and blue symbols in (d) correspond to repulsive and
attractive interactions. The black line in (d) and black squares
in (e) represent VB calculated analytically.
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in x and x00 and a B particle in x0. Hereafter, @t�@=@t and
@x � @=@x.

Next, we express FABA in terms of one-particle Fa and
binary distribution FAB functions. In general, a binary
function can be written as FAB�x; x0� � FA�x�FB�x0� �
G��x	 x0�=2; x� x0� where FA and FB are the one-
particle distributions for A and B and G defines the devia-
tion of the distribution of the A particles near a B particle.
Thus, the three-particle distribution can be expressed
as FABA�x; x

0; x00� � FB�x
0�FA�x�G��x	 x0�=2; x� x0� �

FA�x
00�G��x0 	 x00�=2; x00 � x0�. We also consider the inter-

action range � of the A-B interactions to be much smaller
than l. In such a case we can assume long distances
jx� x0j � � (where G��x	 x0�=2; x� x0� � 1) in order
to derive FA and FB, and short distances jx� x0j � � to
calculate G. In the long distance limit, we obtain the
Fokker-Planck equations for FA and FB:

FA@xUA 	 T@xFA � �jA;

FB�@x�UB 	 gFA� 	 �FA� 	 T@xFB � �jB
(2)

with effective interaction constant g�x� �
R
dyW�y� �

G�x; y� and dragging coefficient ��x� �
R
dyW�y�@y �

G�x; y� � @xg�x�=2. The particle currents ja are defined
by @tFa � �@xja and, in the adiabatic approximation
studied below, depend on the instantaneous value of the
driving forces fa�t�. The equation for the correcting
factor G�x; y� can be easily constructed by imposing jyj &

� � l in Eq. (1). For simplicity, we display only the case
when Uas � 0, i.e.,

@yfG�@yW�y� � VAB� 	 T@yGg � 0; (3)

where VAB � VA � VB � jA=nA � jB=nB is the relative
velocity. Therefore, the A-B interaction produces (1) an
effective potential g�x�FA acting on the B particles, which
were originally insensitive to the substrate, and (2) an
effective drag �FA exerted by the As on the Bs.

We concentrate now on three potential applications to
transport control in microdevices that allow an instruc-
tive comparison between analytical solutions and nu-
merical simulations of a driven binary mixture.

Dragging by auxiliary particles.—When no force acts
on the B species, the dc-driven A particles can drag along
the B particles. When Uas � 0 [Eq. (3)], the dragging
problem (with fB � 0 and fA � Adc) is solved analyti-
cally. If jA � jB � 0, the function G is a simple Boltz-
mann distribution G � exp��W=T�, while if VA > 0
one obtains G � �VAB=2T�

R
1
y dz expf�W�z� �W�y� �

VAB�z� y�=2�=Tg. Inserting G in Eq. (2) yields VA � fA,
VB � nA

R
dyG�y�@yW. Next, we performed numerical

simulations of the Langevin equations for the A and B
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FIG. 2 (color). How to control the net velocities VA, VB
by ac forces fA and fB on an asymmetric substrate poten-
tial [green profile in (a)] coupled to the A particles, only.
We set � � 0:075, nA � 50, nB � 1, dt � 0:00047, jgj �
0:02, Q � �1, l1 � 0:9, and T � 0:6. (a) The effective MF
potential (red and blue landscapes) felt by the B particles
when the A particles are forced towards the ‘‘hard’’ (to the
right) or to the ‘‘easy’’ (to the left) directions, respectively.
(b) VA and VB versus the ac amplitude A of fA and fB calcu-
lated in the MF approximation for the repulsive/attractive A-B
interaction and in-phase (red/blue), out-of-phase (pink/light
blue), and %=2-shifted (orange/violet) ac forces. (c) The MD
data of VB for repulsive/attractive species and in-phase (red/
blue triangles) and opposite-phase (red/blue circles) driving
forces; black symbols mark VA. (d) The same as in (c) with red/
blue squares for repulsive/attractive interactions and
%=2-shifted ac forces; black symbols are VA. (e) The ac force
is applied only to the A species (i.e., fB � 0). VB is marked
by red/blue up triangles for repulsive/attractive interactions,
the corresponding VA marked by down triangles/circles.
(f) The ac force is applied only to B particles (fA � 0),
VA is very weak (black symbols), but the ac motion of B
particles is rectified by an effective asymmetric potential (VB
is plotted by red/blue symbols for repulsive/attractive interac-
tions). (g) The dependence of the net velocities VA (black
squares from MD) and VB (red open symbols from MD and
green filled circles calculated analytically and linearly scaled
to fit MD data) on the frequency ratio !B=!A (odd rations
provide peaks) for repulsive interactions and AA � AB � 8,
&A � &B � 0.
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particles with W�y��g���jyj�=�2, if jyj<�, and W�0
otherwise. In spite of the finite interaction length � in-
troduced in our simulation, the analytical equation for VB
obtained above describes fairly closely our data in
Fig. 1(a), showing that the dragging effect attains a maxi-
mum for a certain value of Adc. Introducing the pair inter-
action between the particles of the same type Wa�y� �
ga��� jyj�=�2 if jyj< � and Wa � 0 otherwise, we
found a similar dependence of VB on Adc [see Fig. 1(a)]
also outside the ‘‘color charge’’ scheme. With decreasing
temperature, the solution of the derived transcendental
equation for VB vanishes, signaling the occurrence of a
dynamical phase transition. Indeed, for weak driving
forces, all A and B particles tend to cluster together. In
order to estimate both the maximum driving force Acrit

dc
for the clusters to be stable and their translational veloc-
ity Vclust, we introduce force-balance equations for clus-
tered NA A and NB B particles at T � 0: VA � Vclust �
fA � NBfint; VB � Vclust � NAfint with interaction force
fint � maxj@yWj � jgj=�2. Thus, we obtain Vclust �
NAfA=�NA 	 NB� for a dc driving force Adc < Acrit

dc and
Acrit
dc � �NA 	 NB� �maxj@yWj. This gives the cluster mo-

bility #clust � Vclust=Adc � 1=2; 1=2; 2=3; 3=4 and criti-
cal force Acrit

dc �jgj � 0:02; � � 0:05� � 16; 32; 24; 32 for
clusters with �NA;NB� � �1; 1�; �2; 2�; �2; 1�; �3; 1�, re-
spectively. These numbers are in good agreement with
simulation results of Fig. 1(b).

Rectifying the ac dragging.—The dragging effect may
be used to induce a net motion of both A and B particles in
the absence of a substrate, Uas � 0: As an additional
ingredient, a time-asymmetric zero-average force [like
the sinusoidal force fA�t� � fcos

A �!1; !2� � A�cos!1t	
cos!2t� with !2 � 2!1, or the rectangular waveform of
Fig. 1(c)] must be applied to one species, say, the auxil-
iary particles A. Indeed, applying the alternate signals
fA���A and fA � A, during the time intervals t1�1=
�1	��$ and t2 � �=�1	 ��$, respectively, forces time-
periodic particle flows with frequency $. The net B
current can be written as hVBit � �VB�fA � �A� 	
�VB�fA � �A��=�1	 �� with time-asymmetry factor �.
The average hVBit can be easily calculated through our
analytical expression for the thermally averaged VB as
well as from simulations; data and analytical results
compare very well [Fig. 1(d)]. The rectification due to
the A-B dragging can also be seen as spikes or resonances
[Fig. 1(e)] on the dependence of the net velocities VB and
VA on the frequency !2, if the signal fA � fcos

A �!1; !2�
with two frequencies is applied. When changing !2=!1,
the change of the sign of the net velocities allows one to
effectively control the motion of both species.

Rectification via the effective potential created by the
auxiliary particles.—If the A particles move on an asym-
metric substrate, the equation for G becomes compli-
cated. Thus, we will now consider a mean-field (MF)
approximation when G � 1 [12]. Even though drag-
ging is lost in such an approximation (� � 0), the effec-
tive potential acting upon the target B particles can be
160602-3 160602-3
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qualitatively reproduced. In the adiabatic approximation
[1] Eqs. (2) yield for the net current of the a species Ja �R1=$
0 dtja�fA�t�; fB�t�� with ja�nalT�1�exp��lfa=T��=R
l
0dx

R
x	l
x dzexp��U�

a�z��U�
a�x��=T�, where U�

A � UA

and U�
B�x; fA; fB� � gMFFA�x; fA� � fBx with gMF �R

dyW�y�. The polarity (or asymmetry) of gMFFA coin-
cides with the polarity of the original substrate Uas for
attractive interaction, gMF < 0, and vice versa for repul-
sive A-B potentials, gMF > 0. Therefore, the ac motion of
B particles can be rectified on this potential (‘‘mediated’’
ratchet effect). However, there is an additional effect
controlling the B motion as the effective potential
gMFFA changes with time. When the force fA�t� points
against the steeper substrate slopes (the ‘‘hard-motion
direction’’), the A particles tend to accumulate near the
Uas minima. Thus, due to the repulsive (attractive) A-B
interactions, this strongly nonuniform distribution of A
particles causes high peaks (deep wells) in the effective
potential acting on the B particles [Fig. 2(a)]. The ensuing
high potential barriers of Ueff

B significantly slow down the
B particle motion (gating effect) when the A particles
move in their ‘‘hard’’ direction. In contrast, the relatively
faster motion of the A particles as fA�t� pushes them in
the opposite, ‘‘easy’’ direction, corresponds to shallower
Ueff

B barriers and, thus, to a higher B mobility.
An example.—Let us consider ac drives of the

form fA�t� � AAsgn�cos�!At 	 &A�� and fB�t� �

ABsgn�cos�!Bt 	 &B�� with sgn�� � �� denoting the sign
of the argument. If the frequencies and amplitudes of
both signals coincide !A � !B � !, AA � AB � A, we
can restrict the discussion to three main cases depending
on the relative phase of the ac forces: (i) in-phase drives:
&A � &B; (ii) opposite-phase drives: &A � &B 	 %; and
(iii) %=2-shifted drives: &A � &B 	 %=2. In the first two
cases the gating effect is dominant and the direction of
the B current does not depend on the polarity of gMFFA,
i.e., the sign of VB is insensitive to the sign of the A-B
interactions (attractive or repulsive). Indeed, the A par-
ticles, when pushed against the steeper slopes of Uas,
create the high barriers of Ueff

B [Fig. 2(a)] that lock the
motion of B particles as long as fB pushes them to the
right or to the left in the case of in-phase or opposite-
phase ac drives. Thus, the A and B particles drift neces-
sarily to the same or opposite direction for cases (i) or
(ii), respectively. In contrast, when fA�t� and fB�t� are
phase shifted by %=2, the B particle motion is governed
by the asymmetry of the effective potential gMFFA. Dur-
ing the half ac cycle when the effective potential Ueff

B
develops high (low) barriers, the B particles are being
pushed directly by fB�t� to the right and to the left for the
same amount of time. Thus, the B particles are driven
back and forth on the asymmetric ratchet potentials
gMF FA�x; fA � A� and gMFFA�x; fA � �A�, alternately.
Since the polarity of these potentials depends on the
sign of the interaction gMF, attracting A and B particles
move together [sgn�JA� � sgn�JB�], while repelling par-
160602-4
ticles travel in opposite directions [sgn�JA� � �sgn�JB�].
Examples of MF calculations for in-phase, opposite-
phase, and %=2-shifted drives are shown in Fig. 2(b).
Our numerics prove that dragging effects may correct
the MF estimates of VB, so as to break the symmetry
with respect to the interaction sign [see Fig. 2(c) for cases
(i) and (ii) and Fig. 2(d) for (iii)]. Nevertheless, the main
MF picture remains valid. In order to clearly separate
dragging and rectification effects, we performed simula-
tions with AA � 0, AB � 0 [Fig. 2(e)] and with AA � 0,
AB � 0. For the first case (dragging), the A and B par-
ticles drift in the same direction, while in the second case
(mediated ratchet) the sign of VB is determined by the
sign of the A-B interactions. Finally, if we fix amplitudes
and phases, for instance, AA � AB and &A � &B, and
change the frequency ratio !A=!B, we obtain velocity
spikes for commensurate values of !A and !B. Indeed, in
the incommensurate case the gating effect is irrelevant
and the net motion is determined by a combination of
mediated ratchet and dragging effect. However, if the
frequencies of the driving signals are commensurate,
the modulation of the effective potential Ueff

B gets time
correlated with the direct ac drive fB�t�, thus resulting in
large deviations of VB from its incommensurate baseline
[see Fig. 2(g)]. Note that spikes happen at different wind-
ing numbers for the cases shown in Figs. 1(e) and 2(g).

The effects presented here can be potentially useful for
particle motion control in a variety of different systems.
Examples include new types of superconducting devices
with different species of vortices [9], for spin-separating
nanodevices, for ion mixtures traveling through cell
membranes [5] or moving through artificial nanopores
[7], for controlling transport in colloidal suspensions [8],
and for particle-size separation.
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