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We study the escape rate of flux quanta in a long Josephson junction having an asymmetric spatial

inhomogeneous critical current density. Such a junction can behave as a ratchet when driven by an ac

current in the presence of a magnetic field. This rectification gives rise to a dc voltage Vdc across the

junction. The usual approach of particlelike tunneling cannot describe this rectification, and a quantum

field theory description is required. We also show that, under specific conditions, the rectification

direction, and consequently Vdc, can change its sign when varying the temperature T near the crossover

temperature T� between the quantum and classical regimes.
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Introduction.—Solid state devices with asymmetric pe-
riodic potentials (acting as ratchets) are attracting consid-
erable interest [1]. Ratchets can produce a direct current
when driven by nonequilibrium noise. Moreover, for some
special shapes of the ratchet potential, the current can
change its sign for decreasing temperatures, when quantum
tunneling becomes dominant over thermal-activated hop-
ping [2]. There are many different realizations of ratchets,
both in nature and in artificial nanodevices, such as cold
atoms, colloidal magnetic particles, single-molecule opto-
mechanical devices, fluxons in superconductors, and many
other systems (for reviews, see, e.g., Ref. [1]). All these
systems are effectively described by a quantum or classical
particle moving in a periodic asymmetric potential.

Here we propose a completely new ratchet system,
which is described by a quantum field. Namely, we con-
sider a long Josephson junction (JJ) (the junction’s length
D is comparable with the Josephson penetration depth �J)
with a spatially modulated critical current density icðxÞ
driven by nonequilibrium fluctuations sustained by an ac
current J ¼ J0 cos�t, where the amplitude J0 is right
below the junction’s critical current Jc. The gauge-
invariant phase difference ’ðxÞ plays the role of the field
variable. Although J never exceeds Jc, the flowing current
can give rise to sudden changes in the phase difference,
both due to quantum tunneling through, and thermal hop-
ping over the potential barrier. The probability per unit
time (¼ escape rate) �ðJÞ of these events attains maxima
�� at J ¼ �J0, and one can expect that �þ ¼ ��.
However, the application of an external dc magnetic field
H to the junction having a current inhomogeneity asym-
metric with respect to the x direction results in the asym-
metry of both the tunneling probability, �þðIÞ � ��ð�IÞ,
and the critical currents, Jþc � J�c , for applied currents
flowing in opposite directions. Namely, both � and Jc
depend on the direction of the applied current. This leads

to the appearance of a dc voltage Vdc across the junction,

since Vdc ¼ ð@=2eÞh@’@t i / ð�þ � ��Þ. In the region where

noise is classical, @!p � T (here !p is the plasma fre-

quency), the escape rates �� are determined by thermal
hopping, and only the height �U of the potential barrier is
important. Since, in the classical regime, �U is propor-
tional to the critical currents J�c , one can easily predict the
net voltage (rectification) sign if the values of J�c are
known. However, when quantum noise starts to play a
crucial role, @!p * T, escape rates �� are governed by

both barrier height and its width. Thus, we could expect a
counterintuitive current inversion, when �þ < �� even
though Jþc > J�c . A main result of this work is the demon-
stration that this effect can be observed for asymmetric JJs.
The particlelike approach used in most theoretical consid-
erations of quantum tunneling in JJs is not appropriate
here, and a field-theoretical description must be used.
The effect of quantum tunneling in JJs and stacks of

intrinsic JJs in high-Tc superconductors has been studied
intensively, experimentally [3], and theoretically [4], both
due to its fundamental interest and the possibility to use
these systems in future applications. A ratchet based on a
SQUID consisting of two equal JJs in series, coupled in
parallel to a third junction, was proposed in Ref. [5]. Also a
remarkable Josephson vortex ratchet in a long JJ was
studied in Ref. [6].
We stress that the system under consideration here does

not correspond to a ratchet in the usual sense, because the
junction’s potential is the periodic sine-Gordon potential,
Uð’Þ / � cos’, which is symmetric in ’ (another ex-
ample of a ratchet with symmetric potential was proposed
in Ref. [7]). The difference between �þ and �� (and,
consequently, a voltage rectification) occurs here due to
both: the ‘‘parametric’’ dependence of the potentialU on x,
and the spatial dependence of the field ’ðxÞ. Thus, the field
character of the phase difference ’ðxÞ is crucial for the
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rectification, even for relatively short junctions. We believe
that the developed theory can be applied not only to JJs, but
to other distributed systems, where a field description is
required, e.g., nanobars, magnetic vortices, stacks of in-
trinsic high-Tc JJs, etc. Here we exploit the approach
developed in Ref. [8], which we generalize to finite tem-
peratures. This now allows us to calculate, in the same
manner, the escape rate � ¼ A expð�BÞ both in the quan-
tum and classical regimes. If the junction lengthD is large,
then the exponent B of the escape rate � turns out also to be
large. However it should be not too large, when � becomes
an experimentally nonobservable quantity. This last con-
dition means that the current amplitude J0 should be close
to the critical current. We focus on the exponent B because
changes in B (not in the prefactor A) describe the main
change in � when B is large. In addition, here we do not
consider dissipation in the system when calculating B.
Dissipation does not qualitatively change our results.

Escape rate.—We consider a Josephson junction in the
inline geometry shown in the inset of Fig. 1. Two super-
conducting bars overlap a length D in the x direction. The
external magnetic field H is applied in the y direction. Let
us first consider the junction biased by a dc current J. The
generalization to the adiabatically varying ac current
J cos�t is evident, and the conditions of adiabaticity will
be given below. The spatial inhomogeneity of the critical
current density icðxÞ in the x direction can be realized, e.g.,
by changing the shape of the junction [6]. We calculate the
escape rate � ¼ A expð�BÞ using the well-known method
of imaginary-time trajectories at finite temperatures [9],
where the prefactor A�!p, and B ¼ S�=@. Here, S� is

the action of the system for a periodic imaginary-time
trajectory, ’ð�þ @�Þ ¼ ’ð�Þ, with a period �0 ¼ @�,
� ¼ 1=T. The quasiclassical imaginary-time action is

S�½’� ¼ EJ

!p
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In Eqs. (1), the x coordinate is normalized by �J, � by
1=!p, d ¼ D=�J, EJ ¼ @ic�JL=ð2eÞ is the Josephson en-

ergy (L is the junction’s width in the y direction), the bar
above ic means spatial averaging, and gðxÞ ¼ icðxÞ=ic �
1þ �ðxÞ, �ðxÞ ¼ 0. The phase ’ð�; xÞ satisfies the equa-
tion of motion

@2’

@�2
þ @2’

@x2
� gðxÞ sin’ ¼ 0; (2)

with the periodicity condition ’ð�þ @!p�; xÞ ¼ ’ð�; xÞ.
The boundary conditions for the phase difference ’ð�; xÞ
are defined by the L� term in the action (1):
@’=@xjx¼�d=2 ¼ �I=2þ h, where I and h are the dimen-

sionless current and external magnetic field, respectively:
I ¼ J=ðic�JLÞ, and h ¼ cH=ð4�ic�JÞ.
In general, it is hard to find a periodic solution to the

nonlinear Eq. (2), even numerically. However, as men-
tioned above, we only need to find a solution when the
current I � Ic. In this case, we can use the approach
developed in Ref. [8]. Namely, we seek a solution of the
form ’ð�; xÞ ¼ ’0ðxÞ þ c ð�; xÞ, where ’0ðxÞ is the
steady-state solution of Eq. (2) corresponding to an energy
minimum. Since I is close to the critical current, the energy
barrier between the neighboring energy minima, ’0ðxÞ and
’0ðxÞ � 2�, is small, jc ðx; �Þj � ’0ðxÞ, and we can ex-
pand the action (1) in powers of c up to c 3. Then, we
represent c ð�; xÞ in the form of a series

c ð�; xÞ ¼ 3�0

U000

X1
n¼0

�nð ffiffiffiffiffiffi
�0

p
�Þc nðxÞ; (3)

where �n and c nðxÞ are the eigenvalues and orthogonal

eigenfunctions of the operator D̂ ¼ �@2=@x2 þ gðxÞ	
cos’0ðxÞ, D̂c n ¼ �nc n, and Unmk ¼

Rd=2
�d=2 dxgðxÞ	

sin’0c nc mc k.
Expanding the equation of motion (2) in powers of c , up

to c 2, with c in the form (3), multiplying it by c nðxÞ, and
integrating over x, we obtain an infinite system of ordinary
differential equations for the collective coordinates �nð�Þ
of the field c , where we introduce the imaginary-time
variable � ¼ ffiffiffiffiffiffi

�0
p

�. It can be shown that due to the prox-

imity of I to Ic, two conditions for the eigenvalues �n are
possible: either �0 � �n, n > 0 for relatively short junc-
tions (d & 1) or large fields (h * 1); or �0 ��1 � �n,
n > 1 for long junctions (d * 1) and small fields (h � 1).
Because of these inequalities, one can neglect all the
equations in the system of equations for �n, except the
first two (for details, see Ref. [8]). Thus, the system of
equations for �0 and �1 takes the form

FIG. 1 (color online). The magnetic field dependence of the
escape rate’s exponent B for fixed current ratios I=Icðh; dÞ in the
uniform junction [�ðxÞ ¼ 0], calculated according to Eq. (6);
d ¼ 1:8 and T ¼ 0. The inset shows the schematic geometry of
the Josephson junction.
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€� 0 þ @V

@�0

¼ 0; €�1 þ @V

@�1

¼ 0; (4)

where the dot means derivative over �, and the potential
Vð�0; �1Þ can be written as

V ¼ 1
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We should find a periodic solution of the system (4) with
period �0 ¼ ffiffiffiffiffiffi

�0
p

@!p=T (‘‘bounce’’ solutions). The expo-

nent B ¼ S�=@ of the escape rate � ¼ A expð�BÞ can be

expressed through the functions �ið�Þ, i ¼ 0, 1 as
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Thus, we reduce the field-theory problem to the problem
of one particle moving in the effective potential Vð�0; �1Þ
in two dimensions (not in 1D as in the usual particlelike
approximation), where the �i’s play the role of the parti-
cle’s generalized coordinates. Let us first consider the case
of T ! 0, when quantum tunneling prevails. Our analysis
shows that when d > dcðI; hÞ � 4, there exist three bounce

solutions to the system (4): �ðsÞ
i ð�Þ, s ¼ 0, �1. In analogy

to the case �ðxÞ ¼ h ¼ 0 considered in Ref. [8], one can

say that the solution �ðþ1Þ
i ð�Þ (�ð�1Þ

i ð�Þ) corresponds to the
formation of a vortex (antivortex) nucleus at the left (right)

junction edge, while the solution �ð0Þ
i ð�Þ describes the tun-

neling of ’ as a whole (for details, see Ref. [8]). When
�ðxÞ ¼ h ¼ 0, the solutions have the following symmetric

properties: �ð0Þ
1 ð�Þ ¼ 0, �ð�1Þ

1 ð�Þ ¼ ��ðþ1Þ
1 ð�Þ. Thus we

have three channels of tunneling, with probabilities �ðsÞ /
expð�BðsÞÞ, with Bð�1Þ ¼ Bðþ1Þ, and the total probability

becomes � ¼ P
s�

ðsÞ. The applied magnetic field breaks

the vortex-antivortex symmetry [Bð�1Þ ¼ Bðþ1Þ] making
one of these channels more favorable. However, the total
escape rate � is still symmetric with respect to the direction
of the dc current if �ðxÞ ¼ 0. For spatially inhomogene-
ous junctions with �ðxÞ � 0, we have �ðþIÞ � �ð�IÞ, and
the rectification VDC ¼ 1

2 fVðþIÞ þ Vð�IÞg / ð�þ � ��Þ
arises. Since the main contribution to the total � comes

from the term corresponding to the minimum of BðsÞ, we
will assume below that � / expð�BÞ, where B ¼
minðBðsÞÞ. When d < dcðI; hÞ there is only one solution to

the system (4), �ð0Þ
i ð�Þ. When h � 0 and/or �ðxÞ � 0, we

have �ð0Þ
1 � 0, and, in contrast to the case studied in

Ref. [8], a 2D consideration is required here, because there
is no ratchet effect in a point (i.e., no x dependence)
Josephson junction model (i.e., for a 1D particle
approximation).

All these properties of the bounce solutions �ðsÞ
i survive

at finite temperatures up to some value T�, which is the
crossover temperature between the quantum and classical
regimes. At low temperatures, T < T�, the exponent B only
slightly decreases with T (thermally stimulated tunneling).
When T > T�, there are only imaginary-time independent

solutions to Eq. (4), �ðsÞ
i ð�Þ ¼ ��ðsÞ

i , where the points ( ��ðsÞ
0 ,

��ðsÞ
1 ) correspond to the extremes (minimum or saddle-

points) of the potential Vð�0; �1Þ (here s takes the values
s ¼ 0, �1, if d > dcðI; hÞ, and s ¼ 0 otherwise). Thus,
when T > T� the exponent B can be written as

B ¼ 9��3
0

ðU000Þ2
@!pjVrj

T
; Vr ¼ max

s
½Vð ��ðsÞ

0 ; ��ðsÞ
1 Þ�: (7)

The crossover temperature T� is the temperature where the
period of the bounce solution, �0 ¼ ffiffiffiffiffiffi

�0
p

@!p=T, becomes

equal to the period of infinitesimal oscillations near the

extreme point ( ��ðrÞ
0 , ��ðrÞ

1 ), corresponding to the maximum

of Vð ��ðsÞ
0 ; ��ðsÞ

1 Þ. The latter one is equal to 2�=
ffiffiffiffiffiffiffi
�þ
r

p
, where

�þ
r is the positive eigenvalue of the matrix @2V=@�i@�j

calculated at the point ( ��ðrÞ
0 , ��ðrÞ

1 ). As a result, the crossover

temperature can be written as T� ¼ @!p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�0�

þ
r

p
=ð2�Þ.

All results above were obtained for a dc current. We can
also use all the above formulas for a slowly-varying current
I ¼ I0 cos�t, assuming that at any time t the current can
be considered as a dc one. This adiabatic limit is valid
when the frequency � is much smaller than the inverse
imaginary-time period, 1=�0 ¼ T=@. Therefore, we obtain
the condition of adiabaticity [10]: @� � T.
Results and discussions.—Let us first neglect the spatial

distribution of the critical current density, assuming that
�ðxÞ ¼ 0. In this case, the following condition is met
Bð�I; hÞ ¼ BðI; hÞ, and there is no rectification. In
Fig. 1, we plot the magnetic field dependence of the
exponent B (T ¼ 0) for three fixed ratios I=Icðh; dÞ, where
the critical current Icðh; dÞ depends on the magnetic field. It
goes to zero when h achieves the critical field hcðdÞ. Note
the nonmonotonic dependence of B on h, which is related
to the change in characteristic properties of the static
solution ’0ðxÞ with growing h. The nonzero �ðxÞ breaks
down the symmetry of Bwith respect to the direction of the
current. In this case, we have two critical currents I�c ,
corresponding to positive and negative directions of the
current. Figure 2 shows the dependence of Bð�I; hÞ and
(1� I�c =Iþc ) on h, calculated for a cubic-minus-linear �ðxÞ
at the fixed ratio I=Icðh; dÞ, where Icðh; dÞ is the critical
current calculated for � ¼ 0. The ratio I�c =Iþc < 1 for any
value of the magnetic field, while B� >Bþ in some region
of h and B� <Bþ in other regions; thus, resulting in a net
voltage inversion. This reflects the fact that the probability
of quantum tunneling is determined not only by the bar-
rier’s height, but also by the barrier’s width. In our case, the
former one is determined mainly by the critical currents
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I�c , while the last one substantially depends on the �ðxÞ
profile.

Let us now consider the temperature dependence of the
escape rate exponent B, going from classical hopping (at
high T) to quantum tunneling (at low T). The curves B� ¼
Bð�IÞ versus T are shown in Fig. 3. The difference (Bþ �
B�), which defines a ratchet effect as a function of tem-
perature, is also shown in Fig. 3. It changes sign for
temperatures near the crossover temperature between the
quantum and classical regimes. The sign of the difference
(Bþ � B�) defines the sign of the rectified voltage Vdc.
Thus, the effect of the change of sign of (Bþ � B�) can be
observed by measuring the dc voltage as a function of
temperature. The value (Bþ � B�) can be calculated using
data of the escape rate � obtained either in ac or dc current
measurements.

Conclusions.—We have proposed a new type of ratchet
system where the dynamical variable is a field. Namely, we
have considered a long JJ with a spatially inhomogeneous
critical current density icðxÞ. In this case, the field character
of the phase difference is crucial for the ratchet effect. The
exponent of the escape rate of the phase difference ’ was
calculated as a function of: temperature, dc magnetic field,
and dc or slow ac current. We have shown that due to both
the magnetic field and the spatial inhomogeneity of ic, the
escape rate becomes asymmetric with respect to the direc-
tion of the current. This leads, in particular, to the appear-
ance of a dc voltage when the system is biased by an ac
current. We have also shown that, for definite shapes of
icðxÞ, the rectified voltage changes sign for T near the
crossover temperature T� between the quantum-tunneling
and classical-hopping regimes. Thus, the proposed ratchet

system demonstrates that the net voltage can change sign
when T is lowered for the same external forces when
quantum fluctuations start to dominate.
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BðþI; hÞ (red solid curve) and B� ¼ Bð�I; hÞ (blue dashed
curve) for a fixed ratio I=Ic ¼ 0:95, calculated for �ðxÞ ¼
0:27x3 � 0:17x. The relative ratio (1� I�c =Iþc ) as a function of
h is shown by the green dotted-dashed curve. Here the parame-

ters are d ¼ 2:5, T ¼ 0, ð�2ðxÞÞ1=2 ¼ 0:1. In the region of h
separated by the vertical dotted lines, we obtain B� >Bþ
although I�c < Iþc . For h in this region, the change of sign of
the rectification takes place when increasing T.

FIG. 3 (color online). The escape rate exponents BðþIÞ (red
solid curve) and Bð�IÞ (blue dashed curve) versus temperature
calculated for �ðxÞ ¼ 0:27x3 � 0:17x. The difference BðþIÞ �
Bð�IÞ is shown by the green dotted-dashed curve. The other
parameters are: d ¼ 2:5, h ¼ 2:25, I=Ic ¼ 0:95. The profile �ðxÞ
is shown in the inset.
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