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A Brownian particle moving across a porous membrane subject to an oscillating force exhibits

stochastic resonance with properties which strongly depend on the geometry of the confining cavities

on the two sides of the membrane. Such a manifestation of stochastic resonance requires neither energetic

nor entropic barriers, and can thus be regarded as a purely geometric effect. The magnitude of this effect is

sensitive to the geometry of both the cavities and the pores, thus leading to distinctive optimal

synchronization conditions.
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Stochastic resonance (SR) is a textbook example of how
noise can best enhance the response of a bistable system to
an external drive [1]. Historically, research on SR focused
mostly on systems with purely energetic potentials, either
continuous or discrete. However, as pointed out in Ref. [2],
in soft condensed matter and in a variety of biological
systems [3], particles are often confined to constrained
geometries, such as interstices, pores, or channels, whose
size and shape can affect the SR mechanism [4]. Indeed,
smooth confining geometries can be modeled as entropic
(i.e., noise or temperature dependent) potentials [5], ca-
pable of influencing the response of the system to an
external driving force [6].

Let us consider a Brownian particle freely diffusing in a
two (2D) or three dimensional suspension fluid contained
in two symmetric cavities connected by a narrow pore; it
can switch cavity only by overcoming the entropic barrier
determined by the geometric constriction associated with
the pore. This is true even for ideal reflecting boundaries,
that is, in the absence of an intrinsic energetic barrier.
Burada et al. [4] have shown that entropic barriers signifi-
cantly contribute to the magnitude of the SR effect that
occurs when a periodic force drives the particle across the
pore, hence the term of ‘‘entropic SR’’ coined in Ref. [4].
The evidence reported there, however, hints at an interplay
of entropic and energetic barriers, rather than to a mere
entropic effect. Indeed, SR was demonstrated there only
under the explicit condition that the applied field of force
had a dc component at an angle with the pore axis, say
orthogonal to it, so that the particle tended to sojourn
preferably against one side of the cavities. In the absence
of such an additional symmetry-breaking force, no SR was
observed.

This remark raises the issue whether a bistable effective
potential is a necessary condition for SR to occur alto-
gether [7]. In this Letter we show that a Brownian particle
confined to two distinct cavities divided by a porous me-

dium, say a membrane, does undergo SR when driven by
an ac force perpendicular to the membrane, even in the
absence of external gradients and/or interactions with the
walls (besides bouncing from the walls). At variance with
ordinary SR, optimal synchronization between drive and
particle oscillations for an appropriate noise level, only
occurs at driving frequencies (amplitudes) lower (higher)
than a certain onset threshold. Moreover, such a manifes-
tation of SR in higher dimensions requires adopting ex-
tremely sharp geometrical constrictions to separate the two
cavities, something akin to the pores obtained by punctur-
ing a thin membrane. The magnitude and conditions of the
effect reported here are sensitive to both the geometry of
the cavities and the cross section of the pores, thus allow-
ing a direct control of the synchronization mechanism.
The overdamped dynamics of a Brownian particle in 2D

is modeled by the Langevin equation

d~r=dt ¼ �AðtÞ ~ex þ
ffiffiffiffi
D

p
~�ðtÞ; (1)

where ~ex, ~ey are the unit vectors along the x, y axes and
~�ðtÞ ¼ ð�xðtÞ; �yðtÞÞ are zero mean, white Gaussian noises

with autocorrelation functions h�iðtÞ�jðt0Þi ¼ 2�ij�ðt� t0Þ
with i, j ¼ x, y. Equation (1) was numerically integrated
by using a Milstein algorithm [8] for the two-cavity con-
tainer sketched in Fig. 1, with reflecting walls [9] and a
single opening, with different geometries, placed at the
center of the partition wall. Stochastic averages were ob-
tained as ensemble averages over 106 trajectories with
random initial conditions; transient effects were estimated
and subtracted. In the presence of an ac drive, AðtÞ ¼
A0 cosð�tÞ, the Brownian trajectories embed a persistent
harmonic component, �xðDÞ cos½�t��ðDÞ�, whose am-
plitude, �x, and phase, �, have been numerically fitted
from data, and plotted versus D in Figs. 2–4.
For simplicity, we start modeling the pore as a structure-

less hole pierced in a zero-thickness wall. The occurrence
of a SR phenomenon is clear, albeit with some distinctive
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features, as seen in Figs. 2 and 3: (i) �xðDÞ peaks for an
appropriate noise intensity, Dmax, with Dmax a manifestly
increasing function of �; (ii) SR is restricted to A0 >Ac,
Fig. 2(a), and �<�c, Fig. 2(b). This is an important
difference with respect to ordinary SR, where there exist
no such onset thresholds in the drive parameter space;
(iii) the curvres �xðDÞ decay like D�1, Fig. 3, that is faster
than in any 1D bistable potential and more in line with SR
in a discrete two-state model [10].

All properties listed above can be explained by simple
geometrical considerations. When the ac force AðtÞ presses

the particle against the walls of the container opposite to
the dividing wall, then the average particle displacement
hxðtÞi approaches a square waveform with amplitude xL.
Thus, the particle gets pushed against the container parti-
tion twice per cycle; if it goes through the opening, hxðtÞi
traces a symmetric, two-sided square wave; if it does not,
its average displacement is restricted to an asymmetric,
one-sided square wave, on either the positive or the nega-
tive side of the dividing wall. On taking the Fourier series
of hxðtÞi with period 2�=�, the amplitude of its funda-
mental harmonic component turns out to be, respectively,
4xL=� for the two-sided waveform, and 2xL=� for the one-
sided waveform. These observations provide an upper
bound to �x,

�x � ð4=�ÞxL; (2)

and the onset condition for SR,

A0=� � ð4=�ÞxL; (3)

A0=� being the driven oscillation amplitude of an uncon-
strained Brownian particle. The SR peak, �xðDmaxÞ, ap-
proaches the upper bound in Eq. (2) at vanishingly low
�, see Fig. 2(b); whereas from Eq. (3), for our simulation
parameters one obtains Ac ¼ 0:013 in Fig. 2(a) and �c ¼
0:035 in Fig. 2(b). The consistency of these analytical
results with the simulations is quite satisfactory.
At variance with SR in a bistable potential, the particle

oscillations are not drastically suppressed in the zero-noise
limit. An estimate for �xð0Þ � limD!0 �xðDÞ can be obtained
by noticing that the probability for the particle to cross the
pore and, therefore, to execute a full oscillation is �=yL,
whereas the probability to get trapped on either side of the
partition is (1� �=yL). Accordingly,

�xð0Þ ¼ ðxL=2Þð1þ�=yLÞ�ð�Þ; (4)

with � ¼ 4=� for� ! 0, see Eq. (2), and � ¼ 1 for� !
�c. This defines a relatively narrow variability range for
�xð0Þ as a function of�. Well above the onset threshold (3),
namely, for � � �c, for D ! 0 the curves in Fig. 2(b)
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FIG. 3 (color online). Geometric dependence of this SR. �xðDÞ
versus D for different values of � (a) and xL (b). Other
parameters are: yL ¼ 1, A0 ¼ 0:045, � ¼ 0:005 and
(a) xL ¼ 1, (b) � ¼ 0:1. In both panels �xð0Þ is very close to
our prediction from Eq. (4) with �ð�Þ ¼ 4=�.
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FIG. 2 (color online). Geometric stochastic resonance.
(a) �xðDÞ versus D for different values of the ac drive parameters
A0 at � ¼ 0:01 in (a) and � at A0 ¼ 0:045 in (b). Other
parameters are: xL ¼ yL ¼ 1 and � ¼ 0:1. The dashed curve
in (a) represents our predicted asymptotic decay �x=A0 for D !
1. In (b) we display our predictions for: the range of variability
of �xð0Þ (horizontal arrows), the SR peak position Dmax (vertical
arrows), the SR peak height �xðDmaxÞ (top line), and the decay law
�xðD ! 1Þ (dashed line); see text.
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FIG. 1 (color online). (a) Brownian particle confined to a 2D
box divided in two compartments by a partition with an opening
at the center. (b) Three different pore geometries are used in our
simulations: funnel, hole, and spout (left to right). � and x0
denote, respectively, the cross section and the thickness of the
pore.
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clearly tend to the upper bound of �xð0Þ in Eq. (4); corre-
spondingly, the upper bound of noise amplification via SR
is �xðDÞ= �xð0Þ � 0:5.

To check these predictions we modified the container
geometry. In Fig. 3 the response amplitude �xðDÞ, in units of
xL, is plotted versusD for different�’s, panel (a), and xL’s,
panel (b). In agreement with Eq. (4), �xð0Þ=xL in panel (a)
grows linearly with �, while in panel (b) is seemingly
insensitive to xL. Note that �xð0Þ approaches the upper
bound (2) only for � ! 1, thus implying that geometric
SR happens for any finite pore width.

The dependence of the decaying tails of �xðDÞ on � and
xL is also consistent with our geometric interpretation.
Indeed, the D ! 1 behavior of �xðDÞ can be analyzed in
terms of the average time, �1ðDÞ, for an unbiased
Brownian particle to diffuse across one compartment.
Such a time constant is easily obtainable by analytical
means [9], �1ðDÞ ¼ x2L=3D. In the presence of strong
noise, the geometric constriction exerted by the pore grows
ineffective; diffusion along the x-axis is then described by
an ac forced damped Brownian motion with effective
damping constant ��1

1 , so that the corresponding � com-
ponent of hxðtÞi gets suppressed both in amplitude,

A0�1ðDÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½��1ðDÞ�2p

, and phase, �ðDÞ ¼
arctan½��1ðDÞ�. For � � �c, this leads to the
�-independent estimate, �xðDÞ � A0�1ðDÞ, plotted in both
panels of Fig. 2 (dashed curves). Note that �1 is indepen-
dent of � and quadratic in xL, so that for D ! 1 the tails
of the curves of Fig. 3(a) collapse onto one curve and those
of Fig. 3(b) scale proportional to xL.

The SR peaks of �xðDÞ occur at a certain value of the
noise strength, Dmax, see Fig. 2, which weakly depends on
A0 and grows with�. This property distinguishes geomet-
ric SR from ordinary SR, as here the xðtÞ transitions
between stable states (cavities) are not regulated by an
activation rate over an energetic Arrhenius barrier. In the
absence of a drive, A0 ¼ 0, the relaxation is characterized
by some exit time, �ð�Þ, which is inversely proportional to
D. Optimal synchronization between pore crossings and
external drive requires that the particle switches compart-
ment twice during one AðtÞ cycle [1], i.e.,

�ð�Þ ¼ �=�: (5)

As a consequence, Dmax is proportional to �.
For a quantitative analysis, we propose to define �ð�Þ as

the mean time a Brownian particle, uniformly distributed
in one compartment, first crosses the pore. This quantity
has been numerically computed and plotted in Fig. 4(a) for
A0 ¼ 0 and different container geometries. On inserting
the corresponding numerical data for �ð�Þ into Eq. (5), we
predict the values of Dmax marked in Fig. 2(b) by vertical
arrows.

The dependence of �ð�Þ on the parameters � and xL is
also instructive. For� ¼ yL we recover the 1D limit, �1, as
it should. At very small pore cross-sections, �ð�Þ develops

a nonanalytical dependence on �, no matter what the
compartment aspect ratio xL=yL. However, the ratio
xL=yL controls the interplay between diffusion along the
x and y axis. For long compartments, xL=yL � 1, the exit
time is of the order of �1 until quite low �, whereas for
narrow compartments, xL=yL � 1, the exit time is domi-
nated by the vertical diffusion of the particle towards the
midsection of the cavity, where the pore is located, i.e.,
�ð�Þ � ðyL � �Þ2=12D for� not too close to 0 and 1 [also
shown in Fig. 4(a)]. To this regard, we remark that such a
dependence of the exit time on xL=yL is not inconsistent
per se with a reduced 1D description of the Brownian
diffusion along the x axis. However, none of the assump-
tions introduced in Ref. [4] to accommodate for SR in the
framework of the Fick-Jacobs kinetics [11], apply to the
present case. How to possibly define an entropic barrier
corresponding to a structureless partition hole and, there-
fore, how to interpret our results within the formalism of
Ref. [4] is the subject of an ongoing investigation. In
particular, it should be explained why the curves in
Fig. 3(b) do not show a significant dependence on the
cavity volume, being the entropy of a Brownian particle
proportional to the logarithm of the volume accessible to it
[4,11]. In fact, the SR mechanism reported here appears to
be a 2D geometric effect irreducible to a 1D problem with
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FIG. 4 (color online). Dependence of SR on the pore geometry.
(a) �ð�Þ in units of �1, for zero drive, cavities of different
lengths, and uniform initial particle distribution. The dashed
curve represents the vertical diffusion time, ðyL ��Þ2=12D
(see text), for the shortest cavity. Inset: log-log plot of
�1=�ð�Þ vs �=yL for � ! 0. (b) �xðDÞ versus D for different
pore geometries: spout (circles), hole (squares), and funnel
(triangles). AðtÞ is a square waveform with � ¼ 0:01 and am-
plitude as in the legend. Inset: �xðDÞ versus D for a spoutlike pore
at A0 ¼ 0:045 and different �. Other simulation parameters are:
xL ¼ yL ¼ 1, � ¼ 0:1, and x0 ¼ 0:1 (where it applies).
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an entropic potential, so that the term geometric SR would
be more appropriate for our case.

The phase delay, �ðDÞ, of the fundamental harmonic
component of hxðtÞi with respect to AðtÞ is plotted in the
insets of Fig. 2. By comparing the corresponding curves for
�xðDÞ and �ðDÞ, we notice that: (i) �ðDÞ also exhibit
SR-like peaks, which shift to higher D on increasing �
[Fig. 2(b)], while being almost insensitive to A0 [Fig. 2(a)].
Note that in a two-state model �ðDÞ would be a mono-
tonically decreasing function ofD [1]. (ii) The phase peaks
are suppressed at low�, where the SR signature of �xðDÞ is
most prominent; (iii) In the zero-noise limit, in contrast to
�xð0Þ, �ð0Þ strongly depends on � and A0; for D ! 1 the
expected asymptotic behavior, �ðDÞ ���1ðDÞ, was re-
covered (not shown). The nonmonotonic behavior of�ðDÞ
signals the appearance of two-sided oscillating trajectories
in the averaging ensemble of hxðtÞi, with the particle cross-
ing more and more frequently the pore in unison with AðtÞ.
According to our interpretation of the phenomenon under
study, phase peaks are natural SR precursors. However, if
the SR onset condition (iii) is not met, �ðDÞ tends to �=2,
as expected, as the particle is restricted to oscillate inside
one cavity most of the time [1].

In real experiments at small-length scales, the geometry
of the partition wall and its opening(s) are often not fully
controllable. In Fig. 4(b) we plot �xðDÞ versus D for the
three different pore shapes sketched in Fig. 1(b). In order to
enhance geometric effects, we used a square waveform
AðtÞ also with amplitude A0 and angular frequency �.
Moreover, the pore width, x0, was taken not too small,
lest the different pore geometries become indistinguish-
able. Funnel-like pores tend to channel the Brownian tra-
jectories through the opening, no matter what their cross
section; thus, no SR evidence was detected, as anticipated
in Ref. [4]. On the contrary, spoutlike pores exhibit en-
hanced SR peaks and a distinct dependence on the cavity
geometry. Indeed, under the pressure exerted by the drive,
the exit time through a spout of width x0 is of Arrhenius
type, namely, a function of the pore cross section, propor-

tional to eA0x0=D. Owing to the SR condition (5), Dmax is
now expected to grow almost linearly with A0 and loga-
rithmically decreases with �, in qualitative agreement
with our simulations. Note that, as soon as the pore shape
comes into play, i.e., for x0A0 � D, the A0 dependence of
the exit time cannot be ignored any more and a quantitative
analysis of these results requires going beyond the approx-
imations of linear response theory [1]. In the opposite limit,
the pore can be well modeled by a simple hole, as we
initially did.

We expect that geometric SR can be best demonstrated
in vortex superconducting devices [12]. This class of arti-
ficial devices is presently attracting growing interest be-

cause of potential applications to flux qubits, SQUIDs and
superconducting rf filters. Superconducting samples with
two vortex boxes connected by a thin pore of almost any
geometry can be fabricated. Vortices are trapped inside the
boxes with binding energy of the order of�2

0Lt=�
2, where

�0 is the magnetic flux quantum, � is the London pene-
tration depth, and Lt is the depth of the two vortex traps.
The vortex density n ¼ H=�0, is controlled by the inten-
sity H of the applied magnetic field. In the dilute limit,
H & �0=�

2, the vortex-vortex interactions become negli-
gible, so that the transport properties of a single trapped
vortex are not overshadowed by many-body effects. ac
drives and noise sources can be easily implemented as
Lorentz forces generated by independent electric currents
injected into the sample parallel and perpendicular to the
pore axis. Detection of SR under such experimental con-
ditions is only regulated by the applied current sources; in
particular, the noise parameter D can be varied indepen-
dently of the constant sample temperature.
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