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Within the framework of the Drude dispersive model, we predict an unusual nonmonotonic temperature

dependence of the Casimir force for thin metal films. For certain conditions, this force decreases with

temperature due to the decrease of the metallic conductivity, whereas the force increases at high

temperatures due to the increase of the thermal radiation pressure. We consider the attraction of a film

to: either (i) a bulk ideal metal with a planar boundary, or (ii) a bulk metal sphere (lens). The experimental

observation of the predicted decreasing temperature dependence of the Casimir force can put an end to the

long-standing discussion on the role of the electron relaxation in the Casimir effect.
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The Casimir effect is one of the most interesting macro-
scopic manifestation of the zero-point vacuum oscillations
of the quantum electromagnetic field. This effect manifests
itself as the attractive force arising between two uncharged
bodies placed in the vacuum due to the difference of the
zero-point oscillation spectrum in the absence and in the
presence of them (see, e.g., the monographs [1,2] and
review papers [3,4]).

The Casimir effect attracts considerable attention be-
cause of its numerous applications in quantum field theory,
atomic physics, condensed matter physics, gravitation, and
cosmology [1–5]. The noticeable progress in the measure-
ments of the Casimir force [6] has opened the way for
various potential applications in nanoscience [7], particu-
larly, in the development of nanomechanical systems
[2,4,7].

In spite of intensive studies on the Casimir effect, it is
surprising that such an important problem as the tempera-
ture dependence of this effect is still unclear and is still an
issue of lively discussion [8–10]. The central point in this
discussion is if the Lifshitz formula (see, e.g., [11]) is
applicable or not for lossy media. The authors of Ref. [8]
have argued that the Drude dispersion relation for a lossy
medium leads to inconsistencies because the reflection
coefficient rTE for the TE electromagnetic mode becomes
discontinuous when the imaginary frequency � ¼ �i!
tends to zero. Therefore, instead of the Drude dispersion

relation for the high-frequency dielectric permittivity ",

"ði�Þ ¼ 1þ !2
p

�ð� þ �Þ ; (1)

where !p and � are the plasma frequency and the relaxa-

tion frequency, authors of Ref. [8] suggest the same equa-
tion, but with � ¼ 0. Boström and Sernelius [9] have been
the first to inquire whether this prescription is correct. They
argued that in view of a realistic dispersion relation, the TE
mode should not contribute to the Casimir force at zero
temperature. Later, the authors of Refs. [9,10] have shown
that the mentioned discontinuity of rTE at � ! 0 does not
lead to any physical difficulty or ambiguity.
For the case of zero temperature, the essence of the

problem can be reduced to the following fundamental
question: Can the Casimir force be dependent on the dis-
sipation parameter (the relaxation frequency �) at zero
temperature when the dissipation itself is absent?
According to Ref. [8], the answer is ‘‘no.’’ However, the
authors of Refs. [9,10] conclude that the answer should be
‘‘yes.’’
In this Letter, we pay attention to an important feature of

the Casimir force that can be demonstrated within the
frame of the Drude dispersion model. There exist two
competing phenomena that determine the temperature de-
pendence of the Casimir force. On the one hand, an in-
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crease in temperature leads to an increase of the relaxation
frequency and, therefore, to a decrease of the metal con-
ductivity and to a decrease of the Casimir force. On the
other hand, when increasing the temperature, the Casimir
force increases due to the growth of the thermal radiation
pressure. The competition of these two effects can result in
a nonmonotonic temperature dependence of the Casimir
force.

The experimental observation of such an anomalous
temperature dependence of the Casimir force might be a
direct justification of the applicability of the Drude model.
However, this temperature effect for bulk metals is very
difficult to observe because of its small magnitude. Indeed,
the relative contribution jFrad=FðT ¼ 0Þj of the thermal
radiation force Frad into the Casimir force F is proportional
to ðkTa=@cÞ4 � 1 for realistic distances a � aT ¼ @c=kT
between bulk metals. Here k is the Boltzman constant and
c is the speed of light. The temperature-dependent part of
the term F�, related to the relaxation frequency �, is very
small because it is proportional to the small surface im-
pedance of a metal. Therefore, for bulk samples, the
Casimir force is observed to be slowly increasing with T
due to an increase of the radiation term Frad.

In this Letter, we predict a decreasingCasimir force with
T and show that the difficulties mentioned above, for the
observation of the anomalous temperature dependence of
the Casimir force, can be significantly diminished if we
consider the interaction of thin metal films, instead of only
between bulk samples. As was derived in Ref. [12], the
temperature effects in the Casimir force can be brought to
the forefront if the film thickness d is less than both the
separation a and the skin-depth c=!p. The characteristic

frequency !c of the fluctuations, that provide the main
contribution to the Casimir force, becomes smaller,

!c ¼ !p

ffiffiffi
d

a

s
� !p; !c � c

a
; (2)

if

d � � ¼ c=!p; a: (3)

This means that the high-temperature regime (when T >

Tc ¼ @!c=k / d1=2) for the Casimir attraction of a film
occurs at lower temperatures. In addition, under conditions
(3), the surface impedance of a metal film is not small.
Therefore, the Casimir force for thin films becomes smaller
than for bulk materials (see, e.g., results of recent experi-
ments [13] with thin films), and the relative role of the
temperature effects in the Casimir force becomes stronger.
Thus, as we show below, the anomalous temperature de-
pendence of the Casimir force can be observed, in princi-
ple, for thin metal films. The successful implementation of
this experiment could put an end to the long-standing
discussion on the role of the electron relaxation in the
Casimir effect.

Model.—The general formula for the Casimir interaction
force between dielectric slabs with arbitrary dielectric

constants " was originally derived by Lifshitz [14] (see,
also, Refs. [15]). There, the Casimir force is presented as a
functional defined on the set of functions "ði!nÞ of a
discrete variable !n ¼ 2�nkT (n ¼ 0; 1; 2; . . . ). For the
dielectric permittivity of the metal film, we choose the
Drude dispersive model Eq. (1) which takes into account
the temperature dependence of the relaxation frequency �
caused by the scattering of electrons by phonons. We use
the relation, �ðTÞ ¼ �0 þ �phðT=�Þ,

�phðxÞ ¼ A�phð1Þx5
Z 1=x

0

y5dy

ðey � 1Þð1� e�yÞ ; (4)

based on the Grüneisen formula for the temperature de-
pendence of the resistivity (see, e.g., Ref. [16]). Here �0 is
the residual relaxation frequency caused by the electron
scattering on crystal defects, � is the Debye temperature,
�phðT=�Þ is the relaxation frequency due to the electron-

phonon scattering. The value �phð1Þ depends on the Fermi

velocity of electrons, the strength of the electron-phonon
interaction, etc. This �phð1Þ can be obtained by measuring

the resistivity at the Debye temperature. The constant A is
ðR1

0 y
5dy=ðey � 1Þð1� e�yÞÞ�1 � 3. For simplicity, we do

not take into account the surface scattering of electrons in
the explicit form (4) because it only changes the value of �0

(see, e.g., Ref. [17]).
We consider first the Casimir effect for an ideal bulk

conductor and a thin metal film of thickness d, separated by
a distance a. Then, using the ‘‘Proximity Force Theorem’’
[18], we derive the expressions for the Casimir force
between a metal film and an ideal metal sphere (lens).
The geometry of problem is shown in Figs. 1(a) and 1(b).
Casimir force.—The asymptotic equation for the

Casimir attraction of a thin metal film to an ideal bulk
plane metal was derived in Ref. [12]. The force f per unit
area can be written in the form,

f ¼ � BkT

8�a3

Z 1

0
dxx3e�xIðxÞ; (5)

where B ¼ ð@!c=4�kTÞ2, !c ¼ !pðd=aÞ1=2, IðxÞ ¼P10
n¼0fnðnþ CÞ þ B�ðxÞg�1, �ðxÞ ¼ xð1� e�xÞ, C ¼

@�ðTÞ=2�kT, the prime over the sum symbol indicates
that the term with n ¼ 0 is taken with half the weight.
Equation (5) is valid if conditions (2) and (3) are fulfilled.
In this case, one can neglect the relativistic retarding effect
and pass to the limit c ! 1.
Using the Abel-Plana formula for summing series, we

can rewrite Eq. (5) in the form of a sum of two terms that
correspond to two sources for the temperature dependence
of the Casimir force,

f ¼ f� þ frad; (6)

f� ¼ � @!c

32�2a3

Z 1

0
dxx3e�x

Z 1

0

d�

�ð�þ �Þ þ�ðxÞ ; (7)
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frad ¼ � @�ðTÞ
8�2a3

�
Z 1

0
dxx3e�x

Z 1

0

tdt

ðe�t � 1Þf½t2 ��ðxÞ�2 þ �2t2g ;
(8)

where � ¼ 2�ðTÞ=!c, � ¼ @!c=2kT.
The first term in Eq. (6) is provided by the quantum

fluctuations of the electromagnetic field. It depends on
temperature only via the parameter � / �ðTÞ in the de-
nominator in Eq. (7). Since �ðTÞ is the increasing function,
the modulus of f� decreases when increasing the tempera-
ture. The asymptotics of f� for low and high values of the
parameter � are

f� ¼ � i1@!c

64�a3

�
1� i2

�ðTÞ
!c

�
; � � !c; (9)

f� ¼ � 3@!2
c

16�2a3�ðTÞ
�
ln

�
2�ðTÞ
!c

�
� i3

�
; � � !c;

(10)

where i1 � 3:512 14, i2 ¼ 4�ð3Þ=�i1 � 0:435 78, i3 �
0:592 72, and �ðxÞ is the zeta function.
The second term in Eq. (6) is caused by the thermal

fluctuations of the electromagnetic field. Its modulus in-
creases when increasing the temperature. This term has
different asymptotics in different temperature intervals:

flow-Trad ¼��ðTÞðkTÞ2
24a3@!2

c

ln

�
@!c

kT

�
; kT� @�; @!2

c=�;

(11)

at low temperatures and

f
high-T
rad ¼ � �ð3Þ

8�

kT

a3
; kT � minð@!c; @!

2
c=�Þ (12)

at high temperatures. In the case � � !c, there exist the
intermediate asymptotics,

fintermed-T
rad ¼ � �ð3Þ

2�

ðkTÞ3
a3ð@!cÞ2

; @� � kT � @!c:

(13)

Using Eqs. (9)–(13) and the Proximity Force Theorem
[18], one can easily derive the analogue asymptotics for the
Casimir force F, F ¼ 2�R

R1
a da0fða0Þ, between an ideal

metallic sphere of radius R and a thin metal film:

F�ð� � !cÞ ¼ � i1@!cR

80a2

�
1� 5i2

4

�ðTÞ
!c

�
; (14)

F�ð� � !cÞ ¼ � @!2
cR

8�a2�ðTÞ
�
ln

�
2�

!c

�
� i3 þ 1

6

�
: (15)

For the low-temperature interval in Eq. (11),

Flow-T
rad ¼ ��R�ðTÞðkTÞ2

12a2@!2
c

�
ln

�
@!c

kT

�
� 1

2

�
; (16)

for the high-temperature interval in Eq. (12),

F
high-T
rad ¼ � �ð3Þ

8

RkT

a2
; (17)

and for the intermediate temperature interval in Eq. (13),

Fintermed-T
rad ¼ ��ð3Þ RðkTÞ3

a2ð@!cÞ2
: (18)

The above results show that the contribution to the
Casimir force F�ðTÞ from quantum fluctuations always
decreases when increasing the temperature. At low tem-
peratures, this decrease can be more substantial than an
increase of the radiation force FradðTÞ. In this case, a
decrease of the total Casimir force, F�ðTÞ þ FradðTÞ, for
a metal film can be observed when increasing the tempera-
ture, instead of the usual increase of FðTÞ that is character-
istic for bulk materials. However, at high enough
temperatures, the radiation term prevails over F�ðTÞ.
Thus, in principle, the nonmonotonic temperature depen-
dence of the Casimir force could be observed. Dashed lines
in Figs. 1(e) and 1(f) display such a behavior of the
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FIG. 1 (color online). (a),(b) Geometry of the problem. The
Casimir attraction of a thin metal film (in red) to an ideal plane
bulk metal [in (a)] and to an ideal metal sphere [in (b)]. (c)–
(f) The temperature dependence of the Casimir force of attrac-
tion of strontium (upper red curve in (c) and (d), Barium [middle
black curve in (c) and (d)], cesium (bottom green curve in (c) and
d), and virtual (nonexistent) metal (dashed blue curve in (e) and
(f) films to an ideal plane bulk metal (for (c) and (e) and to a
metal sphere of radius R ¼ 5 cm (for (d) and (f). The separation
a is 10�5 cm for all curves. Other parameters are pointed in the
text. Even though the theoretical predictions can show a non-
monotonic (e),(f) behavior of FðTÞ, only the decreasing (with
temperature) part of the force could be observed for the chosen
materials. Note that jfj in panels (c),(e) refer to the modulus of
the Casimir force per unit area, while jFj in panels (d),(f)
correspond to the modulus of the total Casimir force.
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Casimir force for a virtual metal film with parameter
values: � ¼ 100 K, !p ¼ 3� 1015 s�1, �phðT ¼ �Þ ¼
7� 1012 s�1, d ¼ 7� 10�7 cm. The best candidates for
the experimental observation of a decrease in FðTÞ versus
T are metals of the first and second columns with low
Debye temperatures and a strong temperature dependence
of the resistivity �ðTÞ. Figures 1(c) and 1(d) show the
temperature dependence of the Casimir force for strontium
(� ¼ 147 K, !p ¼ 1:06� 1016 s�1, �ðT ¼ 293 KÞ ¼
0:13� 10�6 �m, d ¼ 7� 10�7 cm), Barium (� ¼
110 K, !p ¼ 1016 s�1, �ðT ¼ 293 KÞ ¼ 0:33�
10�6 �m, d ¼ 7� 10�7 cm), and cesium (� ¼ 38 K,
!p ¼ 0:54� 1016 s�1, �ðT ¼ 293 KÞ ¼ 0:205�
10�6 �m, d ¼ 10�6 cm) films and: an ideal metal semi-
space [Fig. 1(c)], and a metal sphere (lens) [Fig. 1(d)] of
radius R ¼ 5 cm. The parameters �phðT ¼ �Þ (6:3�
1013 s�1 for strontium, 1:05� 1014 s�1 for Barium, and
2:5� 1013 s�1 for cesium) were calculated using the rela-
tion � ¼ 4��ðTÞ=!2

p, and Eq. (4). The residual relaxation

frequency �0 (taken as 1011 s�1) does not significantly
influence the Casimir force if �0 � !c. The minimum in
the temperature dependence of the Casimir force is not
seen in Figs. 1(c) and 1(d) because its position corresponds
to temperatures higher than the melting temperatures of the
films. However, the unusual decrease of FðTÞ could be
more than 10% which can be easily observed in experi-
ments. The nonmonotonic dependence of the Casimir force
could be drastically enhanced when the temperature varia-
tion strongly affects the conductivity of the material. This
would happen when measuring the Casimir force near, e.g.,
the metal-insulation transition [19] and also at the normal-
superconducting transition [20].

The decreasing portion of the jFðTÞj dependence corre-
sponds to a decrease of the Casimir contribution to the
entropy when increasing T. This decrease is connected to
the enhancement of the electron scattering on phonons and
is much weaker than the increase of the phonon contribu-
tion to the entropy. Thus, the total entropy certainly in-
creases when increasing the temperature.

In conclusion, we predict an unusual decrease with
temperature (or even nonmonotonic temperature depen-
dence) of the Casimir attraction force between a thin metal
film and a bulk plane ideal metal or a metal sphere (lens).
Usually, for bulk samples, the Casimir force increases
slowly with temperature. Here we predict a noticeable
decrease of the force with an increase of T for metal films.
The experimental observation of this unusual temperature
dependence of the Casimir force can put an end to the long-
standing dispute on the role of the electron relaxation in the
Casimir effect.
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