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We examine a simple model of proton pumping through the inner membrane of mitochondria in the living
cell. We demonstrate that the pumping process can be described using approaches of condensed matter physics.
In the framework of this model, we show that the resonant Förster-type energy exchange due to electron-proton
Coulomb interaction can provide a unidirectional flow of protons against an electrochemical proton gradient,
thereby accomplishing proton pumping. The dependence of this effect on temperature as well as electron and
proton voltage buildups are obtained taking into account electrostatic forces and noise in the environment. We
find that the proton pump works with maximum efficiency in the range of temperatures and transmembrane
electrochemical potentials which correspond to the parameters of living cells.
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I. INTRODUCTION

A living cell can be considered as a tiny electrical battery
with a transmembrane potential difference of order −70 mV
�with a negatively charged interior�. Even a higher potential,
�V�−200 mV, is applied to the inner membrane of a mito-
chondrion, an organelle, which produces most of the energy
consumed by the cell �1–3�. To create and maintain such an
electrical potential, mitochondria employ numerous proton
pumps converting energy of electrons into an electrochemi-
cal proton gradient that is harnessed thereafter to drive the
synthesis of adenosine triphosphate �ATP� molecules. Trans-
location of protons across the inner membrane of mitochon-
dria is performed by the enzyme cytochrome c oxidase
�COX�. Although the crystal structure of COX is known in
detail, a molecular mechanism of the redox-driven proton
pumping remains a mystery despite the significant latest ad-
vances based on time-resolved optical and electrometric
measurements �4,5�.

The electron transport chain of COX consists of four
metal redox centers, CuA, heme a, heme a3, and CuB �3,6,7�.
The process starts when the mobile electron carrier, cyto-
chrome c, moving from the positively charged P side of the
membrane, donates a high-energy electron to a dinuclear
copper site, CuA �see Fig. 1�. After that, the electron proceeds
to the heme a with a subsequent transfer to the binuclear
center formed by heme a3 and a copper ion CuB, where the
dioxygen molecule O2 is reduced to water. To produce two
molecules of water in the catalytic cycle with four electrons
�e−� �8�,

O2 + 8HN
+ + 4e− → 2H2O + 4HP

+,

the cytochrome oxidase consumes four substrate �chemical�
protons which are translocated from the negative N side of
the inner mitochondrion membrane to the binuclear center. In
the process, four more protons �HN

+ � are taken from the N
side and pumped to the positive side �HP

+�. Here, subscripts N

and P for the protons denote the location of the proton H+ at
the negative �N� or positive �P� side of the membrane, re-
spectively. A residue E278 �for the Paracoccus denitrificans
enzyme� or a conserved glutamic acid, Glu242 �for the bo-
vine enzyme �5,9��, located at the end of the so-called D
pathway �10�, can serve as starting points for both substrate
and pumped protons on their way from the N side to the
binuclear center. In the next phase, a proton is transferred to
an unknown yet protonable pump site X which is located on

FIG. 1. �Color online� �a� Schematic diagram of the electron and
proton pathways in cytochrome c oxidase with suggested locations
for the active electron and proton sites. �b� Schematic energy dia-
gram of the simultaneous electron and proton transport.
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the P side of the heme groups and electrostatically coupled
to heme a and to the binuclear iron-copper center a3 /CuB
�4,5�. On the final stage, the proton moves from the site X to
the positive side of the membrane after uphill pumping. In
the context of a pure electrostatic model proposed in Refs.
�4,5�, the protonation of the site X leads to the equalization of
electron energy levels in hemes a and a3 that facilitates a
transfer of an electron from heme a to the binuclear center.
This electron attracts a substrate proton which moves from
the N side of the membrane to the site X, expelling the first,
prepumped proton to the P side. Detailed density functional
and electrostatics studies of this and other models have been
performed in �8,11–15�. However, a mechanism of energy
transmission from electrons to protons resulting in a unidi-
rectional translocation of protons against the concentration
gradient is still uncertain. For better understanding of this
phenomenon, it is useful to combine a comprehensive analy-
sis of the energetic and spatial structure of enzymes with
simple and physically transparent models.

In the present paper, we approach the problem taking into
account the similarity of the electron-driven proton transfer
to the quantum transport of electrons through nanostructures
�16�. The interaction between electrons and protons is de-
scribed by a Coulomb potential, but, in addition to the stan-
dard electrostatic terms, we analyze effects of the Förster-
type Coulomb exchange �17� on the resonant energy
transduction between electron and proton subsystems. Each
of the subsystems is supposed to have two active sites: 1e ,2e
for electrons, and 1p ,2p for protons. We consider here the
possibility when both electron sites belong to the same po-
tential well, localized in the binuclear center a3 /CuB, while
both active proton states 2p and 1p can be ascribed to the
pump center X �see Fig. 1�. This positioning of active sites
corresponds in some sense to the electrostatic model of Ref.
�5�, based on time-resolved measurements of electron trans-
fer in COX enzyme �4�.

During the Förster process, an electron moves from the
state 2e, which has a higher energy, to the state 1e, with a
lower energy; whereas a proton jumps from the lower-energy
state 1p to the higher-energy state 2p �see Fig. 1�. The same
mechanism is responsible for the fluorescence resonant en-
ergy transfer �FRET� in biological systems �18�, as well as
for the exciton transfer in condensed matter �19�.

The Förster term originates from the matrix element of
the Coulomb electron-proton potential between the overlap-
ping wave functions of the electron states 2e and 1e, and the
overlapping wave functions of proton states 1p and 2p �20�.
Calculations show that this term is directly proportional to
the product of the dipole moments of electron and proton
two-level systems, also inversely proportional to the cube of
the distance between the electron and proton sites, and re-
quires us to satisfy resonant conditions for the energies of the
electron and proton subsystems. Accordingly, the Förster
term is much weaker than standard electrostatic terms. How-
ever, as a consequence of its overlapping origin, this term
opens a new channel for simultaneous tunneling of electrons
and protons, in addition to the direct tunneling. We demon-
strate that it is the Förster-type coupling that results in an
effective electron-proton energy transfer, followed by the
proton pumping from the negative to the positive side of the
inner mitochondria membrane.

The rest of the paper is structured as follows. Formulation
of Hamiltonians and energetic spectra of the problem is pre-
sented in Sec. II. Expressions for electron and proton cur-
rents are obtained in Sec. III. In Sec. IV, we derive equations
of motion for the density matrix. In Sec. V, these equations
are solved numerically and the obtained dependencies of the
proton current on temperature, electron, and proton voltage
buildups, and deviation from the resonant conditions are dis-
cussed. Section VI contains our conclusions.

II. MODEL FORMULATION

Electrons and protons on sites �=1,2 are characterized
by the Fermi operators a�

+ ,a�, and b�
+ ,b�, respectively, with

the corresponding populations, n�=a�
+a� and N�=b�

+b� �we
interchangeably use the notation “site” � “state”�. We as-
sume that each electron site or proton site can be occupied by
a single particle, so the maximal populations can be, at most,
one electron on each one of the two separate electron sites,
and, at most, one proton on each one of the two separate
proton sites. To describe the continuous flow of carriers
through the system, we assume that the electron site 2 is
coupled to the left �L� reservoir, which serves as a source of
electrons, and the electron site 1 is coupled to the right res-
ervoir �R� playing the role of drain. At the same time, the
proton site 1 can be populated when protons jump from the
reservoir located on the negative �N� side of the membrane.
On the positive side of the membrane, there is another proton
reservoir which serves to depopulate the proton site 2 �see
Fig. 1�b��. In the framework of this model, here we neglect
the couplings between the electron site 1 and the reservoir L,
and between the site 2 and the reservoir R. We also neglect
the tunneling between the proton site 1 and the positive side
of the membrane �P�, as well as the tunneling between the
proton site 2 and the negative side of the membrane �N�.

The electrons in the reservoir �lead� � ��=L ,R� or the
protons in the reservoir �lead� � ��=N , P� can be character-
ized by additional parameters k and q, respectively, which
have meanings of wave vectors in condensed matter physics.
To describe the electronic and protonic sources and drains,
we introduce the electron creation and annihilation operators
in the � lead as ck�

+ ,ck�, and their proton counterparts for the
� lead as dq�

+ ,dq�. The number of electrons in the � lead is
determined by the operator �knk�, with nk�=ck�

+ ck�, whereas
the proton population of the � lead is given by the operator
�qNq�, with Nq�=dq�

+ dq�. It is well known that in real bio-
logical structures, couplings between the active sites 1, 2 and
the reservoirs can be mediated by many bridge states, similar
to the CuA site and heme a, which can be subjected to con-
formational changes �21�. Conformation changes can also
provide a selectivity in coupling between the active sites and
the leads �2�.

A. Electron and proton Hamiltonians

The Hamiltonian of the electron-proton system incorpo-
rates a term related to eigenenergies ��

�0� ,E�
�0� of electrons and

protons, respectively, located on the sites �=1,2, as well as
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a term describing electron and proton energies �k� ,Ek� of the
leads �=L ,R; �=N , P:

Hinit = �
�

���
�0�n� + E�

�0�N�� + �
k�

�k�ck�
+ ck� + �

q�

Eq�dq�
+ dq�.

�1�

The Hamiltonian Hdir,

Hdir = − �aa2
+a1 − �a

*a1
+a2 − �bb2

+b1 − �b
*b1

+b2, �2�

is responsible for the direct tunneling of electrons and pro-
tons between the corresponding sites 1 and 2, with the rates
�a and �b. Notice that the direct tunneling has a highly non-
resonant character since the energy levels of the sites 1 and 2
are well separated: �2

�0�−�1
�0���a, E2

�0�−E1
�0���b. To take

into consideration the coupling of the active sites 1 and 2 to
the corresponding reservoirs of electrons and protons, we
introduce the tunneling Hamiltonian

Htun = − �
k

tkRckR
+ a1 − �

k

tkLckR
+ a2 − �

q

TqNdqN
+ b1

− �
q

TqPdqP
+ b2 + H.c. �3�

The Coulomb force plays the most important role in the
process of energy transfer from the electron subsystem to
protons. This interaction is determined by the Coulomb po-
tential

u�re,rp,R� = −
e2

4	�0�r�rp − re + R�
, �4�

where re ,rp are the electron and proton positions in their
local frame of reference, and R is the distance between the
electron and proton sites, R�re ,rp. A direct electron-proton
Coulomb attraction is determined by the energies u��� ��
=1e ,2e; ��=1p ,2p�. In addition, we take into account the
repulsion of the two electrons located at the sites 1e and 2e
�energy scale �ue� jointly with the repulsion of two protons
localized on the sites 1p and 2p �an energy parameter up�. It
should be noted that all energy characteristics u��� ,ue ,up are
modified compared to their original values because of Cou-
lomb interactions between the active sites and the electron
and proton reservoirs. As a result, the Hamiltonian related to
the direct Coulomb interaction has the form

HC
�0� = − �

���

u���n�N�� + uen1n2 + upN1N2. �5�

B. Förster term

The direct Coulomb coupling between electrons and pro-
tons should be complemented by the Förster term,

HF = VFa1
+a2b2

+b1 + VF
*a2

+a1b1
+b2, �6�

which originates from the cross matrix element of the Cou-
lomb potential �4�

VF = − �1e2p	 e2

4	�0�r�rp − re + R�
	2e1p
 . �7�

This matrix element is taken over the electron-proton wave
function �1e2p�, with the electron being in the state 1e and the
proton being in the state 2p, and the wave function �2e1p�,
with the electron being in the state 2e and the proton being in
the state 1p. The Förster term can be significant in the case of
an electron-proton resonance when the distance between the
electron energy levels �1 and �2 is close to the separation of
the proton energy levels E1 and E2: �2−�1�E2−E1. There-
fore the states �1e2p� and �2e1p� have almost the same energy
�1+E2��2+E1, that is favorable to transitions between these
states. The contributions of the other cross elements of the
electron-proton Coulomb attraction, such as
2e1p�u�re ,rp ,R��1e2p�, 2e2p�u�re ,rp ,R��1e2p�, etc., which
have a nonresonant character, are quite small ��VF / �E2

−E1�
1 at E2−E1�500 meV, VF�1 meV�, and can be ne-
glected. We consider here a situation where the wave func-
tions 1e ,2e represent the ground and the first excited state of
the electron in a parabolic potential well which is placed a
distance R from the proton potential well containing two
proton states 1p ,2p. Using the expansion �r= �r � 
R= �R � �,

1

�R − r�
=

1

R
�1 −

r · R

R2 + 3
�r · R�2

R4 −
r2

R2 + ¯ � , �8�

we find that the matrix element VF characterizing the
strength of the Förster term is proportional to the product of
the dipole moments, er0 and eR0, of the electron and proton
sites 1 and 2 and inversely proportional to the cubic power of
the distance R between these sites:

VF =
e2

2	�0�r

r0R0

R3 . �9�

For a protein with a dielectric constant �r=3 and the electron
or proton wave function spreadings r0=0.1 nm and R0
=0.01 nm, we estimate the Förster matrix element as VF
�1 meV, if the distance between the electron and proton
sites R=1 nm.

C. Dissipative environment

To account for the effects of a dissipative environment on
the electron and proton transfer, we resort to the well-known
model �22–24� where the polar medium surrounding the
electron and proton active sites is represented by two sys-
tems of harmonic oscillators with the following Hamiltonian:

HB = �
j
� pj

2

2mj
+

mj� j
2xj

2

2
� + �

j

mj� j
2xj0xj

2
�n2 − n1�

+ �
j
� Pj

2

2Mj
+

Mj� j
2Xj

2

2
� + �

j

Mj� j
2Xj0Xj

2
�N1 − N2� .

�10�

Here �xj , pj� are positions and momenta of the oscillators
coupled to the electron subsystem, whereas the variables
�Xj , Pj� are related to the proton environment. The electron
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and proton surroundings are characterized by their own sets
of effective masses mj and Mj as well as by the two sets of
eigenfrequencies � j and � j. The strengths of the couplings to
the environments are determined by the shifts xj0 and Xj0 of
the equilibrium positions of the corresponding jth oscillator.
The bath Hamiltonian, Eq. �10�, can be rewritten in the form

HB = �
j
� pj

2

2mj
+

mj� j
2�xj + �1/2�xj0�n2 − n1��2

2
�

+ �
j
� Pj

2

2Mj
+

Mj� j
2�Xj + �1/2�Xj0�N1 − N2��2

2
�

−
1

4
a�n1 + n2� −

1

4
b�N1 + N2� , �11�

where the parameters a and b are reorganization energies
for the electron and proton environments,

a = �
j

mj� j
2xj0

2

2
, b = �

j

Mj� j
2Xj0

2

2
. �12�

The systems of independent harmonic oscillators are conve-
niently characterized by the spectral functions Ja��� and
Jb���, defined as

Ja��� = �
j

mj� j
3xj0

2

2
��� − � j� ,

Jb��� = �
j

mj� j
3Xj0

2

2
��� − � j� , �13�

so that

a = �
0

� d�

�
Ja���, b = �

0

� d�

�
Jb��� . �14�

Correlations between the electron and proton environments
are disregarded here. These correlations result in an addi-
tional electron-proton nonresonant interaction, which is
much smaller than the direct Coulomb coupling terms. Be-
sides that, the bath-mediated electron-proton interaction
leads to a negligible broadening of electron and proton en-
ergy levels. We take into account the common origin of both
environments choosing the same equilibrium temperature T
and the similar reorganization energies, a, and b, for the
electron and proton thermal baths. It should be noted that the
real part of the complex dielectric permittivity of the polar
medium, described by the Hamiltonian HB, Eq. �11�, is in-
corporated into the dielectric constant �r, which is involved
in Eqs. �4� and �9�. At the same time the spectral functions
Ja���, Jb��� are determined by the imaginary part of the
same complex dielectric permittivity �see, for instance, Ap-
pendix A in Ref. �23��.

D. Total Hamiltonian

The total Hamiltonian of the system incorporates all the
above-mentioned terms, as

H = H0 + �
k�

�k�ck�
+ ck� + �

q�

Eq�dq�
+ dq� + VFa1

+a2b2
+b1

+ VF
*a2

+a1b1
+b2 − �aa2

+a1 − �a
*a1

+a2 − �bb2
+b1 − �b

*b1
+b2

− �
k

tkRckR
+ a1 − �

k

tkR
* a1

+ckR − �
k

tkLckL
+ a2 − �

k

tkL
* a2

+ckL

− �
q

TqNdqN
+ b1 − �

q

TqN
* b1

+dqN

− �
q

TqPdqP
+ b2 − �

q

TqP
* b2

+dqP

+ �
j
� pj

2

2mj
+

mj� j
2�xj + �1/2�xj0�n2 − n1��2

2
�

+ �
j
� Pj

2

2Mj
+

Mj� j
2�Xj + �1/2�Xj0�N1 − N2��2

2
� , �15�

where the Hamiltonian

H0 = �
�

���n� + E�N�� − �
���

u���n�N�� + uen1n2 + upN1N2

�16�

is characterized by the renormalized energy levels,

�� = ��
�0� − �1/4�a, E� = E�

�0� − �1/4�b.

Here the repulsion potentials, ue and up, also incorporate
shifts proportional to the corresponding reorganization ener-

gies, a /2 and b /2. With the unitary transformation, Û

= ÛaÛb, where

Ûa = exp�− �i/2��
j

pjxj0�n1 − n2�� ,

Ûb = exp�− �i/2��
j

PjXj0�N2 − N1�� ,

we can transform the Hamiltonian H, Eq. �15�, to the form

H = H0 + �
k�

�k�ck�
+ ck� + �

q�

Eq�dq�
+ dq� + VFa1

+a2b2
+b1ei�

+ VF
*e−i�a2

+a1b1
+b2 − �ae−i�aa2

+a1 − �a
*a1

+a2ei�a

− �bb2
+b1ei�b − �b

*e−i�bb1
+b2 − �

k

tkRe−�i/2��ackR
+ a1

− �
k

tkR
* a1

+ckRe�i/2��a − �
k

tkLckL
+ a2e�i/2��a

− �
k

tkL
* e−�i/2��aa2

+ckL − �
q

TqNdqN
+ b1e�i/2��b

− �
q

TqN
* e−�i/2��bb1

+dqN − �
q

TqPe−�i/2��bdqP
+ b2

− �
q

TqP
* b2

+dqPe�i/2��b + �
j
� pj

2

2mj
+

mj� j
2xj

2

2
�
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+ �
j
� Pj

2

2Mj
+

Mj� j
2Xj

2

2
� , �17�

where

�a = �1/���
j

pjxj0, �b = �1/���
j

PjXj0,

are stochastic phases operators, and �=�a+�b. The result of
this transformation follows from the fact that, for an arbitrary

function ��xj ,Xj�, the operator Û produces a shift of the
oscillator’s positions:

Û+��xj,Xj�Û = ��xj + �1/2�xj0�n1 − n2�,

Xj + �1/2�Xj0�N2 − N1�� .

In addition, this transformation results in phase factors for
electron and proton amplitudes:

Ûa
+a1Ûa = e−�i/2��aa1, Ûa

+a2Ûa = e�i/2��aa2,

and

Û+b1Û = e�i/2��bb1, Û+b2Ûb = e−�i/2��bb2.

E. Combined electron-proton eigenstates
and energy eigenvalues

The electron-proton system with no leads can be charac-
terized by 16 basis states of the Hamiltonian H0:

�1� = �Vac�, �2� = a1
+�Vac�, �3� = a2

+�Vac� ,

�4� = b1
+�Vac�, �5� = b2

+�Vac� ,

�6� = a1
+b1

+�Vac�, �7� = a1
+b2

+�Vac�, �8� = a2
+b1

+�Vac� ,

�9� = a2
+b2

+�Vac�, �10� = a1
+a2

+�Vac�, �11� = a1
+a2

+b1
+�Vac� ,

�12� = a1
+a2

+b2
+�Vac�, �13� = b1

+b2
+�Vac� ,

�14� = a1
+b1

+b2
+�Vac�, �15� = a2

+b1
+b2

+�Vac� ,

�16� = a1
+a2

+b1
+b2

+�Vac� . �18�

Here, �Vac� represents the vacuum state, when both electron
active sites and both proton sites are empty, whereas, for
example, the state �7�=a1

+b2
+�Vac� corresponds to the case

when one electron is located on the site 1e and one proton is
located on the site 2p. The state �8�=a2

+b1
+�Vac� is related to

the opposite situation with a single electron on the site 2e and
one proton on the site 1p. It should be also noted that any
arbitrary operator A of the electron-proton system can be
represented as an expansion in terms of the basis Heisenberg
matrices �m

n = �m�n� �m ,n=1, . . . ,16�: A=�m,nAmn�m
n . We

will also use notations �m��m
m for the diagonal operator.

Thus the operators �a1 ,a2 ,b1 ,b2� can be represented as

a1 = �1
2 + �4

6 + �5
7 + �3

10 + �8
11 + �9

12 + �13
14 + �15

16,

a2 = �1
3 + �4

8 + �5
9 − �2

10 − �6
11 − �7

12 + �13
15 − �14

16,

b1 = �1
4 + �2

6 + �3
8 + �10

11 + �5
13 + �7

14 + �9
15 + �12

16,

b2 = �1
5 + �2

7 + �3
9 + �10

12 − �4
13 − �6

14 − �8
15 − �11

16. �19�

The Förster operator in the Hamiltonian H, Eq. �17�, given
by a1

+a2b2
+b1, is responsible for the electron transition from

the electron site 2e to the site 1e accompanied by the simul-
taneous proton transfer from the proton site 1p to the site 2p.
In the basis introduced above, the Förster process corre-
sponds to the transition of the electron-proton system from
the state �8� to the state �7� :a1

+a2b2
+b1= �7� 8�=�7

8. Using the
eigenfunctions, Eq. �18�, we can rewrite the Hamiltonian H0
in a simple diagonal form:

H0 = �
m=1

16

�m�m, �20�

with the following energy spectrum:

�1 = 0, �2 = �1, �3 = �2, �4 = E1,

�5 = E2, �6 = �1 + E1 − u11,

�7 = �1 + E2 − u12, �8 = �2 + E1 − u21,

�9 = �2 + E2 − u22, �10 = �1 + �2 + ue,

�11 = �1 + �2 + E1 − u11 − u21 + ue,

�12 = �1 + �2 + E2 − u12 − u22 + ue,

�13 = E1 + E2 + up, �14 = �1 + E1 + E2 − u11 − u12 + up,

�15 = �2 + E1 + E2 − u21 − u22 + up,

�16 = �1 + �2 + E1 + E2 − u11 − u12 − u21 − u22 + ue + up.

�21�

For the Förster component of the Hamiltonian HF, and for
the Hamiltonian Hdir describing the direct tunneling between
the sites 1e ,2e and 1p ,2p, we obtain the expressions

HF = VF�7
8ei� + VF

*e−i��8
7 �22�

and

Hdir = − �ae−i�a��3
2 + �8

6 + �9
7 + �15

14�

− �a
*��2

3 + �6
8 + �7

9 + �14
15�ei�a

− �b��5
4 + �7

6 + �9
8 + �12

11�ei�b

− �b
*e−i�b��4

5 + �6
7 + �8

9 + �11
12� . �23�

It should be noted that the operators HF and Hdir are nondi-
agonal.

III. ELECTRON AND PROTON CURRENTS

The transfer of electrons �protons� can be quantitatively
characterized by the particle current flows between left and
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right �negative and positive� reservoirs, i� �I��, which are
defined as

i� =
d

dt
�

k

ck�
+ ck��, I� =

d

dt
�

q

dq�
+ dq�� , �24�

with indices �=L, R and �=N , P. Taking into account the
equations for electron and protons amplitudes in the leads,

iċkL = �kLckL − tkLa2e�i/2��a,

iċkR = �kRckL − tkRe−�i/2��aa1,

iḋqN = EqNdqN − TqNb1e�i/2��b,

iḋqP = EqPdqP − TqPe−�i/2��bb2, �25�

we obtain for the currents,

iL = i�
k

tkLckL
+ a2e�i/2��a� + H.c.;

iR = i�
k

tkRe−�i/2��ackR
+ a1� + H.c.;

IN = i�
q

TqNdqN
+ b1e�i/2��b� + H.c.;

IP = i�
q

TqPe−�i/2��bdqP
+ b2� + H.c. �26�

It follows from Eq. �25� that the leads’ responses are de-
scribed by the formulas

ckL = ckL
�0� − tkL� dt1gkL

r �t,t1�a2�t1�e�i/2��a�t1�,

dqN = dqN
�0� − TqN� dt1gqN

R �t,t1�b1�t1�e�i/2��b�t1�, �27�

etc., where

gk�
r �t,t1� = − ie−i�k��t−t1���t − t1� ,

gq�
R �t,t1� = − ie−iEq��t−t1���t − t1�

are the retarded Green functions of electrons and protons in
the leads, ck�

�0�, dq�
�0� are unperturbed electron and proton op-

erators in the electron reservoir � and in the proton lead �,
respectively, and ���� is the Heaviside step function. Within
our model, we assume that electrons and protons in the leads
are characterized by the Fermi distributions,

f���k�� = �exp� �k� − ��

T
� + 1�−1

,

F��Eq�� = �exp�Eq� − ��

T
� + 1�−1

,

respectively, having the same temperature T �kB=1�. How-
ever, the chemical potentials of electrons in the left ��L� and

in the right ��R� lead, as well as chemical potentials of the
protons from the negative side of the membrane ��N� and
from the positive one ��P�, can be different in the nonequi-
librium case:

�L = �a + Ve, �R = �a, �N = �b, �P = �b + Vp,

where Ve and Vp are electron and proton voltage buildups, �a
and �b are equilibrium chemical potentials of the electron
and proton reservoirs, respectively. Notice that the absolute
value of the electron charge, �e�, is included into the defini-
tions of voltages Ve, Vp, which are measured here in mil-
lielectron volts �meV�. Thus the correlators of the unper-
turbed operators are given by

ck�
�0�+�t�ck�

�0��t1�� = fk���k��ei�k��t−t1�,

dq�
�0�+�t�dq�

�0��t1�� = Fq��Eq��eiEq��t−t1�. �28�

In the wide-band limit, it is convenient to introduce
frequency-independent densities of electron �proton� states,
�� ����, as

�� = 2	�
k

�tk��2��� − �k��; �� = 2	�
q

�Tq��2��� − Eq�� .

�29�

It should be noted that the currents i� and I� are involved in
the equations for the averaged populations derived from the
Hamiltonian, Eq. �17�,

ṅ1� = − iVFa1
+a2b2

+b1ei�� + iVF
*e−i�a2

+a1b1
+b2� + i�a

*a1
+a2ei�a�

− i�ae−i�aa2
+a1� − iR;

ṅ2� = iVFa1
+a2b2

+b1ei�� − iVF
*e−i�a2

+a1b1
+b2� + i�ae−i�aa2

+a1�

− i�a
*a1

+a2ei�a� − iL;

Ṅ1� = iVFa1
+a2b2

+b1ei�� − iVF
*e−i�a2

+a1b1
+b2� + i�b

*e−i�bb1
+b2�

− i�bb2
+b1ei�b� − IN;

Ṅ2� = − iVFa1
+a2b2

+b1ei�� + iVF
*e−i�a2

+a1b1
+b2�

+ i�bb2
+b1ei�b� − i�b

*e−i�bb1
+b2� − IP. �30�

Here, the brackets …� denote averaging over the equilib-
rium states of electron and proton reservoirs, complemented
by the averaging over fluctuations of both dissipative envi-
ronments. It is evident that in the steady-state regime, when
the time derivatives of all populations are zero, the electron
and proton currents are determined by the Förster process
and by the direct tunneling:

iL = − iR = iVFa1
+a2b2

+b1ei�� − iVF
*e−i�a2

+a1b1
+b2�

+ i�ae−i�aa2
+a1� − i�a

*a1
+a2ei�a� ,

IN = − IP = iVFa1
+a2b2

+b1ei�� − iVF
*e−i�a2

+a1b1
+b2�

+ i�b
*e−i�bb1

+b2� − i�bb2
+b1ei�b� . �31�

We assume that the Förster energy VF, the direct tunneling
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rates, �a and �b, as well as the rates �� and ��, which
describe the tunneling between the active sites and the res-
ervoirs, are small enough compared to a parameter �T
which defines a characteristic energy scale of the noise op-
erator �=�a+�b, with a combined reorganization energy

 = a + b.

Then, all calculations can be done with an accuracy up to
second order in the Förster energy, �VF�2, and up to second
order for the direct tunneling rates, ��a�2 and ��b�2. The elec-
tron �proton� current consists of two components, i�F �I�F�,
related to the Förster process, and i�,dir �I�,dir�, describing the
contributions of direct tunneling to the electron �proton�
flow. The Förster components of the electron and proton cur-
rents are given by the same expression �up to the total sign�:

iRF = − iLF = IPF = − INF = iVF
*e−i��8

7� − iVF�7
8ei�� . �32�

The direct electron �proton� current iR,dir �IN,dir� is propor-
tional to the tunneling rate �a ��b�:

iR,dir = − iL,dir = i�a
*��2

3 + �6
8 + �7

9 + �14
15�ei�a� + H.c.,

IN,dir = − IP,dir = i�b
*e−i�b��4

5 + �6
7 + �8

9 + �11
12�� + H.c.

�33�

A. Calculation of the Förster current

To calculate the Förster component of the current up to
second order in the energy VF, we derive the Heisenberg
equation for the operator �7

8 neglecting the coupling to the
reservoirs and the direct tunneling:

i
d

dt
�7

8 = ��7
8 + VF

*e−i���7 − �8� , �34�

where � is the detuning between the electron and proton
energy levels,

� = �8 − �7 = �2 − �1 − E2 + E1 − u21 + u12. �35�

The solution of Eq. �34�,

�7
8�t� = − iVF

*�
−�

t

dt1e−i��t−t1�e−i��t1���7�t1� − �8�t1�� , �36�

should be substituted in Eq. �32� for the current iRF,

iRF = − �VF�2�
−�

t

dt1e−i��t−t1�e−i��t1�ei��t���7 − �8��t1� + H.c.

�37�

Here, we separate the averaging of the environment phases
�=�a+�b from the operators of the electron-proton sub-
system. For independent electron and proton environments,
when

e−i��t1�ei��t�� = e−i�a�t1�ei�a�t��e−i�b�t1�ei�b�t�� ,

we can also calculate the electron and proton functionals
separately. In particular, for the electronic environment char-

acterized by the operator �a=� jxj0pj �from here on �=1� we
obtain the relation

exp�− i�a�t��exp�i�a�t1�� = exp�− i��a�t� − �a�t1���

�exp��1/2���a�t�,�a�t1��−� ,

where the commutator,

�1/2���a�t�,�a�t1��− = − i�
j

mj� jxj0
2 sin � j�t − t1� ,

is determined using the free-evolving oscillator operators,

xj�t� = xj�t1�cos � j�t − t1� +
pj

mj� j
sin � j�t − t1� ,

pj�t� = pj�t1�cos � j�t − t1� − mj� jxj sin � j�t − t1� .

For the Gaussian statistics of the system of independent os-
cillators, the characteristic functional has the form

exp�− i��a�t� − �a�t1���� = exp�− �a
2� +

1

2
��a�t�,�a�t1��+�� ,

with

1

2
��a�t�,�a�t1��+� = �

j

xj0
2 1

2
�pj�t�,pj�t1��+�

= �
j

pj
2�xj0

2 cos � j�t − t1� .

Taking into account the expression for the equilibrium
dispersion of the jth-oscillator momentum, pj

2�
= �mj� j /2�coth�� j /2T�, we obtain the well-known expres-
sion �23� for the functional e−i�a�t�ei�a�t1��:

exp�− i�a�t��exp�i�a�t1��� = exp�− iW1a�t��exp�− W2a�t�� ,

�38�

where

W1a�t� = �
j

mj� jxj0
2

2
sin � jt = �

0

�

d�
Ja���

�2 sin �t , �39�

and

W2a�t� = �
j

mj� jxj0
2

2
coth� � j

2T
��1 − cos � jt�

= �
0

�

d�
Ja���

�2 coth� �

2T
��1 − cos �t� . �40�

Similar relations between W1b�t�, W2b�t� and the spectral
function Jb��� take place for the proton dissipative environ-
ment. Notice that for this model, the effects of the electrons
and protons on the environments are disregarded. In the
semiclassical approximation �T��� and for slow enough
fluctuations of the environments ��t
1�, the functions
W1a�t�, W2a�t� have simple forms,

W1a�t� = at, W2a�t� = aTt2.

Thus we have
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exp�− i�a�t��exp�i�a�t1��� = exp�− ia�t − t1��

�exp�− aT�t − t1�2� . �41�

The total characteristic functional involved in Eq. �37� for
the Förster current, e−i��t�ei��t1��=e−i�t−t1�e−T�t − t1�2

, has an
effective correlation time ��=1�,

�c =
1

�T
,

which is determined by the combined electron-proton reor-
ganization energy, =a+b. At strong enough electron-
proton couplings to the surroundings, the correlation time �c
is much shorter than the time scale of the probabilities �n, so
that in Eq. �37� we can put �7−�8��t1���7−�8��t�. It al-
lows us to obtain a simple expression for the Förster current:

iRF = − iLF = IPF = − INF = ��8 − �7� , �42�

where � looks like the well-known semiclassical Marcus rate
�23,24�,

� =� 	

T
�VF�2 exp�−

�� − �2

4T
� , �43�

but with the only difference that instead of the reaction free
energy of a proton pumping step, �G�E2−E1��2−�1, here
we have the electron-proton detuning,

� = �2 − �1 − E2 + E1 − u21 + u12,

which is much smaller and can be even zero for the case of
an exact electron-proton resonance. Near these resonant con-
ditions, when �=, the proton pump should be most effec-
tive.

B. Direct currents

Similar calculations �not shown here� demonstrate that the
direct electron �proton� current, Eq. �33�, is proportional to
the standard nonresonant Marcus rate ka �kb�:

iR,dir = − iL,dir = ka�3 + �8 + �9 + �15 − �2 − �6 − �7 − �14� ,

IN,dir = − IP,dir = kb�5 + �7 + �9 + �12 − �4 − �6 − �8 − �11� ,

�44�

where

�a =� 	

aT
��a�2 exp�−

��2 − �1 − a�2

4aT
� ,

�b =� 	

bT
��b�2 exp�−

�E2 − E1 − b�2

4bT
� . �45�

The processes of direct electron and proton tunnelings lead
to the downhill transfer of protons, discharging the proton
battery. However, this process is significantly suppressed
when the separation of the proton energy levels is much
higher than the reorganization energy b.

IV. DENSITY MATRIX

The electron and proton currents, Eqs. �42� and �44�, are
determined by the diagonal elements of the density matrix of
the electron-proton system �m� over the eigenstates, Eq.
�18�, of the Hamiltonian, Eq. �16�. To obtain the diagonal
elements of the density matrix, we write the Heisenberg
equation for the operators �m taking into account the basis
Hamiltonian H0=�n�n�n, complemented by terms which are
responsible for �i� the Förster process HF, �ii� the direct tun-
neling events between the active sites Hdir, and �iii� the tun-
neling coupling between the reservoirs and the active sites
Htun,

i�̇m = �H,�m�− = ��m,HF�− + ��m,Hdir�− + ��m,Htun�−.

With the tunneling Hamiltonian, Eq. �3�, where the electron
and proton operators are represented as expansions,

a� = �
mn

a�;mn�m
n , b� = �

mn

b�;mn�m
n

�see Eq. �19��, we obtain the contribution of the two pairs of
reservoirs to the evolution of the operator �m as

��m,Htun�− = − � tkRe−i�a/2ckR
+ �a1;mn�m

n − a1;nm�n
m�

− � tkLckL
+ �a1;mn�m

n − a1;nm�n
m�ei�a/2

− � TqNdqN
+ �b1;mn�m

n − b1;nm�n
m�ei�b/2

− � TqPe−i�b/2dqP
+ �b2;mn�m

n − b2;nm�n
m� − �H.c.� .

�46�

Substituting Eq. �27� for the leads reactions, and averaging
over the Fermi distributions of electrons and protons in the
leads and over the fluctuations of the environments, we ob-
tain the contribution of leads to the master equation for the
probabilities �m�:

��m,Htun�−� = i�
n

��mn
tun�n� − �nm

tun�m�� , �47�

with the relaxation matrix

�mn
tun = �R��a1;mn�2�1 − fR��nm�� + �a1;nm�2fR��mn��

+ �L��a2;mn�2�1 − fL��nm�� + �a2;nm�2fL��mn��

+ �N��b1;mn�2�1 − FN��nm�� + �b1;nm�2FN��mn��

+ �P��b2;mn�2�1 − FP��nm�� + �b2;nm�2FP��mn�� .

�48�

The products of free reservoir operators, such as ck�
�0��t�, and

an arbitrary Fermi operator of electrons, ZF, can be calcu-
lated using the formula

ZF�t�ck�
�0��t�� = − itk��� dt1ck�

�0�+�t1�ck�
�0��t��

��ZF�t�,a��t1��+���t − t1� . �49�

Similar formulas can be employed for the proton component.
The Förster process contributes to the evolution of two com-
ponents of the density matrix, �7 and �8,
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��7,HF�− = − ��8,HF�− = VF�7
8ei� − VF

*e−i��8
7. �50�

Due to the weakness of the tunneling processes, we disregard
the overlap of the different tunneling mechanisms in the
master equation for the distribution �m�. Substituting Eq.
�36� for the operator �7

8 and its conjugate jointly with Eq.
�41� for the characteristic functional of the environments, we
obtain the contribution of the Förster process to the master
equation as

��7,HF�−� = − ��8,HF�−� = i���8� − �7�� , �51�

where � is the resonant Marcus rate, Eq. �43�. In a similar
way, we determine that the direct tunneling between the ac-
tive sites contributes to the equations for the following prob-
abilities:

��2,Hdir�−� = − ��3,Hdir�−� = i�a��3� − �2�� ,

��4,Hdir�−� = − ��5,Hdir�−� = i�b��5� − �4�� ,

��6,Hdir�−� = i�a��8� − �6�� + i�b��7� − �6�� ,

��7,Hdir�− = i�a��9� − �7�� − i�b��7� − �6�� ,

��8,Hdir�− = − i�a��8� − �6�� + i�b��9� − �8�� ,

��9,Hdir�− = − i�a��9� − �7�� − i�b��9� − �8�� ,

��11,Hdir�− = − ��12,Hdir�− = i�b��12� − �11�� ,

��14,Hdir�− = − ��15,Hdir�− = i�a��15� − �14�� ,

where ka and kb are the nonresonant Marcus rates given by
Eq. �45�. Combining all contributions, we obtain the follow-
ing master equation for the probabilities �m�:

�̇m� + �m�m� = �
n

�mn�n� , �52�

with the relaxation rates �m=�n�nm, where �mn=�mn
tun given

by Eq. �48� for all matrix elements except

�2,3 = �2,3
tun + ka; �3,2 = �3,2

tun + ka; �4,5 = �4,5
tun + kb;

�5,4 = �5,4
tun + kb; �6,7 = �6,7

tun + kb; �7,6 = �7,6
tun + kb;

�6,8 = �6,8
tun + ka; �8,6 = �8,6

tun + ka; �7,8 = �7,8
tun + �;

�8,7 = �8,7
tun + �; �7,9 = �7,9

tun + ka; �9,7 = �9,7
tun + ka;

�8,9 = �8,9
tun + kb; �9,8 = �9,8

tun + kb; �11,12 = �11,12
tun + kb;

�12,11 = �12,11
tun + kb; �14,15 = �14,15

tun + ka; �15,14 = �15,14
tun + ka.

�53�

It should be noted that the key ingredient of the proposed
model is the resonant Förster exchange of energy between
electrons and protons. This process takes place in a time
interval

�F =
1

2�
,

where � is the resonant Marcus rate Eq. �43�, as follows from
the solution of the rate equations, �̇7�=−��7−�8�=−�̇8�,
derived in the absence of the leads. If our system is initially
in the state �8� with the excited electron and with the proton
in the ground state, then, the probability to be in the state �7�,
where the proton is on the upper level and the electron in the
ground state, is given by the formula

�7�t� = �1 − e−2�t�/2.

After a lapse of time scale �F, the proton goes to the excited
state with probability 1 /2.

V. RESULTS AND DISCUSSION

The steady-state version of Eq. �52�,

�
n

�nm�m� = �
n

�mn�n� �54�

�m ,n=1, . . . ,16�, has been solved numerically jointly with
the normalization condition �m�m=1, with subsequent calcu-
lations of the electron and proton currents through the sys-
tem, Eqs. �42� and �44�, and populations of all active sites,
n�� and N��. To obtain numerical values, we assume that
the electron potential well, presumably attached to the bi-
nuclear center, contains two active electron sites and has a
radius r0 of about 0.1 nm. The proton potential well with a
radius R0�0.01 nm can be located at the pump center X at a
distance R�1 nm from the electron sites. Thus in a medium
with a dielectric constant �r=3 �dry protein�, the Förster con-
stant in Eq. �7� has a VF�1 meV. Taking into account renor-
malization effects for the direct Coulomb coupling between
electrons and protons, we choose

u11 � u12 � u21 � u22 = 400 meV

which is close to the energy of the Coulomb interaction, u
�480 meV, of two charges located a distance R�1 nm
apart. The on-site Coulomb repulsion energies, ue and up, are
estimated as

ue � up � 4000 meV,

which is enough to avoid the double occupation of the active
sites. For the rates of the possible direct electron and proton
transitions between the active sites, we take the values �a
=1 meV and �b=0.1 meV, respectively. The tunneling cou-
plings of the electrons to the leads are �L=�R=0.85 meV,
and the proton rates are �N=�P=0.1 meV. For the optimal
efficiency of the pump, we choose the energy levels of the
electron and proton active sites as

�1 = 100 meV, �2 = 600 meV

and

E1 = 350 meV, E2 � 850 meV,

so that the difference between the electron energy levels �2
and �1 corresponds to the realistic drop of the COX redox
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potential �2,15�, and it is in resonance with the separation of
proton levels

�2 − �1 = E2 − E1 = 500 meV.

We consider here intermediate values of the reorganization
energies,

a � b � 3 meV,  � 6 meV,

which are higher than the Förster constant VF and all other
tunneling rates. Then the Marcus constants related to the
direct tunneling, ka ,kb, Eq. �45�, are negligibly small
��10−100 meV /��; however, the Förster rate, Eq. �43�, is
quite pronounced, ��0.1 meV /��150 ns−1. The rates �a,
�b, and � can be measured in the units of meV /� or in the
inverse nanoseconds �ns�: 1 meV /��1500 ns−1. The real
values of the reorganization energies a, b are not known
yet for the enzyme cytochrome c oxidase, although it is ex-
pected that they are of order or higher than 100 meV �14,23�.
These numbers can be estimated from measurements of the
temperature dependence of the Marcus rates �a, �b, Eq. �45�,
for the transitions between the active electron and proton
sites.

It should be noted that at the reorganization energies
a ,b�100 meV, and at the physiological temperature, T
=36.6 °C, direct tunneling processes are also significantly
suppressed,

�a � 10−5 ns−1, �b � 10−15 ns−1.

However, the Förster mechanism of energy transfer survives
near the electron-proton resonance with the rate ��30 ns−1.
This means that even for the case of strong coupling to the
dissipative environments, the pure electron-proton Förster
exchange �with no leads� occurs over the time scale

�F = 1/�2�� � 20 ps.

In the following, all contributions of the direct tunneling
are disregarded, so that the total particle current is exclu-
sively determined by the Förster component, Eq. �42�, and
the electron flow from the left reservoir to the right one, iR, is
exactly equal to the particle current of protons,

IP = − IN = iR,

flowing from the negative side to the positive side of the
membrane against the concentration gradient. In other words,
one proton is pumped through the membrane per each elec-
tron transferred to the oxygen molecule O2 that can play the
role of our right electron reservoir, consistent with experi-
mental observations of Refs. �3,4,7�. It should be mentioned
that in the present model, we do not consider substrate pro-
tons, which are also taken from the negative side of the
membrane to form the water molecules.

Pumping effects

Here, the positive direction of the current is defined to be
from the higher chemical potential to the lower chemical
potential. The electrochemical potential of the left electron
lead, �L, is chosen to be higher than the potential of the right
lead at the positive voltage Ve:

�L = Ve, �R = 0,

whereas for the protons the chemical potential of the positive
side of the membrane, �P, exceeds the potential of the nega-
tive side at the positive voltage Vp:

�P = Vp, �N = 0.

Notice that throughout the paper the “voltages” Ve, Vp incor-
porate the absolute value of the electron charge and are mea-
sured in meV. When the electron voltage is positive, Ve�0,
the electron particle current iR, Eq. �24�, should be positive
because the electron concentration of the right lead increases.
At normal conditions, the protons should also flow from the
positive side of the membrane �having a higher chemical
potential at Vp�0� to the negative side, so that the popula-
tion of protons on the negative side should grow, that corre-
sponds to a positive particle current IN.

In Fig. 2, we present the numerical solution for the depen-
dence of the proton current IN on the electron �Ve� and proton
�Vp� voltages at the physiological temperature T=36.6 °C,
with E2=850 meV. The particle current is measured here in
the inverse nanoseconds, ns−1, so that, for example, the value
IN=−1 ns−1 corresponds to the transfer of one proton per one
nanosecond from the negative side of the membrane to the
positive side. It is evident from Fig. 2 that the uphill proton
current �corresponding to negative values of IN� starts at
electron voltages exceeding a threshold value Ve0
=550 meV provided that the proton voltage buildup is less
than 450 meV. At these voltages, the states

�7� = a1
+b2

+�Vac� and �8� = a2
+b1

+�Vac�

participating in the Förster transfer �see Eq. �42�� and having
energies �550 meV begin to be populated. It is of interest
that at lower voltages the state �6�=a1

+b1
+�Vac� containing an

electron in the state 1e with energy �1=100 meV and a pro-
ton in the state 1p, having an energy E1=350 meV, is par-
tially populated. Here, the electron-proton Coulomb attrac-
tion, u11=−400 meV, comes into play, lowering the total
energy to the value �6=50 meV.

For the chosen parameters, the particle current IN satu-
rates at electron voltages higher than 700 meV with the
value corresponding to the translocation of 30 protons in
1 ns. It shows the efficiency of the Förster pumping mecha-
nism, although the real rate for the proton transfer through
the D pathway �see Ref. �3�� is much less: �103–104 protons
per second. This pumping rate can be obtained in the frame-
work of our model if we significantly decrease the tunneling
couplings between the active sites and the electron and pro-
ton reservoirs: �L��R�10−7 meV, �N��P�10−8 meV. It
has no effect on the main features of the present model, and,
in the following, we return to the case of the fast electron and
proton delivery to the active sites.

If the electron voltage is low enough, Ve�300 meV, but
the proton voltage is high, Vp�500 meV, the proton flow
reverses its direction, so that the protons move along the
concentration gradient from the positive side of the mem-
brane to the mitochondria interior. The downhill flow of the
protons is especially significant when the proton voltage
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exceeds the value of 850 meV. However, even at high proton
voltages, the discharge of the mitochondrion battery can
be prevented by applying the electron potential above the
threshold Ve0=550 mV. We emphasize that, within this
model, we do not need any additional gates to inhibit the
translocation of protons back to the negatively charged inte-
rior, although the pump can work in the reverse regime. A
possibility to control and even reverse the proton current by
applying the electron voltage is a specific property of the
present model reflecting a strong interconnection of electron

and proton tunneling due to the Förster coupling. The opti-
mal value for the proton voltage buildup, Vp=250 meV, cor-
relates well with experimental data for the proton-motive
force of about 200–250 meV �2,3,6�.

The resonant character of the Förster energy transfer is
demonstrated in Fig. 3 where we plot a dependence of the
proton current IN on the variation of the higher energy level
of the protons, E2, at several temperatures T measured in
degrees Celsius. It is evident that the current IN has the maxi-
mum absolute value at the energy

FIG. 2. �Color online� Proton current IN �a number of protons transferred through the membrane in 1 ns� as a function of the electron �Ve�
and proton �Vp� voltage buildups at the physiological temperature T=36.6 °C and at the resonant condition, E2=850 meV. Notice that the
absolute value of the electron charge �e� is included into the definitions of voltages Ve, Vp, which are measured here in meV.
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FIG. 3. �Color online� Dependence of the proton current IN on the resonant conditions �a variation of the upper proton energy level E2�
at different temperatures, for optimal values of the electron and proton voltages: Ve=700 meV, Vp=250 meV.
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E2 = �2 − �1 + E1 −  = 844 meV,

which is slightly shifted from its resonance value E2
=850 meV in accordance with the maximum of the Marcus
constant �, Eq. �43�.

In Fig. 4 we present the temperature dependence of the
uphill proton current near the optimal point

Ve = 700 meV, Vp = 250 meV, E2 = 850 meV.

It is clear that the proton pumping peaks at temperatures
between and 100 °C with a strong decrease when the envi-
ronment is colder than the water freezing point 0 °C. How-
ever, the effect survives much better at high temperatures.
Curiously, for the parameters used the uphill proton current
has a maximum at temperatures about that of the human
body �36.6 °C�. The resonant behavior of the pumping effi-
ciency and the nonmonotonic temperature dependence of the
proton current are among the specific features of the model
under discussion, which can be tested experimentally.

VI. CONCLUSIONS

In conclusion, we proposed and analyzed quantitatively a
simple nanoelectronic and nanoprotonic model reflecting the
main features of the electron-driven proton pump in the
enzyme cytochrome c oxidase. We analyzed quantum-

mechanical Hamiltonians for this system taking into account
tunneling couplings of electrons and protons to their corre-
sponding reservoirs and dissipative environments, as well as
the electron-proton Coulomb interaction, including the reso-
nant Förster term. Applying methods of condensed matter
physics, we obtained expressions for the electron and proton
currents as well as the equations of motion for the density
matrix of the system. These equations were solved numeri-
cally, and we demonstrated that the resonant Förster energy
exchange between electrons and protons can lead to the pro-
ton transfer from the region with smaller proton concentra-
tion to the region with larger proton concentration, thereby
achieving a proton pump. The dependence of this phenom-
enon on temperature and the system parameters were studied
and we showed that the proton pump works with maximum
efficiency near physiological temperatures and at electron
and proton voltage buildups related to their values for living
cells.
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