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The free self-diffusion of an assembly of interacting particles confined on a quasi-one-dimensional ring is
investigated both numerically and analytically. The interparticle pairwise interaction can be either attractive or
repulsive and the energy barrier opposing thermal hopping of two particles one past the other is finite. Thus, for
sufficiently long times, self-diffusion becomes normal or conventional diffusion. However, depending on the
particle density, subdiffusive transients with exponent 1 /2 and suppression of normal diffusion are observed.
Above a certain density threshold, a sudden drop to zero of the diffusion coefficient for attractive particles
signals the transition to a jammed phase. Furthermore, a Gaussian cluster of attractive particles condenses, by
shrinking in size, for densities larger than such density threshold; lower density clusters spread out, regardless
of the interaction sign, through a diffusion mechanism that is anomalous at short times, and normal for
sufficiently long times. These effects could be observed in systems with colloidal particles, vortices, electrons,
among other interacting particle systems.
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I. INTRODUCTION

We recently studied �1,2� the transport of interacting par-
ticles, including binary mixtures, moving on a quasi-one-
dimensional substrate and driven by external forces �either
constant �2� or oscillating �1–3��. By focusing on the first
moment of the particle distribution �i.e., on the net particle
current�, we singled out interesting rectification mechanisms
where the particle pair interactions play a central role. Fi-
nally, we showed that under appropriate temperature and/or
density conditions, attracting particles can jam �1,4,5�.

In this paper we take a different approach. We now look at
the diffusion mechanisms associated with particle transport
in order to better understand the statistical properties of an
assembly of interacting Brownian particles. The literature on
the diffusion of interacting particles is vast and touches upon
hydrodynamics and transport theory �6�. Almost all studies,
however, incorporate temperature effects through the canoni-
cal ensemble formalism of equilibrium statistical mechanics.
Here we assume that all particles are subject to spatially
uncorrelated thermal fluctuations at a given temperature so
that they can be treated as independent Brownian particles.
On doing this we neglect the mutual influence they exert on
one another owing to the spatio-temporal memory effects of
the heat bath �hydrodynamic interactions�, which is correct if
the relaxation time of the surrounding “liquid” is short
enough with respect to time scales of the moving particles.
The latter topic has been the focus of extensive investiga-
tions in the 1970’s �6,7�.

The diffusion of an assembly of N Brownian particles is
intrinsically an N�N process: the diffusion and the friction
coefficients from the standard Brownian motion theory must
be replaced by the tensor matrices Dij and �ij, respectively,
with the indices i , j labeling the individual particles �7�.
However, the self-diffusion coefficient, i.e., the diffusion co-

efficient of a single particle, defined in three dimensions as

��r�t� − r�0��2� = 6D�t�t , �1�

is a quantity of prime interest in the description of the dy-
namics of interacting Brownian particles. When D�t� scales
asymptotically as t�−1 with ��1, the diffusion mechanism is
termed anomalous �8�. A typical example is diffusion in con-
strained geometries �9�. Sometimes, like in light-scattering
experiments, D�t� simply interpolates two constant values Ds

and Dl for short and long times, respectively, with Dl�Ds
�10�. In both limits self-diffusion is a normal diffusion pro-
cess of the Einstein-type with exponent �=1.

In this paper we restrict ourselves to the study of �quasi-
one-dimensional systems, where independent pointlike
Brownian particles can diffuse across one another by over-
coming the action of an attractive or repulsive pair potential.
To avoid unwanted geometric constraints such as single fil-
ing �a subdiffusive process with �=1/2 �9��, we exclude the
case of hardcore interactions between particles. Indeed, solid
spheres moving in a narrow channel can always pass one
another by deforming either the channel walls, or their shape,
or both. Such quasi-one-dimensional geometries are of wide
application to the modeling of a variety of processes and
devices in biological physics and nanotechnology �11�.

To this regard we remind that the efficiency of noise-
assisted transport on a periodic substrate is controlled by
both the first and the second moment of the velocity distri-
bution of the diffusing particles, especially in the absence of
external ac drives �12�. The relevant net current should not
become swamped with the unavoidable fluctuations caused
by the environment. There occurs a competition between two
mechanisms �13�: an enhancement of the diffusion �14� and
an optimization of the net transport velocity �15�. A first
option aims at controlling the magnitude of the effective dif-
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fusion independently of the temperature. It thus carries a rich
potential for technologically useful separation devices. A sec-
ond option attempts to achieve a maximal “coherence,” that
is mobility, for transport. Such a coherence is of relevance
for the modeling of biophysical molecular motors �11�. Of
course, accounting for interparticle interactions makes our
task much more demanding than in the presence of only
particle-substrate interactions �12�.

In extremely small systems, Brownian motion is often
described to a good approximation in the overdamped limit;
namely, by assuming that the diffusing particles are massless.
This is the case, for instance, of most biological processes at
both the cell level �for instance, transport in ion channels
�9,16�� and the body level �muscle operations �17��. The
same assumption inspires the design of devices to guide tiny
particles on nanoscales and microscales. Some of these de-
vices have already been realized experimentally to control
the motion of vortices in superconductors �18�, particles in
asymmetric silicon pores �19�, arrays of optical tweezers
�20�, and colloidal particles in one-dimensional geometries
�21�, among others.

Our analysis makes use of two key ingredients: the
Langevin equation �LE�, mostly for the numerical simula-
tion, and the Fokker-Planck equation �FPE� to gain theoreti-
cal insight on the collective properties of the system. In Sec.
II we numerically simulate large one-dimensional assemblies
of either repelling or attractive free Brownian particles, that
is in the absence of a substrate. Depending on the density of
interacting particles, subdiffusive transients with exponent
�=1/2 �ascribed to temporary single filing� and normal dif-
fusion suppression �due to dense particle packing� are ob-
served. In the case of attractive particles, a sudden drop to
zero of the diffusion coefficient above a definite density
threshold, signals the onset of a jamming, or condensation
phenomenon. Such a phenomenon was predicted in Refs.
�2,5� to explain certain anomalies in the density dependence
of interacting particle rectification. In Sec. III these proper-
ties are interpreted in the framework of the nonlinear FPE
formalism of Refs. �1,4� by means of simple phenomenologi-
cal arguments. In particular, a Gaussian cluster of attractive
particles is proven to collapse for densities larger than the
jamming density threshold. At lower densities, clusters dis-
solve, irrespective of the interaction sign, anomalously ��
�1� at short times, and then normally ��=1� for long
enough times. In Sec. IV, the jamming of an assembly of
attracting particles is analyzed in some detail by studying the
stationary solution of the relevant nonlinear FPE.

II. SIMULATION RESULTS

Our starting point is the set of Langevin equations

ẋi = − �
j�i

�

�xi
W�xi − xj� + �2kT��i��t� �2�

for an assembly of N interacting particles moving along the x
axis subject to thermal fluctuations only �no substrate, no
external drives are considered here�. The Gaussian white
noises ��i��t� with zero average ���i��t��=0 satisfy the

fluctuation-dissipation relation ���i��t���j��0��=�ij��t�; T is the
resulting system temperature, k is the Boltzmann constant.
The potential W�xi−xj� denotes the symmetric interaction be-
tween the particle pair �i , j�; the particle indices i and j run
from 1 to N. Equation �2� represents an overdamped diffu-
sive dynamics in Smoluchowski approximation with viscous
coefficient equal to 1.

We integrated the equation set �2� over a finite length l by
means of a standard numerical routine �5�; periodic boundary
conditions were imposed with no prejudice of the overall
diffusive dynamics �as long as the pair interaction length � is
taken much smaller than l�. In our simulations, the pair in-
teraction has been modeled by means of the symmetric,
piecewise linear potential

W�x� =
g

�
	1 −


x

�
� �3�

for 
x 
 ��, and W�x�=0, otherwise. Here, a negative cou-
pling, g�0, denotes an attractive pair potential, while g
	0 corresponds to repulsive interactions. Note that g /� is
the hopping energy 
W �respectively, a trapping well or a
repulsive barrier� that two particles must overcome to pass
one another. The diffusion properties investigated in the
present work are rather robust independent of the actual form
for W�x�.

The particle self-diffusion in the assembly is measured by

��x2�t�� =
1

N − 1�
i=1

N

�xi�t� − xi�0��2, �4�

where �xi�0� are the particle positions at time t=0. In Fig.
1�a� we plotted ��x2�t�� vs t for N=103 repulsive particles.

A. Subdiffusion to normal-diffusion crossover

Two different diffusive behaviors are clearly resolved: �a�
a subdiffusive regime for 10� t�103, when self-diffusion
�4� grows proportional to �t; �b� a normal diffusive regime
for t	5�103, with ��x2�t�� linear in t. Normal diffusion sets
in only for times much longer than the escape time �K�5
�103, which characterizes the thermal hopping of one par-
ticle past another �or pair exchange�; of course, �K
� td e
W/kT, where td is the mean free-diffusion time of a
particle between two subsequent collisions, i.e., td
= �2kTn2�−1.

The subdiffusive behavior at short times t��K is an ef-
fect of the repulsive pair barriers 
W, that force the particles
to retain their initial, randomly assigned order �single file
constraint �22��. Indeed, single-file diffusion is known �23� to
be of the subdiffusive type with exponent 1 /2, as in the
present case . Normal diffusion in a one dimensional gas of
interacting particles is restored either when thermal hopping
eventually allows the particles to pass one another �24�, as in
our model, or when the non-passing Brownian particles are
set free to expand �open-end file �25��. The latter case will be
considered in Sec. III.

Separating these two diffusive regimes required extensive
and time-consuming molecular dynamics simulations, as the
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crossover becomes detectable only for relatively low particle
densities n�N / l, that is n��1, and high hopping barriers

W�kT �see panel �a� of Fig. 1�. To speed up our simula-
tion analysis and gain a better understanding of the micro-
scopic mechanisms at work, we also modeled the pair inter-
actions in a more schematic way. Let us denote by vi and v j
the velocities of any pair of particles �i , j� undergoing a col-
lision, and by vi� and v j� their velocities immediately after the
interaction process is completed; we replaced the underlying
molecular dynamics by the simpler kinematic prescription

vi� = �1 − r�vi + rv j�,

v j� = �1 − r�v j + rvi�. �5�

We simulated two distinct implementations of the kinetics
described by Eq. �5�. �i� Model 1: the parameter r can be
either 0 with probability p, or 1 with probability q=1− p.
Here, p models the probability of thermal hopping, which, by
construction, incorporates information about the pair poten-
tial W and the thermal energy kT, but is independent of the
particle density �as it should for n��1�. �ii� Model 2: the
parameter r is set constant within the closed interval �0,1�.
As a consequence, particles i and j pass one another only for
0�r�1/2, whereas for 1 /2�r�1 pair exchanges are ruled
out; r=1/2 indicates a completely inelastic collision. Here,
collisions are elastic only for r=0 and r=1; setting 0�r
�1 allows for the dissipation of particle kinetic energy into
the environment �possibly including hidden internal degrees
of freedom of the scatterers�.

In Figs. 1�b� and 1�c� we show ��x2�t�� versus t for mod-
els 1 and 2, respectively. The assembly parameters are the
same in both panels. Model 1 in panel �b� shows the ex-
pected crossover from single-file to normal diffusion at a
characteristic p-dependent time tc� td / p. Note that in this
reduced Monte Carlo scheme the diffusion crossover is not
as closely localized as in the molecular dynamics simulation
�see panel �a��.

Model 2 in panel �c� exhibits totally different diffusion
properties. For 0�r�1/2 the particles pass each other and,
therefore, their self-diffusion is of the Langevin type at all
times, i.e., normal—the relevant diffusion constant D�r� is a
decreasing function of r �not shown�; for 1 /2�r�1 par-
ticles bounce off their neighbors �though inelastically� and
are thus subject to the single file constraint; correspondingly,
their motion is subdiffusive with exponent 1 /2 �normal dif-
fusion can be observed for t� td�. The transition between
these two asymptotic diffusive regimes occurs at r=1/2 and
sharply depends on the control parameter r.

The crossover from single file to normal self-diffusion for
an assembly of finite-size disks �with diameter a� moving in
a narrow two dimensional channel �with cross-section d� and
repelling one another through a Lennard-Jones potential, has
been investigated numerically by a number of authors �24�;
their primary purpose was to explain certain intriguing ex-
perimental observations concerning the transport of adsor-
bants in zeolites �9�. At variance with their picture, where
two molecules can squeeze their way past one another for
d�2a, only marginally overlapping, in the molecular dy-
namics simulation of panel �a� the system is strictly one-
dimensional and the diffusing particles are pointlike; finite
trapping or barrier energies 
W control the effective pair
hopping probability, represented by pe−
W/kT in model 1.
The abrupt transition between subdiffusion and normal-
diffusion observed in the simulations of Ref. �24�, for d very
close to 2a, is well captured by model 1 with p	0.

B. Self-diffusion versus particle density

We now go back to the initial problem of a one-
dimensional assembly of N particles diffusing according to
the LE �2� on a ring of length l; asymptotically, each particle

FIG. 1. �Color online� Mean square displacement ��x2�t��, de-
fined in Eq. �4�, versus t for an assembly of N particles on a ring of
length l interacting via the pair potential �3�. �a� Molecular dynam-
ics simulations for N=103, l=400, kT=0.07, �=0.05, and g=0.1.
Inset: as in the main panel but for N=2�103 and g=0.06. �b�
Monte Carlo simulations �model 1� for N=3.5�103, l=3.5�104,
kT=0.2, and different values of p. Inset: the corresponding fitting
diffusion constant D versus p. �c� Simulations of model 2 for the
same assembly parameters as in �b� and different values of r. Inset:
the diffusion exponent � versus r.
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is subject to normal self-diffusion, i.e., ��x2�t���2Dt for
t��K. In Fig. 2 we plotted the normal diffusion constant D
versus the particle density n=N / l, both for an attractive and
a repulsive choice of the pair potential �3�. The dependence
of the diffusion process on the sign of g is apparent. For g
�0, corresponding to attractive particles, D drops sharply to
zero above a critical density value, nc, which can be regarded
as a jamming, or condensation threshold. In Sec. III B we
derive an analytical estimate for nc; molecular dynamics
simulations suggest that �nc is proportional to kT /
W �not
shown�.

In the case of a repulsive pair interaction, g	0, the curve
D�n� in Fig. 2 first plunges below D0 /2, where D0�kT is the
free-diffusion constant for W�0, and then drifts upwards
back towards D0. To explain the nonmonotonic behavior of
D�n� we assumed that the computed self-diffusion coincides
with the diffusion constant of a single “test” particle moving
on the substrate formed by the remaining N−1 particles ar-
ranged in a fixed chain lattice with spacing constant an
= l / �N−1�. In such a “one-particle” approximation, the re-
sulting substrate potential experienced by the test particle
would be

Vn�x� = �
i=1

N−1

W�x − ian� .

Note that Vn is periodic by construction, i.e., Vn�x+ l�
=Vn�x�, and the origin of the x axis can be set arbitrarily. In
view of the shape of the simulated pair potential W�x�, Eq.
�3�, it turns out that Vn�x� describes a sawtooth potential with
maximum barrier height for N−1= l /�, whereas it becomes a
constant for an optimal packing geometry with N−1=2l /�
�no substrate�. In the former case the corresponding diffusion
constant gets suppressed due to barrier hopping �26�; in the
latter case the test particle undergoes free diffusion with D
=D0. In a crude approximation the curve D�n� can be com-

puted analytically by integrating the well-known formula
�27�

D

D0
= � 1

l2�
0

l

dx exp�Vn�x�/kT��
0

l

dy exp�− Vn�y�/kT��−1

,

�6�

as shown in Fig. 2. The agreement with our simulation data
is reasonably good only at low densities, where the ad hoc
substrate potential Vn�x� is more robust to thermal fluctua-
tions; a more sophisticated approach �1,2,5� is then required
to estimate self-diffusion in a dense gas of long-range inter-
acting particles. This is the main goal of the forthcoming
sections.

III. PHENOMENOLOGICAL APPROACH

A fully analytical solution of the LE set �2� is impossible.
The mechanisms governing the diffusion of interacting
Brownian particles can be grasped in the framework of the
Fokker-Planck equation �FPE� formalism �27�. The resulting
nonlinear FPE can be investigated only by means of phe-
nomenological arguments that help unravel the complexity
of the underlying stochastic dynamics.

A. Nonlinear Fokker-Planck equation

Accounting for the particle pair potential W led us to for-
mulate the following approximate nonlinear FPE �1,4,5� for
the one-particle distribution function F1�t ,x�, i.e.,

�tF1�t,x� = kT�x
2F1�t,x� + �xF1�t,x�

�� dx̃F1�t, x̃�G�t,x, x̃��xW�x − x̃� , �7�

where �t�� /�t, �x�� /�x, and F2�t ,x , x̃�
�F1�t ,x�F1�t , x̃�G�t ,x , x̃� denotes the binary distribution
function. It is apparent that particle-particle correlations de-
cay on a scale of the order of either the interaction length �
for low particle densities n�1/�, or the inter-particle dis-
tance 1/n for high particle densities n�1/�. As a conse-
quence, the function G, which describes the particle-particle
correlation, differs appreciably from 1 �uncorrelated particle
motion� for particle separations 
x− x̃ 
 �min�n−1 ,�, only.
This has been numerically proved in Ref. �4�. Therefore, if
each particle interacts with many neighbors, i.e., n��1, the
function G in the integral of Eq. �7� can be safely approxi-
mated to 1 over the entire integration domain.

Hereafter, the one-particle distribution function F1�t ,x� is
normalized to the total number N of particles in the system,
namely,

�
0

l

F1�t,x�dx = N . �8�

In order to make the problem more tractable, we further
discard nonlocal effects by assuming the relevant spatial
scales to be much longer than the interaction length �. There-
fore, inserting the expansion

FIG. 2. �Color online� Self-diffusion constant D versus density n
for an assembly of attractive �open blue circles, g=−0.02, �=0.5�
and repulsive particles �solid red squares, g=0.08, �=0.05�. The
constant D is given in units of D0=kT and the density in units of
�−1 �see text�. The pair interaction potential is defined in Eq. �3�.
Other simulation parameters l=2 and kT=0.5. The solid line repre-
sents our “one-particle” approximation �6� for the repulsive case.
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F1�t, x̃� = F1�t,x� + �x̃ − x��xF1�t,x� +
1

2
�x̃ − x�2�x

2F1�t,x� + ¯

�9�

in Eq. �7� and keeping the first nonvanishing term, only, lead
to

�tF1�t,x� = �x�gF1�t,x� + kT��xF1�t,x� �10�

with

g �� dxW�x� . �11�

For the piecewise linear potential �3� this quantity coincides
with the pair coupling constant, also denoted by g. Through-
out our investigation we assumed that the pair potential W�x�
is symmetric under reflection W�x�=W�−x�, and vanishes for
distances larger than �, i.e., W�
x 
 → � �=0. Making contact
with the simulation potential �3�, pair potentials character-
ized by negative or positive values of the parameter g are
defined to be attractive or repulsive, respectively.

In conclusion, Eq. �10� is valid under the restrictions

n−1 � � � � , �12�

where � is the characteristic width of the density packet �or
particle cluster�. Note that the interparticle interaction can
still be regarded as a long-range interaction because of the
density requirement ��1/n. These are the approximations
under which we analytically treat Eq. �10� in the following
sections and compare our analytical results with data from
numerical simulations based on the LE �2�.

B. Subdiffusive transients

The time-dependent solution of a nonlinear FPE, no mat-
ter how simple, cannot be obtained by means of standard
techniques �27�. For this reason we studied our FPE �10� by
addressing a less general problem: Suppose that N1 particles
form a cluster centered at x=0 with a given shape

F1�t,x� = N1 f	 x

�
� �13�

and vanishing tails f�
x 
 → � �=0. The normalization

�
−�

�

f�z� dz = 1

sets the number of particles N1 to be constant in time,
whereas the additional condition

�
−�

�

z2f�z�dz = 1

defines the cluster width � as a function of time. Without
further loss of generality we assume f�z� to be a Gaussian
function.

In view of Eq. �10� the width of F1�t ,x� will vary in time
according to a relatively simple ordinary differential equa-
tion. Multiplying both sides of Eq. �10� by x2 and integrating

over the entire x domain yield, in shorthand notation,

d

dt
�x2�t�� = g� x2�x�F1�xF1�dx + kT� x2�x

2F1dx �14�

or, after integrating by parts and replacing �x2�t��=N1�2�t�,

d

dt
�2 = 2kT + g

�2N1

�
�15�

with �2=�f2�z�dz= �2���−1. Equation �15� can be interpreted
as the relaxation process of an overdamped particle of coor-
dinate �2�t� subjected to the potential

V��2� = − 2kT�2 − 2g�2N1� �16�

plotted in Fig. 3 for both g	0 �panel �a�, inset� and g�0
�panel �a��.

�a� Repelling particles: g	0. For g	0 the implicit solu-
tion ��t� bridges the two limiting regimes �see Fig. 3�c��:

�2�t� = 2kTt for t → � , �17�

FIG. 3. �Color online� �a� The potential V��2� of Eq. �16� in
units of 2kT�c

2 for attractive �main panel� and repulsive �inset� par-
ticles. �b� The corresponding time dependence of �2�t�. Top inset:
g	0, �2�0� /�c

2=0.1; main panel: g�0, �2�0� /�c
2=0.9; and bottom

inset: g�0, �2�0� /�c
2=1.1. The curves �2�t� have been obtained by

integrating numerically Eq. �15�; � is expressed in units of �c and t
in units of �c

2 /kT.
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�2�t� = 	3

2
g�2N1t�2/3

for t → 0. �18�

This means that due to repulsion the width of F1�t ,x� in-
creases sub diffusively until it approaches its normal diffu-
sion regime, which is only governed by thermal fluctuations
�see Fig. 3�b�, top inset�.

�b� Attractive particles: g�0. The potential �16� for g
�0 exhibits a maximum at

�c
2 =

1

16�
	N1

nc
�2

, �19�

where

nc =
kT


g

. �20�

As a result, for ��0�	�c we recover again, after a transient
time of the order of �c

2 /kT, the asymptotic law �17�, i.e.,
normal diffusion �see Fig. 3�b�, bottom inset�. At short times
��t� diverges exponentially,

�2�t� − �c
2 = ��2�0� − �c

2�exp�kTt/�c
2� ,

thus suggesting an early superdiffusive decay of the cluster.
Conversely, for small aggregates with ��0���c, the distri-
bution F1�t ,x� always collapses into a �-like spike �see Fig.
3�b��.

Our last statement must be taken with caution for at least
two reasons. �i� As � becomes smaller than �, the condition
on the right-hand side of Eq. �12� is no longer obeyed and, as
a consequence, our nonlinear FPE approach becomes unten-
able. �ii� The assumption that the distribution F1�t ,x� retains
its shape and normalization at any time, Eq. �13�, provides
an oversimplified description of the diffusion mechanism.
Not only the profile of F1�t ,x� evolves with time, but its
normalization also evolves in time. For instance, upon col-
lapsing, the particle aggregate can “evaporate” at its bound-
aries, as an effect of thermal fluctuations, and eventually dis-
solve in the particle bath. A similar behavior has been
observed in dry granular fluids on a vibrating plate �28,29�.

Finally, we remind the reader that normal diffusion, in the
long time limit, has also been predicted for open-end sto-
chastic single files. For instance, in Ref. �25� an expanding
cluster of N Brownian particles with contact repulsion is
proven to diffuse normally with a diffusion coefficient in-
versely proportional to ln N.

The existence of the critical width �c defined in Eqs. �19�
and �20� has a simple physical interpretation. Going back to
Eq. �10� one immediately recognizes that in the case of at-
tracting particles g�0, the stationary condition �tF1=0 can
be achieved for F1=nc, no matter what the average density n
of the particles in the system. It has been predicted �4�, and
numerically checked �1,5�, that nc indeed plays the role of a
critical condensation density for an assembly of attracting
Brownian particles under diverse dynamical conditions.
Therefore, the critical width �c identifies clusters of N1 par-
ticles squeezed together above the relevant condensation
density. Thus, for ��0�	�c thermal fluctuations win over the
interparticle attraction, while for ��0���c the cluster tends

to collapse. Note that our estimate �20� for nc comes close to
the density of attracting particles at which the diffusion co-
efficient D in Fig. 1 drops to zero.

The most significant conclusions of the present section
can be summarized as follows.

�1� Interaction affects the time dependence of �x2�t��
=�2�t�; in particular, for relatively short times, the spread of
the distribution is clearly a subdiffusive process for repulsive
particles. Instead, low density clusters of attractive particles
spread out according to an exponential diffusion law, at short
time scales, followed by normal diffusion.

�2� Sufficiently dense clusters of attracting particles, un-
der certain conditions, are capable of forming stable spatial
aggregates. Such conditions will be investigated in the fol-
lowing section.

Numerical simulations of low-density one-dimensional
gasses of interacting particles corroborate our predictions.
We adapted the numerical code employed in Sec. II to simu-
late clusters of pointlike particles diffusing subject to thermal
fluctuations. In Fig. 4 we characterize the free expansion of a
Gaussian cluster by plotting its width � versus time t for
different values of the coupling g. We simulated the spread
of the initial cluster in the presence of a background uniform

FIG. 4. �Color online� Dispersion ��t� versus time t showing the
decay of a Gaussian cluster of interacting particles. This was ob-
tained via molecular dynamics simulations of N1=50 particles, ini-
tially forming a Gaussian packet with ��0�=3.3 and interacting via
the pair potential �3� with �=1 and different g. Other simulation
parameters are l=400 and kT=1: �a� cluster surrounded by a uni-
form particle distribution with n=0.125; �b� cluster expanding
in vacuo with n=0. Insets: Logarithmic plot of �2�t� for g=10; the
slopes t2/3 and t are drawn for the reader’s convenience.
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particle distribution of density n, Fig. 4�a�, and also without
background particles �i.e., n=0, and all particles were ini-
tially lumped together to form the t=0 cluster�, in Fig. 4�b�.
To make contact with the phenomenological predictions,
Eqs. �17�–�20�, in this section, here we focus on the cluster
expansion in vacuo, panel �b�. As expected, for g	0 the
width ��t� starts to grow very fast, subdiffusively �see both
insets in Fig. 4 for �2�t��; within our numerical accuracy, the
cluster diffusion exponent is close to the exponent of Eq.
�18�. At long times, �2�t� diverges linearly in t �see insets in
Fig. 4� with the free diffusion coefficient kT of Eq. �17�.
Comparing the curves of ��t� for g=10 �repelling particles�
and g=0 �noninteracting particles�, one notices that the par-
ticle repulsion helps the cluster expand and normal diffusion
set on after all. A cluster of attractive particles g�0 decays
differently depending on its initial width ��0�. The curves in
Fig. 4�b� for g=−0.23 and g=−10 are typical examples of
the decay of a broad, ��0�	�c, and a narrow cluster, ��0�
��c, respectively: Only the narrow cluster collapses, as pre-
dicted in our phenomenological approach. The growth of
cluster size for g=−0.23 seems to slow down after an initial
expansion; this effect is due to the thermal expansion being
compensated by the weak interparticle attraction �1,2,5�; note
that under such conditions, as cautioned above, a cluster can
dissolve without retaining its shape.

For the sake of comparison, we also simulated the time
evolution of clusters of particles diffusing subject to the ki-
netics �5�: As shown in Fig. 5, Gaussian clusters turn out to
expand normally, i.e., with �2�t� t, both according to mod-
els 1 and 2, regardless of the control parameters p and r,
respectively. The reason why here, at variance with Sec. II A,
neither model �5� seems to reproduce our simulation results
is twofold. �i� The nonlinear FPE �10� in Sec. III A was
derived under conditions �12�. As both kinetic models as-
sume implicitly zero-range pair potentials, long-range inter-
action effects with n��1 are not accounted for. �ii� The
constrained diffusion of nonpassing �and otherwise noninter-
acting� particles becomes subdiffusive with ��1 only for
stationary �either periodic or confined� single-file geom-
etries; particles of expanding single files diffuse normally as
proven by Astangul �25�. On comparing the predictions of
model 1, 5�a�, and model 2, 5�b�, with the simulation data of
4, we conclude that the properties of cluster relaxation re-
ported in this section are indeed an effect of long-range par-
ticle interaction.

IV. JAMMING MECHANISM

As shown in Refs. �1,4,5�, an assembly of attracting par-
ticles tends to jam above a critical density threshold, i.e., for
n	nc. Moreover, the phenomenological argument of Sec.
III B also suggests that sufficiently dense clusters of attract-
ing particles tend to resist the dispersive action of thermal
fluctuations. We want now to investigate in more detail the
jamming mechanism predicted by the nonlinear FPE �10�.

For an assembly of N attracting particles distributed over
a length l, Eq. �10� admits two stationary solutions, namely,
F1�x�=n �normal phase� and F1�x�=nc �jammed phase�. Par-
ticle number �or mass� conservation dictates that only the

former distribution is tenable as long as n�nc. However, an
interesting question arises when n	nc: As in principle both
solutions are physically acceptable, which distribution, and
under what circumstances, describes the equilibrium state of
the system?

A. Jammed phase

First, we characterize the jammed phase F1�x�=nc by gen-
eralizing the simple scheme of Sec. III B. Let us add to or
subtract from the condensate a cluster of N1 particles cen-
tered at, say, x=0. This means that

F1�t,x� = nc + ��t,x� , �21�

where ��t ,x� has the preassigned shape �13� and N1 can be
either positive, if the cluster is being added, or negative
when the cluster is being removed. On plugging Eq. �21� into
Eq. �14� and making use of the definition �20� for nc, one
obtains a simple equation for the time evolution of �, i.e.,

d

dt
�2 = − 
g


�2N1

�
. �22�

For N1�0, � grows in time subdiffusively according to the
law �18�. This implies that the cluster tends to dissolve and

FIG. 5. �Color online� Decay of a Gaussian cluster of interacting
particles, �2�t� vs t. Monte Carlo simulations of a Gaussian cluster
of N1=600 particles diffusing against a uniform particle distribution
with density n=0.1 �curve set A� and in vacuo with n=0 �curve set
B�. Particle kinetics of Eq. �5�: �a� model 1; �b� and model 2. Other
simulation parameters: l=1.8�104 and kT=1; the curves weakly
depend on the relevant kinetic parameter p or r.
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its N1 constituents spread out over the entire length l. Even-
tually, the total average density n=nc−N1 / l will be subcriti-
cal, that is the system falls back into the normal phase.

For N1	0, � vanishes in a finite time interval, irrespec-
tive of its initial value ��0�, or equivalently,

��t,x� → N1��x� . �23�

This result answers the question of what happens with the
excess particles �n−nc�l of an assembly of attracting par-
ticles undergoing jamming: Excess particles tend to aggre-
gate in distinct clusters of different size with random spatial
distribution

F1�x� = nc + �
i

Ni��x − xi� �24�

and

1

l
�

i

Ni = n − nc. �25�

Note that, as the positions xi of the �-like spikes of Eq. �24�
form a countable set, the above expression for F1�x� is in-
deed a stationary solution of the nonlinear FPE �10� corre-
sponding to the jammed phase with density nc.

B. Stability of the jammed phase

Finally, we address the question of which stationary solu-
tion F1�x�=n or F1�x�=nc, of the nonlinear FPE �10� is
stable. To this purpose we start with the nonequilibrium dis-
tribution

F1�t,x� = n − n1 + ��t,x� , �26�

with ��t ,x� defined in Eq. �13� and n1=N1 / l. At variance
with the case of Eq. �21�, here the number of the clustered
particles N1 is allowed to vary with time subject to two re-
strictions. �i� The total number N of particles in the system is
conserved. �ii� The width of the cluster ��t ,x� is also kept
constant, �0. Such a constraint models, for instance, the pres-
ence of a defect acting as a cluster growth �or condensation�
center with characteristic radius �0.

Replacing Eq. �26� into the definition of �x2�t�� yields

d

dt
�x2�t�� = − 	 l2

12
− �0

2�dN1

dt
� −

l2

12

dN1

dt
. �27�

The approximation in Eq. �27� follows the conditions,

nc
−1 � �0 � l , �28�

for our ansatz �26� to be consistent with the nonlinear FPE
formalism, see Eq. �12�. Inserting the approximate expres-
sion �27� for the time derivative of �x2�t�� into Eq. �14�, we
finally obtain

ṅ1 = − 24

g

l

�nc − n + n1� +
12
g
�2

�0
n1

2. �29�

If, thanks to the first inequality �28�, we discard also the
right-most term in Eq. �29�, then we reach a simple conclu-

sion. For n	nc the mass of a cluster ��t ,x� of constant
width �0 grows until N1 approaches �n−nc�l; the jammed
state represented by the distribution �24� and �25� is thus
recovered. On the contrary, for n�nc the initial cluster dif-
fuses into the particle bath as N1�t�→0. This provides further
evidence to the predictions of Refs. �1,4,5�, i.e., on increas-
ing n larger than the threshold nc, the homogeneous distribu-
tion F1�x�=n becomes unstable.

C. Linear stability of the uniform phase

Finally, we perform a linear stability analysis of the uni-
form state F1�t ,x�=n following the approach of Ref. �30�.
We start from the nonlinear FPE �7� in mean field approxi-
mation, i.e., with G�t ,x , x̃�=1. Setting

F1�t,x� = n + ��t,x� �30�

and retaining only terms of first order in the perturbation
��t ,x�, yield

�t��t,x� = kT�x
2��t,x� + n�x��t,x� � dx̃��t, x̃��xW�x − x̃� .

�31�

On introducing the Fourier transforms

�̃�t,q� =� dxe−iqx��t,x�, W̃�q� =� dxe−iqxW�x� ,

the eigenvalues of the linear FPE �31� are given by the dis-
persion relation �27�

��q� = �kT + nW̃�q��q2. �32�

Clearly, the uniform state F1�t ,x�=n is unstable against de-

formations with wave vectors q such that W̃�q��−kT /n,
namely, only for attractive potentials. For the short-range po-

tentials considered above, W̃�q� can be approximated by

W̃�0�=g, see Eq. �11�, hence the critical uniform state �20�,
nc=kT / 
g
. In the more general case of finite-range poten-

tials, for which 
W̃�q�
 is a monotonic decreasing function,

the q dependent critical density nc=kT / 
W̃�q�
 suggests that
the uniform state is relatively stable against perturbations at
the short wavelengths; thus, the problem of cluster stability
studied in Sec. III cannot be treated in linear analysis.

V. CONCLUSIONS

We investigated the role of pair interactions in the diffu-
sion of an assembly of Brownian particles in one dimension.
Particles are allowed to pass one another, thus mimicking
quasi-one-dimensional geometries studied in the earlier lit-
erature. In the limit of long observation times self-diffusion
is normal. However, for attractive particles the diffusion con-
stant drops to zero for densities larger than a jamming, or
condensation threshold nc; for repulsive particles the diffu-
sion constant exhibits a minimum in correspondence with an
optimal packing geometry. At short times, when the pair in-
teraction suppresses particle hopping �i.e., pair exchanges�,
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the particles form a chain �single-filing constraint�; the ensu-
ing subdiffusive process is apparent in the case of repulsive
particles. This picture emerges from extensive numerical
simulations based on the Langevin equations describing the
Brownian motion of an assembly of particles at thermal equi-
librium.

To shed light on the underlying diffusive mechanism, we
also studied an approximate nonlinear Fokker-Planck equa-
tion derived to incorporate the statistical effects of pair inter-
actions. In particular, we proved that a Gaussian cluster of
attractive particles collapses for densities larger than the con-
densation threshold; this result confirms the stability of the
jammed phase above threshold. At lower densities clusters
spread out; the relevant dispersion mechanism depends on
the interaction sign at short times, whereas normal diffusion

sets on in the asymptotic regime for both attractive and re-
pulsive particles. The discussed effects can be observed in
systems with colloidal particles �31,32�, vortices �18�, elec-
trons �33�, among other interacting particles.
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