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An open system of overdamped, interacting Brownian particles diffusing on a periodic substrate potential
Usx+ ld=Usxd is studied in terms of an infinite set of coupled partial differential equations describing the time
evolution of the relevant many-particle distribution functions. In the mean-field approximation, this hierarchy
of equations can be replaced by a nonlinear integro-differential Fokker-Planck equation. This is applicable
when the distancea between particles is much less than the interaction lengthl, i.e., a particle interacts with
many others, resulting in averaging out fluctuations. The equation obtained in the mean-field approximation is
applied to an ensemble of locallysa!l! ld interacting(either repelling or attracting) particles placed in an
asymmetric one-dimensional substrate potential, either with an oscillating temperature(temperature rachet) or
driven by an ac force(rocked ratchet). In both cases we focus on the high-frequency limit. For the temperature
ratchet, we find that the net current is typically suppressed(or can even be inverted) with increasing density of
the repelling particles. In contrast, the net current through a rocked ratchet can be enhanced by increasing the
density of the repelling particles. In the case of attracting particles, our perturbation technique is valid up to a
critical value of the particle density, above which a finite fraction of the particles starts condensing in a
liquidlike state near the substrate minima. The dependence of the net transport current on the particle density
and the interparticle potential is analyzed in detail for different values of the ratchet parameters.
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I. INTRODUCTION

The transport of particles moving out of equilibrium in an
asymmetric substrate potential has been studied intensively
for a variety of different systems[1,2] in order to achieve an
efficient control of the net particle flow. Various realizations
of rachet systems working out of equilibrium have been pro-
posed involving different rectification mechanisms, like tem-
poral temperature oscillations(temperature ratchet[3]), zero-
average sinusoidal ac forces(ac tilted or rocked ratchet[4]),
stochastic and deterministic fluctuations of the ratchet poten-
tials [5], among others. The ensuing net dc drift(the so-
called ratchet current or rectification effect) occurring in
these systems is important for several biological motors as
well as for some technological applications; e.g., for particle
separation techniques[6], smoothing of atomic surface dur-
ing electromigration[7], and superconducting vortex motion
control [8,9].

The dc particle current can be controlled to some extent
and even inverted, for instance, by changing the frequency of
the ac drive or tinkering with the shape of the asymmetric
potential [1,2,10]—neither one a simple procedure under
many experimental circumstances. Indeed most asymmetric
substrates are fixed. Moreover, until recently[11,12], inter-
particle interactions, a central feature in most physical sys-
tems, have been neglected in almost all theoretical studies on
ratchet transport[13] or, on rare occasions, only tackled nu-
merically[8,14]. For instance, one-dimensional(1D) numeri-
cal simulations[14] of an assembly of hard-core rods show
quite unusual stochastic transport properties, including cur-
rent inversion with varying particle density and commensu-
rability effects when the ratio of the particle size to the sub-
strate unit length is a rational number. It follows that many

important phenomena such asdynamical phase transitions,
as well ascompetition between thermal fluctuations and
particle-particle interaction in stochastic transport, have not
yet been investigated analytically. This is a major limitation
imposed by the key theoretical tool employed by most au-
thors, namely, the linear Fokker-Planck equation, which de-
scribes well only the nonequilibrium diffusion of a single
Brownian particle or, equivalently, of a system of noninter-
acting particles. Therefore, this fundamental equation must
be generalized to address the transport properties of interact-
ing particles.

On combining stochastic and Bogoliubov kinetic tech-
niques, in Sec. II we develop a closed-form statistical ap-
proach based on many-particle distribution functions, to de-
scribe the net transport of interacting particles moving on
periodic asymmetric substrates subject to fluctuating forces.
In the mean-field approximation, where a two-particle distri-
bution function is approximated by the product of the two
relevant one-particle distributions, a nonlinear Fokker-Planck
equation is derived. We apply this equation to a system of
locally interacting particles, which is kept out of equilibrium
by high-frequency oscillations of either the temperature or an
external deterministic ac force.

For the case ofrepellingparticles in a temperature ratchet
(Sec. III), the net particle drift issuppressedwhen raising the
particle density. In contrast, the rectified current of a rocked
ratchet(Sec. IV) increaseswith the density of the repelling
particles as long as the drive amplitude is relatively small.

In the case ofattracting particles, the perturbation ap-
proach of Sec. II applies for increasing particle densities until
the particles startcondensingin the potential wells. The net
particle velocity diminishes with increasing particle density
for both the temperature ratchets and the rocked ratchets
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driven at small ac amplitude. However, the drift current
through a rocked ratchet can be strongly enhanced with in-
creasing particle density at larger drive amplitudes(Sec. IV).

Such an unusual behavior can be qualitatively explained
in terms of the flattening of the asymmetric effective poten-
tial acting on the repelling particles and the deepening of the
effective potential wells binding the attracting particles.
These opposite mechanisms suggestan efficient control of
the ratchet rectification process by tuning the density of the
interacting particles. The latter has recently been experimen-
tally implemented for the control of the motion of supercon-
ducting vortices in microstructures[15].

II. THERMAL DIFFUSION OF INTERACTING
PARTICLES

A. Temporal evolution of many-particle distributions

Let us consider an open system ofN pointlike Brownian
particles interacting with each other via the pairwise poten-
tial W, with the substrate through the asymmetric periodic
potential U, and with a homogeneous external field corre-

sponding to the time-dependent deterministic forceFW std. The
environment exerts on each particle an independent Gaussian
random force with zero mean and intensity controlled by the
temperatureT. In the overdamped regime(where inertia is
negligible compared to the viscous damping), the Langevin
equation describing the thermal diffusion of theith particle is

hxẆ i = −
]UsxW id

]xW i

− o
jÞi

]

]xW i

WsxW i − xW jd + FW std + Î2hkBTjWsidstd,

s1d

wherexW istd=(xistd ,yistd ,zistd) is the position of theith par-

ticle at timet, jWsid=(jx
sidstd ,jy

sidstd ,jz
sidstd) is the random force

acting on it,xẆ i ;dxW i /dt, h is the viscous coefficient, andkB is
the Boltzmann constant. We further assume the fluctuation-
dissipation relationkja

sids0djb
s jdstdl=dstddabdi,j, wheredstd is

the Diracd function, anddab anddi,j are Kronecker symbols.
This set of dynamical equations has been effectively

simulated in several numerical studies(see, for instance, Ref.
[8]). It takes some nontrivial algebraic manipulations to cast
them in an analytically tractable form. For this purpose let us
consider the time evolution of the microscopic particle dis-
tribution N1=oid (xW −xW istd); for a small time incrementDt,

N1st + Dtd = o
i

d„xW − xW ist + Dtd… = o
i

d„xW − xW istd − xẆDt…

< o
i

d„xW − xW istd… − o
i

]d„xW − xW istd…
]xW

xẆDt

+
kBT

h
o

i

]d„xW − xW istd…
]xa]xb

ja
sidjb

sidsDtd2, s2d

where summation over repeated indicesa, b is understood.

Averaging over the stochastic variablesjWsid and inserting the
identitieskja

sidl=0 andkja
sidjb

sidl=dab /Dt yields

h

Dt
fN1st + Dtd − N1stdg

=
h

DtSoi

d„xW − xW ist + Dtd… − o
i

d„xW − xW istd…D
<

]

]xW
o

i

dsxW − xW idS ]UsxW id

]xW i

+ o
jÞi

]

]xW i

WsxW i − xW jd − FW stdD
+ kBT

]2

]xa]xa
o

i

dsxW − xW id. s3d

Note that in Eq.(2) we have retained the stochastic contri-
butions up to second order inDt. However, after averaging
over noise, such apparently next-to-leading corrections gen-
erate additional first order terms in Eq.(3). The reason for
that is thed-like noise autocorrelation function, which, in
view of the time discretization, corresponds to a zero-mean
stochastic noise with amplitude of the order ofÎ2kBhT/Dt.
Physically,Dt can be regarded as the smallest time scale in
the problem, say, the mean collisional time of the particle
gas. In the limitDt→0 the amplitude of the random force
diverges, keeping the quantitykja

sidjb
sidlDt constant[16].

In order to treat the particle motion as a stochastic
process, we introduce the set of many-particle distribu-
tions F1st ,xW1d, F2st ,xW1,xW2d , . . . ,FNst ,xW1, . . . ,xWNd. Here, the
s-particle distribution Fsst ,xW1, . . . ,xWsd defines the particle
number density forany s, with søN, elemental volumes
fxW1,xW1+dxW1g , . . . ,fxWs,xWs+dxWsg at time t. On normalizing each
Fs to the numberNsN−1d¯ sN−s+1d, one obtains an iden-
tity relating Fs to Fs−1, i.e.,

Fs−1st,xW1, . . . ,xWs−1d =
1

N − s+ 1
E dxWsFsst,xW1, . . . ,xWsd, s4d

with F0;1 and the spatial integration taken over the whole
space accessible to the particles. Multiplying Eq.(3) by FN
and integrating over all variablesxW1, . . . ,xWN lead to the fol-
lowing equation for the one-particle distribution functionF1:

h
]F1st,xWd

]t
=

]

]xW
FS ]UsxWd

]xW
− FW stdDF1st,xWdG

+
]

]xW
E dxW8F2st,xW,xW8d

]WsxW − xW8d

]xW

+ kBT
]2F1st,xWd
]xa]xa

. s5d

This equation forF1st ,xWd does not completely specify
F1st ,xWd, because the interaction term involves the pair distri-
bution functionF2st ,xW ,xW8d. The required additional equation
for F2 may be derived by considering the time evolution of
the microscopic pair function N2=oiÞ jd(xW −xW istd)d(xW8
−xW jstd). Following the approach(2)–(5) outlined above, the
equation for the evolution of theN2 can be written as
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h

Dt
fN2st + Dtd − N2stdg

=
]

]xW
Fo

iÞ j

dsxW − xW jddsxW8 − xW jd

3S ]UsxW id

]xW i

+ o
lÞi

]WsxW i − xW ld

]xW i

− FW stdDG
+

]

]xW8
Fo

iÞ j

dsxW − xW iddsxW8 − xW jd

3S ]UsxW jd

]xW j

+ o
lÞ j

]WsxW j − xW ld

]xW j

− FW stdDG
+ kBTS ]2

]xa]xa

+
]2

]xa8]xa8
Do

iÞ j

dsxW − xW iddsxW8 − xW jd, s6d

and correspondingly forF2,

h
]F2

]t
=

]

]xW
FF2st,xW,xW8dS ]UsxWd

]x
+

]WsxW − xW8d

]xW
− FW stdD

+E dxW 9F3st,xW,xW8,xW 9d
]WsxW − xW 9d

]xW
G

+
]

]xW8
FF2st,xW,xW8dS ]UsxW8d

]xW8
+

]WsxW8 − xWd

]xW8
− FW stdD

+E dxW 9F3st,xW,xW8,xW 9d
]WsxW8 − xW 9d

]xW8
G

+ kBTS ]2

]xa]xa

+
]2

]xa8]xa8
DF2st,xW,xW8d. s7d

The sets of Eqs.(5) and (7) are still insufficient to fully
determineF2, and thereforeF1, as now there appears the
three-particle distribution functionF3, as well. Therefore, in
analogy with Bogoliubov’s hierarchy of the many-particle
distribution function equations used in physical kinetics[17],
only the entire set ofN equations forF1, . . . ,FN would be
truly closed, but it would also be mathematically untractable.

Nevertheless, such a statistical approach provides a hier-
archy of useful approximations, when the set of the firsts
equations is suitably truncated. The simplest mean-field ap-
proximation is obtained by replacing the pair distribution
function F2st ,xW ,xW8d with the product F1st ,xWdF1st ,xW8d of
the two corresponding one-particle distribution functions;
hence we get the nonlinear integro-differential Fokker-
Planck equation:

h
]F1st,xWd

]t
=

]

]xW
HF1st,xWdF ]

]xW
SUsxWd +E dxW8WsxW − xW8d

3F1st,xW8dD − FW stdG + kBT
]F1st,xWd

]xW
J . s8d

The physical interpretation of the last equation is that a par-
ticle at pointxW is affected by both the bare substrate potential
U and an effective potential that reproduces its interaction

with the N−1 surrounding particles—which are expected to
be nonuniformly distributed in space. Thus, the total mean-
field potentialUmf reads

U mfsxW,td = UsxWd +E dxW8WsxW − xW8dF1st,xW8d. s9d

Note that the nonlocal Eq.(8) for F1 is nonlinear. This may
account for equilibrium and dynamical phase transitions
(e.g.,[18]) which are otherwise impossible to obtain through
the standard linear Fokker-Planck equation[11,12].

B. Validity of the mean-field and local approximations

We discuss now the conditions under which we can intro-
duce the mean-field approximation and/or ignore the non-
locality in the integro-differential Fokker-Planck equation
(8). For simplicity we do this in the 1D case and for a peri-
odic substrate potentialUsxd=Usx+ ld with spatial periodl.

In general, we can express the binary distribution function
F2sx,x8 ,td as follows:

F2sx,x8,td = F1sx,tdF1sx8,tdGsx − x8,x + x8,td, s10d

where the functionG describes the statistical correlation be-
tween the two particles in the joint probabilityF2sx,x8 ,td.
The characteristic length scale of the one-particle distribu-
tion function F1sx,td is of the order ofl (l is the period of
the potential energy). This can be seen in the equilibrium
case with either weak or zero particle-particle interaction,
where F1 is a Boltzmann distribution,F1~expf−Usxd /Tg.
Also, this is easy to check for the particle distributions ob-
tained in the following sections. On the other hand, for small
particle densitiesnl!1 (n is the average particle density in
1D) and far from the condensation transition discussed be-
low, the functionG decreases on a length scale of the order
of the interaction radiusl, whereW is appreciably different
from zero. Indeed, in this limit,G was estimated[12] to be
G~expf−Wsx−x8d /Tg. For higher particle densitiesnl@1,
the average distancea=1/n between particles becomes
smaller thanl and the correlation between any two particles
gets suppressed on length scales of abouta=1/n. Therefore,
we can assume that

G < 1 for ux − x8u @ minhn−1,lj. s11d

Using Eq.(11) for nl@1, we obtain

E dx8F2st,x,x8d
]Wsx − x8d

]x

= F1st,xd E dx8F1st,x8dGsx − x8d
]Wsx − x8d

]xW

< F1st,xdE
ux−x8u.ap

dx8F1st,x8d
]Wsx − x8d

]x

< F1st,xd E dx8F1st,x8d
]Wsx − x8d

]x
, s12d

wherea* ,a. The third and fourth relations of Eq.(12) are
evidently valid if a!l. Thus, in this limit, Eq.(5) can be
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reduced to its mean-field form Eq.(8). Here, we assume that
the contribution to the integral on the length scale of 1/n is
negligible, which is correct for many families of interaction
potentials[e.g., potentials that do not diverge at zero dis-
tance,]Wsx=0d /]x=0].

Thus, the assumption thatG<1 for l* ux−x8u@a is the
crucial one for the applicability of the mean-field approxima-
tion (see also[19]). This means that a particle interacts with
many other particles resulting in averaging out the local fluc-
tuations of individual particle-particle interactions. Even
thoughl /a=nl@1 is a standard condition for the validity of
the mean-field approximation[20], we have performed nu-
merical simulations of the Langevin equation(1) in order to
obtain numerical evidence for Eq.(11). As we expected, Fig.
1 shows thatG is significantly different from 1 in the region
ux−x8u&l for low particle densitiesnl!1 (dashed curve in
Fig. 1). In contrast to this, in the regionnl@1, where the
mean-field approximation is valid, the functionG is close to
1 for ux−x8u.a in Fig. 1. This important property does not
strongly depend on the shape of the substrate potential and
temperature. Thus, the contribution to the effective potential
(9), associated with interparticle interactions, comes from
the regiona, ux−x8u&l, where the approximation(11) is
valid. This proves the applicability of the mean-field ap-
proximation.

In order to make the problem more tractable, we further
discard nonlocal effects by assuming the scalel of the inter-

action potentialWsx−x8d to be smaller than the scalel of the
substrate potentialUsxd. This allows us to approximate the
mean-field potential as follows:

U mfsx,td = Usxd +E dx8Wsx − x8dF1st,x8d

< Usxd + F1st,xd E dx8Wsx − x8d

= Usxd + gF1st,xd

with

g ;E dx8Wsx − x8d. s13d

As a result, we obtain the partial differential equation

h
]F1

]t
=

]

]x
FF1S ]U

]x
− FstdD + kBTstd

]F1

]x
+ gF1

]F1

]x
G ,

s14d

which, in view of our previous discussion, is valid[11] when
the average interparticle distancea=1/n is much smaller
than the particle interaction lengthl, which, in turn, is much
smaller than the unit cell periodl of the substrate potential:
i.e.,

a = n−1 ! l ! l . s15d

This mean-field equation(14) is analyzed in the forthcoming
sections for both temperature and rocked ratchets.

Note that, if the inequality(15) regarding the particle-
particle interaction is partly reversed,l&n−1! l, then Eq.
(5) could still be handled in terms of Eq.(14) after introduc-
ing the effective interaction strength

gscreened;E dx8Wsx − x8dGsx − x8,x + x8d s16d

to account for screening effects. Therefore, approximating
gscreenedto a spatial constant yields a qualitative description
of the nonequilibrium behavior of the system even in param-
eter domains where the mean-field approximation is formally
invalid.

III. COLLECTIVE MOTION OF LOCALLY INTERACTING
PARTICLES IN A TEMPERATURE RATCHET

In this section we consider how local interparticle inter-
actions influence the net current in a 1D ratchet system held
out of equilibrium at a temperature that oscillates in time[3].
Note that this type of ratchet is a typical realization of the
so-called Brownian or molecular motors where the directed
motion is not related to any deterministic force[Fstd=0 in
Eq. (14)]. This unusual net transport occurs via rectification
of nonequilibrium fluctuations induced, e.g., by temperature
oscillationsTstd. Note that temperature ratchets seem to be
used by living organisms[21]: some microorganisms living
in hot springs can extract energy out of regular thermal varia-
tions. In artificial devices thermal variations could be gener-

FIG. 1. (Color online) Deviation of the statistical correlation
function G from its uncorrelated(mean-field) value G=1, versus
distancex−x8 between particles, normalized by the interaction
length l. The interaction was taken asWsxd=gsl− uxud /l2, while
the substrate potentialUsx/ ld is shown in the inset. The downward
arrow in the inset marks thex=0 position whereGsx−x8 ;x=0d was
numerically computed.G substantially differs from 1(its mean-
field value) over distancesux−x8u,a, when the average distance
a=1/n between particles is much smaller thanl. In the opposite
limit a.l (shown by the dashed line), we obtainG,1, on scales
ux−x8u,l. This result depends on neither temperature nor the sub-
strate potentialU in the range of parameters studied. Thus, we have
numerically verified Eq.(11), which is used for the derivation of the
mean-field approximation.
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ated by electrical current oscillations via Joule’s heating or
via pressure oscillations[1].

The starting point of our analysis is the nonlinear Fokker-
Planck equation for the sinusoidal temperature ratchet

h
]F1

]t
=

]

]x
SF1

dU
dx

+ kBTstd
]F1

]x
+ gF1

]F1

]x
D , s17d

with

Tstd = Ts1 + a cosvtd, a , 1. s18d

For convenience, hereafterT denotes the average tempera-
ture, i.e.,

T ;
v

2p
E

0

2p/v

Tstddt.

In the general case, an analytical study of Eq.(17) is too
complicated. However, if the period of the temperature os-
cillations 2p /v is much shorter than the other characteristic
time scales in the problem, then the particles cannot adjust to
the varying temperature, but rather experience an average
effect due to the temperature oscillations. Thus, it is reason-
able to expect that the system relaxes close to the equilib-
rium state corresponding to the average temperatureT. This
equilibrium solution

F1sx,a = 0d ; f0 = f0sxd s19d

satisfies the nonlinear equation

U8sxdf0 + gf0
df0

dx
+ kBT

df0

dx
= 0, s20d

which can be solved in implicit form,

CsndexpS−
Usxd
kBT

D = f0sxdexpS g

kBT
f0sxdD ; Zsf0d,

s21d

where the constantCsnd is determined by the normalization
condition

E
0

l

dx f0sxd = nl,

wheren is the particle density andl is the substrate unit cell.
The equilibrium distributionf0 coincides with the usual
Boltzmann distribution if the particle interaction is switched
off, g=0. In Appendix A, we study Eq.(20) in the presence
of nonlocal interactions.

A. Condensation

Here, one can see hownonlinearity produces a phase
transition. Equation(21) always admits a solution if the par-
ticles repel each other,g.0 (see Fig. 2, inset). However, in
the case of attracting particles,g,0, the transcendental Eq.
(21) has a solution only if(see Fig. 2)

CsndexpS−
minfUsxdg

kBT
D ,

kBT

eugu
.

Here, e is Euler’s number(2.71…). Indeed, the functional
Zsf0d computed at the minimumxmin of Usxd, Z(f0sxmind),
approaches its maximum value

max
f0

Zsf0d =
kBT

eugu

as the particle density increases. In other words, more and
more particles accumulate nearxmin, which in turn attract
additional particles from even further away. Eventually, the
particle attraction wins over the random thermal noise. This
occurs at a critical valuencrit of the particle density when
Z(f0sxmind) equals the maximum valueZsf0d=kBT/eugu. At
higher densities the equilibrium distribution(21) cannot be
sustained any longer; thermal noise cannot prevent thecon-
densationof a finite fraction of the nonideal(interacting) gas
particles into the liquidlike phase at the bottom of the poten-
tial wells. Therefore, the analysis presented below is not
valid for n.ncrit. Note that such a phase transition is not
related to the nonequilibrium condition of the system; more
exciting dynamical phase transitions due to the interplay of
nonequilibrium and nonlinearity will be revealed by solving
the Fokker-Planck equation(17).

B. Effective potentials

The equation for the perturbation correctionc=csxd
;F1−f0 from the equilibrium statef0 is

FIG. 2. Graphical solution of the transcendental equation(21)
for a subcritical density of attracting particles. With increasing den-
sity of the particles, both valuesf0sxmind and f0sxmaxd increase.
Horizontal dotted lines representZsf0d=Z(f0sxmind)=Ce−Umin/kBT

(upper) and Zsf0d=Z(f0sxmaxd)=Ce−Umax/kBT (lower), respectively.
As soon asZ(f0sxmind) reaches the maximum value maxfZsf0dg
=kBT/eugu, the transcendental equation admits no solution and a
phase transition occurs. Note that the decreasingZsf0d branch is
unstable. As shown in the inset, one can always find the solution to
Eq. (21) for repelling particles sinceZsf0d is a monotonic increas-
ing function of f0. We usedugu /kBT= ±0.3 to plot the function
Zsf0d.
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]c

]t
=

1

hv

]

]x
Sc

dU eff

dx
+ gc

]c

]x
+ fkBT effsxd

+ kBTascostdg
]c

]x
D +

kBTa

hv
costSd2f0

dx2 D , s22d

wheret;vt is the dimensionless time, while the effective
potential and temperature are defined as

U effsxd = Usxd + gf0, s23d

kBT effsxd = kBT + gf0. s24d

These equations can be qualitatively interpreted if we sepa-
rate the running particles, a relatively small fraction of about
ucsxdu /f0sxd at the pointx, from those trapped at the sub-
strate minima. The moving particles experience the potential
U eff generated by both the substrate and the trapped par-
ticles.

In the case ofrepulsiveparticle interaction, such an effec-
tive potential is smoother than the bare substrate potential
(see Fig. 3) because the particles occupying the bottom of the
potential wells tend to repel the running particles away from
the potential minima.

In contrast to this, with increasing density ofattracting
particles, the wells of the effective potential grow even
deeper than the substrate wells(Fig. 4). Note that the
particle-particle interaction also induces a spatial dependence
of the effective temperature, which implies a spatial depen-
dence of the diffusion constant of the running particles. The
effective temperature and potential exhibit the same asym-
metry for the case of attracting particles, meaning that
the positions of their maxima and minima coincide. In this
respect, we say thatfor repelling particles the effective
temperature and the effective potential have opposite asym-
metry.

C. Perturbative approach

Next we develop a perturbation approach to study the
time dependence of Eq.(22) in analogy with the extensively
studied case of noninteracting particles[1,22]. In the high-
frequency limit, the solution forc can be expanded in pow-
ers of the reciprocal of temperature frequency as

c = o
i=1

`
1

shvdi fist,x,ad s25d

with the periodic conditionsfist+2p ,xd=fist ,xd=fist ,x
+ ld and normalizatione0

l dx fiÞ0sxd=0. Substituting Eq.(25)
into Eq.(22) and collecting all terms with the same power of
1/v, we iteratively derive the set of equations(hereafter we
define8;d/dx)

]f1

]t
= kBTascostdf09,

]f2

]t
=

]

]x
SsU effd8f1 + skBT eff + kBTacostd

]f1

]x
D ,

]f3

]t
=

]

]x
SsU effd8f2 + skBT eff + kBTacostd

]f2

]x
+ gf1

]f1

]x
D

] . s26d

Thus, we obtain an infinite set of equations having the form

FIG. 3. (a) The spatial dependence of the effective temperature
T eff and (b) the effective potentialU eff−U effs0d for repelling par-
ticles and for different values of their densityn. Both the effective
temperatureT eff and the effective potential energyU eff are shown
in arbitrary units. The bare substrate potential is chosen asUsxd
=U rampsxd;sins2px/ ld+s1/2dsins4px/ ld+s1/3dsins6px/ ld. Mu-
tual repulsion of particles out of the potential wells causes the flat-
tening the “effective” potential with increasingn. The positions of
the maxima ofU effsxd coincide with the minima ofT effsxd, and vice
versa. This indicates thatT effsxd and U effsxd have opposite
asymmetry.
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]fi

]t
= Cst,f0, . . . ,fi−1d. s27d

The solution of theith such equation can be written, also by
iteration, as

fi =E
0

t

dt̃ C„t̃,f0st̃d, . . . ,fi−1st̃d… + Pisxd. s28d

This means that at theith stepfi is determined, apart from a
still unknown periodic functionPisxd. The functionPi can be
found at thesi +1dth step by imposing simultaneously the

time periodicity offi+1, the spatial periodicity ofPi, and the
normalization offi.

The frequency range where our perturbation technique ap-
plies can be estimated from the convergence condition

ufi+1u
hvufiu

! 1

of expansion(25). In view of Eq. (26) we get

FIG. 4. Same as in Fig. 3, but for attracting particles. The “ef-
fective” potential wells deepen due to particle clustering around its
minima. The effective temperatureT eff has a maximum whereU eff

has a maximum, and vice versa. The condensation of the attracting
particles in the potential minimax=xmin occurs asT effsxmind drops
to zero.

FIG. 5. Net velocityVdc versus densityn of repelling particles
for temperature(a) and rocked ratchets(b) with the substrate poten-
tial Usxd=U rampsxd defined in Fig. 3. The dash-dotted lines corre-
spond to the case of noninteracting particles, while the dotted lines
show the high-density limits. The inset in(a) shows the case of
two current inversions with increasing particle density for the tem-
perature ratchet with Usxd=sins2px/ ld+0.2 sins4px/ l −0.45d
−0.06 sins6px/ l −0.45d.

STOCHASTIC TRANSPORT OF INTERACTING… PHYSICAL REVIEW E 70, 061107(2004)

061107-7



v @ vc =
1

hl2
maxhDU eff,kBT effsxdj, s29d

where

DU eff = maxfU effsxdg − minfU effsxdg.

Moreover, there is one more restriction on the validity of our
perturbation scheme, namely,uf1u!f0, or equivalently

a ! hv
l2 minfT effsxdg

TDU eff . s30d

This constraint ona follows from the tendency of the system
to be close to equilibrium and, therefore, rules out large tem-
perature oscillations.

D. Net currents

The detailed calculations for the perturbation scheme out-
lined above are presented in Appendix B. Here we only re-
port our final result for the net particle current:

Jsn,v,Td =
kB

2T2a2

2v2h3SE
0

l

dx/f0DE0

l

dxS sU 9d2U8s4kBT + 5gf0d
skBT + gf0d3

−
2kBTsU8d3U 9s4kBT + 5gf0d

skBT + gf0d5

−
gf0sU8d5

skBT + gf0d7s6kB
2T2 + 10gkBTf0 + 3g2f0

2dD .

s31d

In the case of noninteracting particles,g=0, the expression
(31) coincides with earlier predictions—see Eq.(2.58) in
[1] for Tstd=Tf1+a cossvtdg. Moreover, the general behavior
of the net current is quite robust with respect to changing
the time dependence of the temperature; for instance, Eq.
(4.5) of Ref. [23], obtained forTstd=Tf1+a sinsvtdg2 and
g=0, differs from Eq.(31) by a mere multiplicative factor
of 4.

Now, the behavior of the rectified current(31) can be
studied for low and high particle densities. In the limitn
→0, Eq. (21) can be solved as

f0 = C expS−
Usxd
kBT

DF1 −
gC

kBT
expS−

Usxd
kBT

DG + OsC3d,

s32d

whereC is related to the particle density by

Csnd =
nl

P−1
+

gn2l2P−2

kBTsP−1d3 + Osn3d. s33d

Here we introduce the notation

Pm ; E
0

l

dxexpsmU/kBTd. s34d

Combining Eqs.(31) and (33) yields

Jsn → 0d = J1n + sJ2 − J3dn2 + Osn3d, s35d

where

J1 =

2a2lE
0

l

dxU8sU 9d2

v2h3P1P−1
, s36d

FIG. 6. Net average velocityVdc versus densityn of attracting
particles. Notation is as in Fig. 5 with the same substrate potential
Usxd=U rampsxd used in Fig. 3:(a) temperature ratchet;(b) rocked
ratchet. Here, the vertical dotted lines mark the critical particle den-
sity ncrit where the condensation takes place.
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J2 =

2a2gl2E
0

l

dxU8sU 9d2sP−2P1 − lP−1d

v2h3kBTsP1d2sP−1d3 , s37d

J3 =

a2n2l2gE
0

l

dxexps− U/kBTdf6sU8d5/skB
2T2d + 7U8sU 9d2 − 30U 9sU8d3/kBTg

2kBTv2h3P1sP−1d2 . s38d

The currentJ1 is not related to interaction and was earlier
obtained by Reimann[1]. In contrast, the currentsJ2 andJ3
are caused by the interparticle interaction and vanish forg
→0.

If e0
l dxU8sU 9d2 is close to zero, we expect that current

inversions may occur with increasing particle densityn. To
this purpose we must tune the potentialU so that the terms of
Eq. (38) proportional ton and n2 have opposite signs[see
inset of Fig. 5(a)].

Next let us consider the high-density limitn→`. The
solution of Eq.(21) simplifies to

f0 = n −
Usxd

g
+ Os1/nd s39d

with the assumptione0
l Usxddx=0, for an appropriate offset of

Usxd. In the first approximation in 1/n we obtain

Jsn → `d =
5kB

2T2a2

2v2h3g2l

1

n
E

0

l

dxU8sU 9d2 + OS 1

n2D . s40d

Note that the sign of the current is the same in the limitsn
→0 and n→` and is defined by the sign of the integral
e0

l dxU8sU 9d2.
As shown in Fig. 5(a), the net velocityVdc=J/n typically

decays rapidly with increasing density of the repelling par-
ticles. Such an effect can be easily interpreted considering
the dependence of the effective potential onn. Indeed, since
the repelling particles tend to expel each other from the po-
tential wells, the effective potentialU eff flattens out and this
suppresses the ratchet asymmetry(Fig. 3).

In the case of attracting particles, the situation is more
complicated because our perturbation approach loses its va-
lidity when the particle density approaches the critical value
ncrit corresponding to the equilibrium particle condensation.
However, for a ratchet substrate the net particle velocity de-
cays withn [see Fig. 6(a)], no matter what the sign ofg, in
the region where the perturbation technique is applicable.

IV. COLLECTIVE MOTION OF LOCALLY INTERACTING
PARTICLES IN A ROCKED RATCHET

In this section we study a class of ac driven ratchets com-
monly used, for instance, to rectify the vortex motion in
superconductors with artificially tailored asymmetric pinning
potential [8]. A gas of interacting particles in such rocked

ratchets is approximately described by the equation

]F1

]t
=

]

]x
SsU8 − A sinvtdF1 + kBT

]F1

]x
+ gF1

]F1

]x
D .

s41d

In analogy with the previous section, we introduce the
ansatzF1=f0+c for the solution of Eq.(41). Here, the equi-
librium particle distributionf0 is defined by Eq.(21) and the
perturbationc obeys the equation

h
]c

]t
=

]

]x
ScfsU effd8 − A sinvtg + gc

]c

]x
+ kBT effsxd

]c

]x
D

− Assinvtdf08, s42d

with effective potentialU eff and temperatureT eff defined in
Eq. (24). In the high-frequency limitv→`, one can itera-
tively approximatec by computing the expansion(25) term
by term. Such a perturbation approach is valid if condition
(29) for the drive frequency is satisfied and the drive ampli-
tude is restricted to sufficiently small values, that is,

A ! hv
lkB minfT effsxdg

DU eff . s43d

In order to calculate the net ratchet current in leading
order, all terms of the expansion(25) up to the fifth order
must be retained. Skipping cumbersome algebraic passages
(along the line of Appendix B), one arrives at the final result

Jrocked=
A2

v4h5SE
0

l

dx/f0D s j41 + A2j42d, s44d

with

j41 =E
0

l

dxU8sU -d2S1 +
gf0

2skBT + gf0dD ,
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j42 =E
0

l

dxS gf0U8sU 9d2

8skBT + gf0d3

−
gf0sU8d5skB

2T2 − 8gf0kBT + 6g2f0
2d

64skBT + gf0d7

+
gf0U8kB

2T2

2d4skBT + gf0d3D . s45d

Here,d denotes the effective distance

d2 =

4E
0

l

dxff0/skBT + gf0dg

E
0

l

dxfsU8d2f0/skBT + gf0d3g
. s46d

Qualitative interpretation

In contrast with the temperature ratchet, the net velocity
through the ac ratchet increases with increasing densityn
of the repelling particles[see Fig. 5(b)], with asymptotic
behavior

j41sn → `d < 1.5j41sn → 0d. s47d

In order to understand the physical origin of such behavior,
we recall that the effective potential acting on moving par-
ticles flattens with increasing density of the repelling par-
ticles.

This mechanism is illustrated schematically in Fig. 7(a)
where a typical effective potential at low(solid curve) and
high density(dotted curve) is drawn for the sake of clarity. If
the temperature and the amplitude of the ac force are low
enough, a running particle cannot overcome the potential
barriers for low particle density[solid curve, Fig. 7(b)].
Therefore, the particle(solid circle) remains trapped in a
potential minimum during the ac tilting of the potential[in
Fig. 7(b), the upper and lower panels show the effective po-
tential subject to maximum tilt both to the right and to the
left]. Thus, the current has to be very small.

However, the particle can overcome the lower potential
barriers of the effective potential corresponding tohigher
particle density(dotted curve), when the potential is tilted
[Fig. 7(b), a particle(open circle) can move to the left]. The
above behavior leads to the “activation” of the net motion for
highern. Thus, the dc net current is obviously enhanced with
increasing density of particles for small enough amplitudeA
of the ac force.

On the other hand, ifA is strong enough, particles can
easily pass through the potential barriers in the preferable
direction even for low particle density when the potential is
tilted [Fig. 7(c), upper panel, solid curve]. In such a case, a
particle (solid circle) moves easily to the left, while barriers
prevent the motion in the opposite direction[Fig. 7(c), lower
panel], resulting in an effective rectification. The suppression
of the barriers(associated with increasing the densityn of
repelling particles) stimulates the undesirable motion in the
direction which is opposite to the net current[Fig. 7(c),
lower panel, dotted curve]. With increasingA, this has to

FIG. 7. Schematics of then dependence ofVdc for a rocked
ratchet.(a) The original potential(solid line) and flatter effective
potential(dashed line) due to repelling interaction among particles.
(b) The small amplitude of the ac force, which tilts the effective
potential fromU eff−Ax (upper panel) to U eff+Ax (lower panel),
could not produce a net motion in the bare potential(solid line) at
low temperatures because of the potential barriers. However, the
suppressed barriers(dashed line) for a high density of repelling
particles can be overcome resulting in directed particle motion.(c)
At large amplitudes, the ac particle motion in the bare potential gets
rectified as the tilt is strong enough. Indeed, a particle(solid circle)
moves easily only when the potential is tilted toU eff−Ax [upper
panel in (c)]; the suppression of the barriers also activates a sub-
stantial particle flow in the opposite direction, thus reducing the
ratchet rectification power. For the attracting particles, the effective
potential deepens with increasingn. The dependence ofVdc on n for
attracting particles is discussed in the text.
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result in a change of the dependence ofVdc on the particle
density, i.e., from an increasing to a decreasing function ofn.
This is consistent with our calculations:Vdc contains terms
proportional to bothA2 andA4, which are responsible for the
change of the dependence of the net velocity on the particle
density[Fig. 5(b), solid and dashed curves].

For attracting particles, the potential wells deepen with
increasing particle density. In Fig. 7 this corresponds to the
modification of the effective potentialU eff from a dashed
(low density) to a solid(high density) profile. Thus, particles
(open circle), moving on the bare potential(low-density
case), get trapped by the deeper potential wells at higher
density[Fig. 7(b), solid circle, solid curve]; at smallA, the
net velocity diminishes in the case of attracting particles.
This is consistent with the results displayed in Fig. 6(b),
solid line; namely, the net velocity for the attracting particles
decays linearly withn for low values ofA, practically up to
n=ncrit. This behavior is associated with then dependence of
j41snd. At larger ac amplitudes, the growing potential barrier
stops the undesirable motion in the opposite direction with
respect to the net transport[Fig. 7(c), lower panel]. This
enhances the rectification as seen in Fig. 6, dashed line. In
other words, with increasingA the term proportional toA4

becomes important, thus resulting in the strong enhancement
of the net velocity forn→ncrit, as now the deepening wells
provide a more pronounced anisotropy in the system.

V. CONCLUSIONS

We have developed a perturbation scheme to study an
open system of interacting particles diffusing on an asym-
metric substrate. The net velocityVdc of locally interacting
particles maintained out of equilibrium by temperature oscil-
lations or external ac drives has been analyzed as a function
of the particle density in the high-frequency limit. We have
shown thatVdc diminishes with increasing density of the re-
pelling particles in a temperature ratchet, while it grows in a
rocked ratchet.

Our perturbation scheme is applicable to a system of at-
tracting particles, too, but for densities below a critical value
ncrit, when the nonideal gas of interacting particles begins to
condense at the bottom of the potential wells. In this caseVdc
decays with increasing densityn of the attracting particles at
small drive amplitudesA, while it may shoot up at large
enough drive amplitudes. The dependence ofVdc on the par-
ticle densityn has been related to the deepening of the po-
tential wells for attracting particles and to their smoothing
for repelling particles. The net flow of one(or more) species
of interacting particles in a periodic ratchet can thus be con-
trolled by varying their density.

The unusual dynamics observed in this system can be
understood in terms of the flattening of the asymmetric ef-
fective potential acting on the repelling particles and the
deepening of the effective potential wells binding the attract-
ing particles. These very different mechanisms suggest an
efficient control of the ratchet rectification process by tuning
the density of the interacting particles.
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APPENDIX A: NONLOCAL INTERACTION:
THERMODYNAMIC ANALOGIES

It is interesting to note that in the general nonlocal case
the equilibrium solutionf0 satisfies Eq.(8)

CsndexpS−
U

kBT
D = f0 expS 1

kBT
E

−`

`

dx8f0sx8dWsx − x8dD
or, equivalently, using the “free energy”F0sxd,

F0sxd = Usxd +E
−`

`

dx8Wsx − x8dexpS−
F0sx8d

kBT
D

− kBT ln Csnd, sA1d

with

f0sxd = expS−
F0sxd
kBT

D .

Introducing the “effective entropy”Ssxd through the identity

f0sxd = CsndexpS−
Usxd − kBTSsxd

kBT
D ,

Eq. (A1) for F0sxd can be rewritten as

Ssxd = −
Csnd
kBT

E
−`

+`

dx8eSsx8de−Usx8d/kBTWsx − x8d

= −
Csnd
kBT

E
−`

`

dx8eSsx−x8de−Usx−x8d/kBTWsx8d. sA2d

Equations(A1) and(A2) for the effective free energy and the
entropy are nonlinear and nonlocal because of the particle
interactions. Note that the effective free energyF0sxd and
entropySsxd satisfy the usual thermodynamic relation

F0sxd = Usxd − kBTSsxd.

APPENDIX B: TEMPERATURE RATCHET:
A HIGH-FREQUENCY EXPANSION

In this appendix, we show how our iterative procedure for
calculating the one-particle distribution functionF1 and the
probability currentJ can be carried out for a temperature
ratchet in the high-frequency limit. Integrating the first equa-
tion of set(26), for the distribution function in the first ap-
proximation we get

f1 = kBTassintdf09 + P1sxd,

where the still unknown periodic functionP1sxd is normal-
ized to zero,e0

l dx P1=0. Substituting this equation forf1
into the second equation of set(26) yields an equation for the
second coefficient of expansion(25), namely,
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]f2

]t
=

]

]x
hkBTassintdf09sU effd8

+ fkBT effsxd + kBTacostgkBTassintdf0-j

+
d

dx
fP1sU effd8 + kBT effP18g + kBTascostdP19.

The right-hand side of the last equation must contain only
zero-mean time-oscillating terms, lest the functionf2 in-
creases with time and eventually exceedhvf1 andh2v2f0,
thus breaking the perturbation scheme. Setting to zero the
secular terms leads to an equation forP1,

P1sU effd8 + kBT effP18 = − j1,

with the integration constantj1 being a probability current.
Taking P1 as P1sxd=Bsxdf0sxd / skBT+gf0d, we obtain B8
= j1/f0.0. Now, if j1Þ0, thenB monotonically increases
and the functionP1sxd becomes aperiodic in space. This con-
flicts with the condition of spatial periodicity ofP2. There-
fore, we come to the conclusion thatj1=0, i.e., B=const.
Moreover, the functionP1sxd=Bf0sxd / fkBT+gf0sxdg satis-
fies the conditione0

l dx P1=0 only if we takeP1sxd;0. As a
result, the equation forf2 (with P1 identically zero) takes the
form

]f2

]t
= kBTassintd

d

dx
ff09sU effd8 + kBT efff0-g

+
1

2
kB

2T2a2ssin 2tdf0-. sB1d

Integrating the last equation overt yields the following ex-
pression forf2:

f2 = − kBTascostd
d

dx
ff09sU effd8 + kBT efff0-g

−
1

4
kB

2T2a2scos 2tdf0- + P2. sB2d

The time-independent spatially periodic functionP2 and the
probability currentJ2= j2/v2h3 can be obtained only by
working out the equation forf3, i.e., retaining all the terms
up to order 1/v2:

]f3

]t
=

]

]x
FS− kBTacostff09sU effd8 + kBT efff0-g8

−
1

4
kB

2T2a2 cos 2tf0- + P2DsU effd8 + kBsT eff

+ Tacostd
]

]x
S− kBTacostff09sU effd8 + kBT efff0-g8

−
1

4
kB

2T2a2 cos 2tf0- + P2D + gkB
2T2a2 sin2 tf09f0-G .

Integrating the equation above withP2=0 would generate
undesirable aperiodic terms which increase linearly with

time. Therefore, we must determine an appropriate function
P2 in order to avoid breaking our perturbation scheme. We
start deriving an equation forP2 of the form

d

dx
SP2sU effd8 + kBT effP28 −

kB
2T2a2

2
ff09sU effd8 + kBT efff0-g9

+ g
kB

2T2a2

2
f09f0-D = 0.

The last equation implies that

P2sU effd8 + kBT effP28 = − j2 +
kB

2T2a2

2
ff09sU effd8 + kBT efff0-g9

− g
kB

2T2a2

2
f09f0-, sB3d

where the current termj2 does not depend onx. RewritingP2
as

P2sxd =
Dsxdf0

skBT + gf0d
,

Eq. (B3) yields

Dsxd =E
0

x dy

f0syd
SkB

2T2a2

2
Hff09sydsU effd8 + kBT efff0-sydg8

−
g

2
ff09sydg2J8

− j2D + D0. sB4d

Now the currentj2 is determined by the condition thatP2 is
a spatially periodic function[i.e., Dsxd=Dsx+ ld], while the
constant D0 can be calculated from the condition
e0

l dx P2sxd=0. Using the relations

U eff = −
kBTf08sxd

f0sxd

and

]f0

]T
=1− ln f0sxd +

E
0

l

dyff0 ln f0syd/T effsydg

E
0

l

dyff0syd/T effsydg 2 f0sxd
T effsxd

,

sB5d

an explicit expression for the probability currentJ
= j2/v2h3 follows immediately:

J =
kB

2T2a2

2v2h2SE
0

l

dx/f0DE0

l dx

f0
FS− kBT

f08f09

f0

+ skBT + gf0df0-D8
−

g

2
sf09d

2G8
+ Os1/v4d.

Long algebraic manipulations yield the final result for the
current, Eq.(31), reported in the text.
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