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Stochastic transport of interacting particles in periodically driven ratchets

Sergey Savel'ev,Fabio Marchesoni? and Franco Noti®
Frontier Research System, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-0198, Japan
“Dipartimento di Fisica, Universita di Camerino, 1-62032 Camerino, Italy
3Center for Theoretical Physics, Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1120, USA
(Received 2 May 2004; revised manuscript received 2 September 2004; published 23 Decemper 2004

An open system of overdamped, interacting Brownian particles diffusing on a periodic substrate potential
Ux+1)=U(x) is studied in terms of an infinite set of coupled partial differential equations describing the time
evolution of the relevant many-particle distribution functions. In the mean-field approximation, this hierarchy
of equations can be replaced by a nonlinear integro-differential Fokker-Planck equation. This is applicable
when the distanca between particles is much less than the interaction lergtte., a particle interacts with
many others, resulting in averaging out fluctuations. The equation obtained in the mean-field approximation is
applied to an ensemble of locallp<\ <I) interacting(either repelling or attractingparticles placed in an
asymmetric one-dimensional substrate potential, either with an oscillating tempetataperature rachgor
driven by an ac forcérocked ratchet In both cases we focus on the high-frequency limit. For the temperature
ratchet, we find that the net current is typically suppregsedan even be invertgdavith increasing density of
the repelling particles. In contrast, the net current through a rocked ratchet can be enhanced by increasing the
density of the repelling particles. In the case of attracting particles, our perturbation technique is valid up to a
critical value of the particle density, above which a finite fraction of the particles starts condensing in a
liquidlike state near the substrate minima. The dependence of the net transport current on the particle density
and the interparticle potential is analyzed in detail for different values of the ratchet parameters.
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[. INTRODUCTION important phenomena such dgnamical phase transitions

The transport of particles moving out of equilibrium in an @ Well ascompetition between thermal fluctuations and
asymmetric substrate potential has been studied intensiveRA'ticle-particle interaction in stochastic transpofiave not
for a variety of different systemd,2] in order to achieve an | et been investigated analytically. This is a major limitation
efficient control of the net particle flow. Various realizations MPosed by the key theoretical tool employed by most au-
of rachet systems working out of equilibrium have been proth0rs, namely, the linear Fokker-Planck equation, which de-
posed involving different rectification mechanisms, like tem-Scribes well only the nonequilibrium diffusion of a single
poral temperature oscillatiorfsemperature ratch¢8)), zero- Brownian p_artlcle or, equwale_ntly, of a system of honinter-
average sinusoidal ac forcea tilted or rocked ratchd#]), acting part_lcles. Therefore, this fundamental equation must
stochastic and deterministic fluctuations of the ratchet pote pe generalized to address the transport properties of interact-

: : ) "ng particles.
tials [5], among others. The ensuing net de d(lﬂge So- On combining stochastic and Bogoliubov kinetic tech-
called ratchet current or rectification effeadbccurring in

g . . niques, in Sec. Il we develop a closed-form statistical ap-
these systems is important for several biological motors a§ gach based on many-particle distribution functions, to de-

well as for some technological applications; e.g., for particlescrine the net transport of interacting particles moving on
separation techniqugs], smoothing of atomic surface dur- periodic asymmetric substrates subject to fluctuating forces.
ing electromigratior{7], and superconducting vortex motion |y the mean-field approximation, where a two-particle distri-
control [8,9]. bution function is approximated by the product of the two
The dc particle current can be controlled to some extentelevant one-particle distributions, a nonlinear Fokker-Planck
and even inverted, for instance, by changing the frequency afquation is derived. We apply this equation to a system of
the ac drive or tinkering with the shape of the asymmetridocally interacting particles, which is kept out of equilibrium
potential [1,2,10—neither one a simple procedure under by high-frequency oscillations of either the temperature or an
many experimental circumstances. Indeed most asymmetriexternal deterministic ac force.
substrates are fixed. Moreover, until recerjtlyL,12, inter- For the case offepelling particles in a temperature ratchet
particle interactions a central feature in most physical sys- (Sec. lll), the net particle drift isuppressedvhen raising the
tems, have been neglected in almost all theoretical studies grarticle density. In contrast, the rectified current of a rocked
ratchet transpoiftl3] or, on rare occasions, only tackled nu- ratchet(Sec. IV) increaseswith the density of the repelling
merically[8,14]. For instance, one-dimensiordD) numeri-  particles as long as the drive amplitude is relatively small.
cal simulationg14] of an assembly of hard-core rods show In the case ofattracting particles, the perturbation ap-
quite unusual stochastic transport properties, including curproach of Sec. Il applies for increasing particle densities until
rent inversion with varying particle density and commensu-the particles startondensingn the potential wells. The net
rability effects when the ratio of the particle size to the sub-particle velocity diminishes with increasing particle density
strate unit length is a rational number. It follows that manyfor both the temperature ratchets and the rocked ratchets
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driven at small ac amplitude. However, the drift current
through a rocked ratchet can be strongly enhanced with in- E[Nl(“'m) - Ni(9)]
creasing particle density at larger drive amplitu@esc. V).

Such an unusual behavior can be qualitatively explained _n s o -
in terms of the flattening of the asymmetric effective poten- - _<2 X=X (t+AD) - 2 5(X_X‘(t))>
tial acting on the repelling particles and the deepening of the
effective potential wells binding the attracting particles. 9 E 5(%-%) A(X;)
These opposite mechanisms suggastefficient control of - (X =)
the ratchet rectification process by tuning the density of the
interacting particlesThe latter has recently been experimen-
tally implemented for the control of the motion of supercon-
ducting vortices in microstructurg45s.

EﬁXW(X. Xj) = F(t))

i j#i i

3

Note that in Eq.(2) we have retained the stochastic contri-
Il. THERMAL Dm;igﬁgl_gg INTERACTING butions up to second order it. However, after ave_raging
over noise, such apparently next-to-leading corrections gen-
A. Temporal evolution of many-particle distributions erate additional first order terms in E@). The reason for
Let us consider an open systemNfpointiike Brownian that is the &-like noise autocorrelation function, which, in
particles interacting with each other via the pairwise potenVIeW of the time discretization, corresponds 0 a zero-mean
stochastic noise with amplitude of the order\@&kg#,T/At.

tial W, with the su_bstrate through the asymmetnc perlOOI'CPhysmaIIy At can be regarded as the smallest time scale in
potent_lalu, and thh a homogeneous fa)fte_rnalaﬂeld COMe“the problem, say, the mean collisional time of the particle
sponding to the time-dependent deterministic fdf¢e. The  gas. In the limitAt—O0 the amplltude of the random force
environment exerts on each particle an independent GaUSS'@"\/erges keeping the quantity’ ')5')>At constant16].

random force with zero mean and intensity controlled by the |, "5 der to treat the part|c|e motion as a stochastic
temperaturer. In the overdamped regimevhere inertia i rqcess we introduce the set of many-particle distribu-
negllglble compe}red to the viscous d.ampm@e Langev_ln tions Fy(t,Xy), Fa(t,Xy,%), ... Fn(t.%0, ... Xy). Here, the
equation describing the thermal diffusion of fitle particle is s-particle distribution F(t,%,,... X) defines the particle

UK number density forany s with s<N, elemental volumes
1

- -3 W(X| %)+ F(t) + V2 ks TED (D), (X, X +d%], ... [Xs, Xs+dX] at timet. On normalizing each
K iz 0% Fs to the numbeiN(N-1)---(N-s+1), one obtains an iden-

(1) tity relating Fs to F¢ 4, i.e.,

where X(t)=(x(t),yi(t),z(t)) is the position of thdth par- 1
ticle at timet, £9=(&'(t),£(t), £ (1)) is the random force Foa(t,Xy, ... ,>zs_1):N_—S+l f dXF(t, %y, ... X9, (4)
acting on it,x; = dX/dt,  is the viscous coefficient, arlg is

the Boltzmann constant We further assume the fluctuation- o _
dissipation relat|or(§ O)é”(t)> 8(t)8,48,;, Where 8(t) is with Fo=1 and the spatial integration taken over the whole

the Diracé function, ands, anch,, are Kronecker symbols. SPace accessible to the particles. Multiplying E8). by Fy

This set of dynamical equations has been effectivel)f’md integrating over all variableg, ... Xy lead to the fol-
simulated in several numerical studiege, for instance, Ref. |0Wing equation for the one-particle distribution functiby

[8]). It takes some nontrivial algebraic manipulations to cast
them in an analytically tractable form. For this purpose let us F(tR) 4 [(au(*)

consider the time evolution of the microscopic particle dis- P (9—)? — - F(t)) l(t,)?)]

tribution A; =35 (X—X;(t)); for a small time increment, X
. . (x X')
Ni(t+ A1) = X 8(X - %t + At)) = > 8(X - X(t) — XAt) + ¢ | IXFatXX P
i i
PF(t,%)
(X — X%(t EERAS A
~ E (X~ %(1) - E ( ( D3a T ©
This equation forF,(t,X) does not completely specify
kBTE Mél)é (A1)?, (20 Fi(t,X), because the interaction term involves the pair distri-
n T OX0Xg b bution functionF(t,X,X’). The required additional equation

for F, may be derived by considering the time evolution of
where summation over repeated indieess is understood.  the ‘microscopic pair  function Ap=3 . 8(X~%(1) (X’
Averaging over the stochastic variablg8 and inserting the —X(t)). Following the approacli2)«5) outlined above, the
|dent|t|es<§()> 0 and<§(')é')) S5/ At yields equation for the evolution of tha/, can be written as
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with the N—1 surrounding particles—which are expected to

Y
E[Nz(“'m) = Na(1)] be nonuniformly distributed in space. Thus, the total mean-
field potentiall/™ reads

p R,
_0_?[% AX=X)AX =) UML) = u(>?)+fd>?’W(i—>?’)F1(t,i’). 9)

X(&u(}i) S aW(xL X) ﬁ(t))] Note that the nonlocal Eq8) for F; is nonlinear. This may
IXi 1#i IX; account for equilibrium and dynamical phase transitions
(e.g.,[18]) which are otherwise impossible to obtain through
+ %[E S(X=%)O(X = X,) the standard linear Fokker-Planck equatjaf,17.
i#]
&Z/I()?j) ﬁW()?j -%) - B. Validity of the mean-field and local approximations
oK + = % —F@® We discuss now the conditions under which we can intro-

P g S 57— %) 6K - & locality in the integro-differential Fokker-Planck equation
+keT P + XX, SX-%)8X" =%), (6 (8) For simplicity we do this in the 1D case and for a peri-

7 odic substrate potentidl(x)=1/(x+1) with spatial period.
and correspondingly fof, In general, we can express the binary distribution function
R F,(x,x’,t) as follows:
Fy, a0 L[ UK WVX-X) -
U a—i{Fz(t, , ( x T m F(t)> Fa(x,X',t) = F1(6 HF (X, )G(X = X', x + X',1),  (10)
IN(K ~ i")] where the functiorGl describes the' statistical'(.:orrelation be-
+jd>*<"|:3(t,>2,>2’,>2")—a tween the two particles in the joint probabilify,(x,x’,t).
28 The characteristic length scale of the one-particle distribu-
P [ o (&u(i’) VK -%) - ) tion function F4(x,t) is of the order ofl (I is the period of
+— | Fat,x,X' -+ = -F(t) the potential energy This can be seen in the equilibrium
X case with either weak or zero particle-particle interaction,
R WX =X where F, is a Boltzmann distributionfF; «exg—(x)/T].
+ J dX"Fs(LX,X',X")T Also, this is easy to check for the particle distributions ob-

duce the mean-field approximation and/or ignore the non-

tained in the following sections. On the other hand, for small

particle densities\ <1 (n is the average particle density in

i + i)Fz(t,)?,)?’). (7)

N
XG0y OX,0X,,

1D) and far from the condensation transition discussed be-

low, the functionG decreases on a length scale of the order

The sets of Eqs(5) and (7) are still insufficient to fully  of the interaction radiua, whereW is appreciably different
determineF,, and therefore;, as now there appears the from zero. Indeed, in this limitG was estimated12] to be
three-particle distribution functiofs, as well. Therefore, in  Gxexgd-W(x-x')/T]. For higher particle densities\>1,
analogy with Bogoliubov’s hierarchy of the many-particle the average distanca=1/n between particles becomes
distribution function equations used in physical kinefit®],  smaller thar\ and the correlation between any two particles
only the entire set oN equations forfF,, ... ,Fy would be  gets suppressed on length scales of albeut/n. Therefore,
truly closed, but it would also be mathematically untractablewe can assume that

Nevertheless, such a statistical approach provides a hier- ) N
archy of useful approximations, when the set of the first G =1 for [x—x'| > min{n™*\}. (11)
equations is suitably truncated. The simplest mean-field aNysing Eq.(11) for n\>1, we obtain
proximation is obtained by replacing the pair distribution
function F,(t,X,X’) with the product F,(t,X)F,(t,X") of , )
the two corresponding one-particle distribution functions; fdx Falt,xX)
hence we get the nonlinear integro-differential Fokker-

INW(x—=X")

Planck equation: =Fy(t,%) f dx'Fl(t,x’)G(x—x’)—&W(;_X)
9F4(t,%) a{ { p) ( f L
——— = Rt | UX) + [ dXW(X-X) -x
ot X ! X ~ F4(t,%) dX’Fl(t,X’)M
R F.(t, xx'[>as
XFlﬂX')) - F(t)} + kBTM}- (8) INV(Xx—=X")
X ~ F4(t,%) f dX F(tx) =, (12)

The physical interpretation of the last equation is that a par-
ticle at pointx is affected by both the bare substrate potentialvherea* ~a. The third and fourth relations of E@¢12) are
U and an effective potential that reproduces its interactiorevidently valid if a<\. Thus, in this limit, Eq.(5) can be
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u , action potentialV(x—x’) to be smaller than the scdlef the
°] 2] substrate potentidl(x). This allows us to approximate the
vol * ' ; mean-field potential as follows:
3 . High U™(x,t) = UX) + J dX W(x - X' )F(t,x")
= N density /. Low
% \ ’ .
X N ) density
0] N //k_\J =~ U(X) + F1(t,x) f dX'W(x=x")
N 7/
0.5 AN 7
N J =U(X) + gF4(t,x)
— a/A=0.125, \\ ,/ —_— a/(=0.125, with
q=0, T=0.1 AN / g=1,T=02
----ah=25, NN I —— a/A=0.125,
q=0, T=0.2 g q=0, T=0.2 g= | dXW(x-X). (13
0.0 T L A | T T T L . . . . .
1.0 05 (0.0)/ 05 10 As a result, we obtain the partial differential equation
X-X')I\
5F1 Jd ol ('}Fl F?Fl
FIG. 1. (Color onling Deviation of the statistical correlation T T F1 PV F(t) |+ kBT(t)&_ +9F1&_ ,
function G from its uncorrelatedmean-field value G=1, versus X X X
distancex—x’' between particles, normalized by the interaction (19

length \. The interaction was taken a&/(x)=g(A—|x|)/\%, while L . . L
the substrate potentid(x/1) is shown in the inset. The downward which, in View of our Previous dISCUSSIOn.’ is valitil] when
arrow in the inset marks the=0 position wheres(x-x';x=0) was the average_mtgrpartmlg distanee 1/_n is much _smaller
numerically computedG substantially differs from 1(its mean- than the particle interaction length which, in turn, is much
field valug over distancesx—x'|~a, when the average distance §maller than the unit cell periddof the substrate potential:
a=1/n between particles is much smaller thanin the opposite  I-€-
limit a>X\ (shown by the dashed lipewe obtainG<1, on scales _ 1
|x=X"| <. (This resu)llt depends on rD:either temperature nor the sub- asnr<i<l (15
strate potential/ in the range of parameters studied. Thus, we haveThis mean-field equatiofiL4) is analyzed in the forthcoming
numerically verified Eq(11), which is used for the derivation of the sections for both temperature and rocked ratchets.
mean-field approximation. Note that, if the inequality15) regarding the particle-
particle interaction is partly reversedl,<n"'<lI, then Eq.
(5) could still be handled in terms of E¢L4) after introduc-
ing the effective interaction strength

reduced to its mean-field form E¢B). Here, we assume that

the contribution to the integral on the length scale of iy

negligible, which is correct for many families of interaction

potentials[e.g., potentials that do not diverge at zero dis- cereened. ) , , ,

e, =0}/ =0 g [ oV x)Gi-xxex) (19
Thus, the assumption th@&=1 for A=|x-x'|>a is the

crucial one for the applicability of the mean-field approxima-to account for screening effects. Therefore, approximating

tion (see alsd19]). This means that a particle interacts with g°**"*%to a spatial constant yields a qualitative description

many other particles resulting in averaging out the local fluc-Of the nonequilibrium behavior of the system even in param-

tuations of individual particle-particle interactions. Even eter domains where the mean-field approximation is formally

though\/a=n\> 1 is a standard condition for the validity of invalid.

the mean-field approximatiof20], we have performed nu-

merical simulations of the Langevin equati(ﬁ) in order to IIl. COLLECTIVE MOTION OF LOCALLY INTERACTING

obtain numerical evidence for qu.l) As we eXpeCted, Flg PARTICLES IN A TEMPERATURE RATCHET

1 shows thats is significantly different from 1 in the region

[x=x'| <\ for low particle densities\ <1 (dashed curve in In this section we consider how local interparticle inter-

Fig. 1). In contrast to this, in the region\>1, where the actions influence the net current in a 1D ratchet system held
mean-field approximation is valid, the functi@is close to  out of equilibrium at a temperature that oscillates in tif8g
1 for [x—x'| >a in Fig. 1. This important property does not Note that this type of ratchet is a typical realization of the
strongly depend on the shape of the substrate potential arf®-called Brownian or molecular motors where the directed
temperature. Thus, the contribution to the effective potentiamotion is not related to any deterministic forfie(t)=0 in
(9), associated with interparticle interactions, comes fromEg. (14)]. This unusual net transport occurs via rectification
the regiona<|x—x'| <\, where the approximatioll) is  of nonequilibrium fluctuations induced, e.g., by temperature
valid. This proves the applicability of the mean-field ap- oscillationsT(t). Note that temperature ratchets seem to be
proximation. used by living organism§21]: some microorganisms living

In order to make the problem more tractable, we furtherin hot springs can extract energy out of regular thermal varia-
discard nonlocal effects by assuming the seats the inter-  tions. In artificial devices thermal variations could be gener-
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ated by electrical current oscillations via Joule’s heating or | ... ‘
via pressure oscillationgl].
The starting point of our analysis is the nonlinear Fokker- 1.0
Planck equation for the sinusoidal temperature ratchet —_
(=} :
< i
F, 9 ( i/ IF; aF1> = 16
—=—|F—tkgT)—+gF— |, (@ N 1
ﬂat x\ L B()axglax (17) —
. h O 5' ,,,,, s’- 8 q)O(er<x)
" s v . ?/"(Xmi")
T(t)=T(L+acoswt), a<1. (18) 1/ 0 — >
. ¢O(Xmax) q)o(xmin) q)o
For convenience, hereaftdr denotes the average tempera- 4 L
ture, i.e., 0 ' ' 0 6 9
® 27w 0
T=— T(t)dt.

FIG. 2. Graphical solution of the transcendental equatii)
for a subcritical density of attracting particles. With increasing den-
In the general case, an analytical study of By) is too  sity of the particles, both valuegg(Xmin) and ¢o(Xmay) increase.
complicated. However, if the period of the temperature osHorizontal dotted lines represe@(dy)=Z(dy(Xmin)=Ce¥" keT
cillations 2/ w is much shorter than the other characteristic(uppe) and Z(¢o) =Z(do(Xma)) =Ce X" 6T (lower), respectively.
time scales in the problem, then the particles cannot adjust t8s soon asZ(¢y(Xmin)) reaches the maximum value nidxe)]
the varying temperature, but rather experience an averagé<BT/e|g|, the transcendental equation admits no solution and a
effect due to the temperature oscillations. Thus, it is reasorphase transition occurs. Note that the decreagiy) branch is
able to expect that the system relaxes close to the equi|iblnstab|e. As shown in the inset, one can always find the solution to
rium state Corresponding to the average tempera‘[ufﬁqis Eq (21) for repelling particles Sincz(¢0) is a monotonic increas-

27T0

equilibrium solution izn(gzﬁf)unction of ¢p. We used|g|/kgT=+0.3 to plot the function
0 .
Fi(x,a=0) = ¢ = ¢o(x) (19
satisfies the nonlinear equation C(n)exp(— M) < kLT_
kT elg|
U' (X) o + g¢o% + kBT% =0, (20) Here, e is Euler's number2.71..). Indeed, the functional
dx dx Z(¢y) computed at the minimum,, of U(x), Z(bo(Xmin)),

which can be solved in implicit form, approaches its maximum value
kgT

Ux) g maxZ(gg) = ——

Clmexp| == — | = doexp| | = b | = Z(do), do elg|

° ® as the particle density increases. In other words, more and

(21) more particles accumulate negy,,, which in turn attract

where the constar@(n) is determined by the normalization additional part?cles from even further away. Eventu_ally, thg
particle attraction wins over the random thermal noise. This

condition - ) !
occurs at a critical valuey,; of the particle density when
[ Z(po(Xmin)) €QUals the maximum valug( o) =kgT/€lg|. At
f dx ¢o(x) =nl, higher densities the equilibrium distributig@1) cannot be
0 sustained any longer; thermal noise cannot preventatime

densatiorof a finite fraction of the nonidedlnteracting gas
particles into the liquidlike phase at the bottom of the poten-
tial wells. Therefore, the analysis presented below is not
valid for n>n.;. Note that such a phase transition is not
related to the nonequilibrium condition of the system; more
exciting dynamical phase transitions due to the interplay of
. nonequilibrium and nonlinearity will be revealed by solving
A. Condensation the Fokker-Planck equatiofl7).

Here, one can see howonlinearity produces a phase
transition Equation(21) always admits a solution if the par-
ticles repel each otheg>0 (see Fig. 2, ins¢t However, in
the case of attracting particleg<0, the transcendental Eq. The equation for the perturbation correctiaf= y(x)
(21) has a solution only ifsee Fig. 2 =F,- ¢, from the equilibrium statep, is

wheren is the particle density anldis the substrate unit cell.
The equilibrium distributiong, coincides with the usual
Boltzmann distribution if the particle interaction is switched
off, g=0. In Appendix A, we study Eq20) in the presence
of nonlocal interactions.

B. Effective potentials
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ap 1 g At
_w:__<¢ v

+gy— + [kgT *(x A ™
It nw IX dx gz[/ﬁx keT =) /I ‘.‘ // “
o~ \ o~ p
d keTa d? - /7 ; g
+ kBTa(COST)]—w> + 22 cow(ﬂ) (22) 6 ) i \ __,/
X nw dx® s \ ,’ (a)
* Io . o
where 7= wt is the dimensionless time, while the effective A g/(kBT) =1,
potential and temperature are defined as - k.T=1
4-
U () =U(X) + gebo, @23 %
keT (%) = ks T + g (24) L
These equations can be qualitatively interpreted if we sepe 21 n .
rate the running particles, a relatively small fraction of about ¢ TN em=t N
[(X)|/ po(x) at the pointx, from those trapped at the sub- S
strate minima. The moving particles experience the potentie
U°" generated by both the substrate and the trapped pa 0.0

ticles.

In the case ofepulsiveparticle interaction, such an effec-
tive potential is smoother than the bare substrate potentic
(see Fig. 3because the particles occupying the bottom of the
potential wells tend to repel the running particles away from 14
the potential minima.

In contrast to this, with increasing density aftracting
particles, the wells of the effective potential grow even g
deeper than the substrate wellBig. 4). Note that the S e
particle-particle interaction also induces a spatial dependenc 0¥
of the effective temperature, which implies a spatial depen E
dence of the diffusion constant of the running particles. The
effective temperature and potential exhibit the same asymr ==~
metry for the case of attracting particles, meaning tha >
the positions of their maxima and minima coincide. In this% 1
respect, we say thator repelling particles the effective T

temperature and the effective potential have opposite asyn
metry.

0.0

C. Perturbative approach

Next we develop a perturbation approach to study the ] _
time dependence of Eq22) in analogy with the extensively __FIG- 3. (8 The spatial dependence of the effective temperature
studied case of noninteracting partickis22. In the high- | and(b) the effective potentialf ®~/*'(0) for repelling par-
frequency limit, the solution fogy can be expanded in pow- :gﬁ;e?;ﬁjge?f'f;irgrt';gﬂ#ﬁi@;ﬂi{eﬂﬁgfggfgt;eftfh:reeﬁc;xﬁ
ers of the reciprocal of temperature frequency as in arbitrary units. The bare substrate potential is choset/(ag
® =Y "MAX) = sin(2mx/1)+(1/2)sin(4mx/1) +(1/3)sin(6mx/l).  Mu-
2 ¢|(T X,a) (25) tual repulsion of particles out of the potential wells causes the flat-
i=1 tening the “effective” potential with increasing The positions of
the maxima ot/ €(x) coincide with the minima oT €(x), and vice
with the periodic conditionsg;(7+2,X) = ¢(7,X) = ¢i(7,X

versa. This indicates thaf ®f(x) and ¢/¢f(x) have opposite
+1) and normalizatiorﬂ)dx bi+0(x)=0. Substituting Eq(25)  asymmetry.

into Eq.(22) and collecting all terms with the same power of
1/w, we iteratively derive the set of equatiotiereafter we

- d J J 1%
define’ =d/dx) % = a_x<(” *M) p + (kgT "+ kBTaCOST)aiXZ + gdn%)
% =kgTa(cosT) ¢y,
(26)
0(9;452 ((u °M)’ ¢y + (kg T *"+ kgTacos7) ¢1>
N

Thus, we obtain an infinite set of equations having the form
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FIG. 4. Same as in Fig. 3, but for attracting particles. The “ef-
fective” potential wells deepen due to particle clustering around itsf
minima. The effective temperatufie®™ has a maximum wher ©ff or
has a maximum, and vice versa. The condensation of the attractin
particles in the potential minima=xy, occurs asT f(x;,) drops

to zero.

9% (5, o

P - Bing).

FIG. 5. Net velocityVy; versus densityr of repelling particles
temperaturga) and rocked ratchet®) with the substrate poten-
tial U(x)=U "M x) defined in Fig. 3. The dash-dotted lines corre-
ond to the case of noninteracting particles, while the dotted lines
show the high-density limits. The inset (i@ shows the case of

two current inversions with increasing particle density for the tem-

perature ratchet

-0.06 sit6mwx/1-0.45.

(27)

with 24(x)=sin(2mx/1)+0.2 si4mx/1-0.49

The solution of théth such equation can be written, also by time periodicity of¢;.,, the spatial periodicity oP;, and the

iteration, as

b= | VG, )P (29
0

normalization ofg;.

The frequency range where our perturbation technique ap-

This means that at thi¢h step¢; is determined, apart from a
still unknown periodic functior?;(x). The functionP; can be
found at the(i+1)th step by imposing simultaneously the of expansion25). In view of Eq.(26) we get
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1 0 et 10 :
0 > w.= E: max AU " kg T €"'(x)}, (29 (a) :
7 .
a :
S =
where :
&m :
AU = max{s *(x) ] - min[e/ #T(x)]. 'ii 81
O .
~ :
Moreover, there is one more restriction on the validity of ourfv-,t :
perturbation scheme, name|y,| < ¢,, or equivalently ~ :
s} ] 9/(k;T)=-0.3, ;
12 min[ T ®f(x)] i k.T=1 :
a<< nww (30) ‘TQ B
™ :
This constraint ora follows from the tendency of the system y
to be close to equilibrium and, therefore, rules out large tem 4
erature oscillations. T v
P 0.0 02 , 04 0.6
D. Net currents 8 —
The detailed calculations for the perturbation scheme out ®) i
lined above are presented in Appendix B. Here we only re: .
port our final result for the net particle current: H :
Vo
122 (1 (U (BT +5 ~_ 6 v
InwT)= B f ( )(k $+B J )sg%) < L
2w2713<f dx/¢0> 0 sl T 9% ~ ] E
0 e ',' :
_ 2kgT(U')°U "(4kgT + 5g¢b) 8 4] .~ i
(kT +g¢bo)° ? . ] :
' = A S
! N \\ - H
- 90U et 10gksTo + 3g2¢§)> . Se-o-- - :
(kT +gebo) A =100 :
31 :
- b0 02 _ o4 os
In the case of noninteracting particless0, the expression ) ) n ) )

(31) coincides with earlier predictions—see EH@.58 in
[1] for T(t)=T[1+acoqwt)]. Moreover, the general behavior FIG. 6. Net average velocityy. versus densityr of attracting
of the net current is quite robust with respect to changingParticles. Notation is as in Fig. 5 with the same substrate potential
the time dependence of the temperature; for instance, E(X)=U"™Xx) used in Fig. 3:(&) temperature ratchetb) rocked
(4.5) of Ref. [23], obtained forT(t)=T[1+a sin(wt)]? and ratchet. Here, the vertical dotted lines mark the critical particle den-
g=0, differs from Eq.(31) by a mere multiplicative factor SIY Nerit Where the condensation takes place.
of 4.

Now, the behavior of the rectified curre®1) can be
studied for low and high particle densities. In the limit Here we introduce the notation

—0, EQ.(21) can be solved as I
II,= J dx exp(mU/kgT). (39

U(x) gC U(x) 5 0

$o=C exp(— E) {1 kgT exp<— keT +0(C), Combining Eqgs(31) and(33) yields
(32 J(n— 0) =J;n+ (I, - Jyn* + O(nd), (39
. . . where
whereC is related to the particle density by |
| . 2a?l f dxu’ (U")?
n nAl <1

cm=—-+ 322 o), (33) J=— (36)

L, keT(ILy)° W?p I,
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|
2azg|2f dXZ/[,(Z/[ ”)2(1_.[_21_[1 - IH_J_)
0
Jo= , (37)
? W PkgT(I) (1)

|
a%%@Jdxwﬂﬁﬂ@nm@mwwg%+nmunheaﬂ@mW@ﬂ
0

J.= . 38
s DT I(ILy)? (38)

The currentJ; is not related to interaction and was earlier ratchets is approximately described by the equation
obtained by Reimanfil]. In contrast, the current$, and J;
are caused by the interparticle interaction and vanishgfor

—0. oFy a( , _ oF, (?Fl)

If fldxu’(U")? is close to zero, we expect that current q X U~ Asinwt)F, + kBTE +gF1§ :
inversions may occur with increasing particle densityTo (41)
this purpose we must tune the potentiedo that the terms of
Eq. (38) proportional ton and n? have opposite signgsee In analogy with the previous section, we introduce the
inset of Fig. %a)]. ansatz~, = ¢+ ¢ for the solution of Eq(41). Here, the equi-

Next let us consider the high-density limit—c. The librium particle distributiong, is defined by Eq(21) and the
solution of Eq.(21) simplifies to perturbationys obeys the equation

do=n-"% ¢ o) (39)
0" g 0')_1'0_&( effyr _ P &/’ eff ‘9_'//)
T T (U Asmwt]+g¢5+kBT (X)(?X

with the assumptiotﬁ'ou(x)dxzo, for an appropriate offset of
U(x). In the first approximation in I/ we obtain - A(sin ot) ¢, (42

skeT?a® 1 (1 1
202778 n fo dxi'U")"+ 0 ) (400 \ith effective potential/ *" and temperatur@ ' defined in
Eqg. (24). In the high-frequency limitv— <, one can itera-
Note that the sign of the current is the same in the limits tively approximatey by computing the expansiai25) term
—0 andn— and is defined by the sign of the integral by term. Such a perturbation approach is valid if condition
f'ode/l’ u"?. (29) for the drive frequency is satisfied and the drive ampli-
As shown in Fig. Ba), the net velocityy.=J/n typically  tude is restricted to sufficiently small values, that is,
decays rapidly with increasing density of the repelling par-
ticles. Such an effect can be easily interpreted considering
the dependence of the effective potentialrorindeed, since

J(n— o) =

Ikg min[T &f(x)]

the repelling particles tend to expel each other from the po- A< o AU e (43
tential wells, the effective potentiad ¢ flattens out and this ) .
suppresses the ratchet asymméefig. 3). In order to calculate the net ratchet current in leading

In the case of attracting particles, the situation is morePrder, all terms of the expansid@5) up to the fifth order
complicated because our perturbation approach loses its vBUSt be retained. Skipping cumbersome algebraic passages
lidity when the particle density approaches the critical valug@long the line of Appendix B one arrives at the final result
Ngit corresponding to the equilibrium particle condensation.
However, for a ratchet substrate the net particle velocity de- 2
cays withn [see Fig. 6a)], no matter what the sign d, in Jrocked— A

the region where the perturbation technique is applicable. w47]5<j|

(jartA%40), (44)
dﬂ(ﬁo)

0

IV. COLLECTIVE MOTION OF LOCALLY INTERACTING
PARTICLES IN A ROCKED RATCHET with

In this section we study a class of ac driven ratchets com-
monly used, for instance, to rectify the vortex motion in |
. o . . P . ’ "2 g¢0
superconductors with artificially tailored asymmetric pinning jar= | dxU UM 1+ —— ],
potential [8]. A gas of interacting particles in such rocked 0 2(kgT +gebo)
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| ' Z/{// 2 1.5
jar= f dx( S?Ifd'l'j+(g¢))3 Zero AC amplitude Atracting parics,
0 B 0 X 1.0 Repe“::‘:wpﬂ‘;';ys’ —— High density
_ 9o )(kGT? = BgebokeT + 69°4Y) %3 - Highdensity / S " Y
64(ksT + gebo)’ (a)
rk2T2
+ —4g¢0u B 3). (45)
2d%(kgT + geho)
Here,d denotes the effective distance
|
4f dX{ ¢o/ (KT + gebo) ]
o= | 0 _ (46) 14 I,’ """ b{incre“asingmeldensity
, — T f i of repelling particles
f AUl (keT + 9 bo)°] R [ pansesininasasng
0 %,: - density of attracting particles ' T

Qualitative interpretation

In contrast with the temperature ratchet, the net velocity
through the ac ratchet increases with increasing demsity
of the repelling particlegsee Fig. )], with asymptotic
behavior

jar(n— ) = 1.5),3(n — 0). (47)

In order to understand the physical origin of such behavior
we recall that the effective potential acting on moving par-
ticles flattens with increasing density of the repelling par-
ticles.

L) '4‘ -
This mechanism is illustrated schematically in Figa)7 £>'<’ - Susorossion of the rectficat
. . . . 3 | e ppression of the rectification
where a typical effective potential at loggolid curve and ~ 61 - due to activation of the opposite

high density(dotted curvégis drawn for the sake of clarity. If
the temperature and the amplitude of the ac force are lov
enough, a running particle cannot overcome the potentie
barriers for low particle densitysolid curve, Fig. ®)]. 4 Seea
Therefore, the particlgsolid circle remains trapped in a
potential minimum during the ac tilting of the potentiah

motion with increasing density
of repelling particles

2 Blocking theopposite‘“Q'.’_~_

X ! motion with increasing Seao
Fig. 7(b), the upper and lower panels show the effective po- 0 density of attracting particles S~
tential subject to maximum tilt both to the right and to the 00 0% 08 12 16 20
left]. Thus, the current has to be very small. x/|

However, the particle can overcome the lower potential
barriers of the effective potential correspondinghigher
particle density(dotted curvg when the potential is tilted _
[Fig. 7(b), a particle(open circlg¢ can move to the left The FIG. 7. Schematics of the dependence oV for a rocked
above behavior leads to the “activation” of the net motion for'aichet.(&) The original potentia(solid line) and flatter effective
highern. Thus, the dc net current is obviously enhanced Withpotentlal(dashed Im;due to repelling mteractl_on among partlcle_s.
increasing density of particles for small enough amplitade (b) The small amplitude of the ac force, which tilts the effective
of the ac force potential fromi/ ¢™—Ax (upper panelto /+Ax (lower pane),
on the othér hand. i\ is strona enouah. particles can could not produce a net motion in the bare poter(salid line) at
. ! ong ough, p low temperatures because of the potential barriers. However, the
easily pass through the potential barriers in the preferabl

di . for | icle densi h h ial | guppressed barrierglashed ling for a high density of repelling
irection even for low particle density when the potentia ISparticles can be overcome resulting in directed particle motion.

t'lte(_j [Fig. 7_(C)’, upper panel, 59"d curyeln SUCh_a casg, a at large amplitudes, the ac particle motion in the bare potential gets
particle(solid circley moves easily to the left, while barriers ecified as the tilt is strong enough. Indeed, a pariisteid circle
prevent the motion in the opposite directififig. 7(c), lower  moyes easily only when the potential is tilted & - Ax [upper
pane], resulting in an effective rectification. The suppressionpanel in(c)]; the suppression of the barriers also activates a sub-
of the barriers(associated with increasing the densityof  stantial particle flow in the opposite direction, thus reducing the
repelling particlep stimulates the undesirable motion in the ratchet rectification power. For the attracting particles, the effective
direction which is opposite to the net currefiig. 7(c), potential deepens with increasingThe dependence &f,. on n for
lower panel, dotted cunteWith increasingA, this has to attracting particles is discussed in the text.
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result in a change of the dependenceVgf on the particle Activity (ARDA) under Air Force Office of Scientific Re-
density, i.e., from an increasing to a decreasing functiom of search(AFOSR Contract No. F49620-02-1-0334; and also
This is consistent with our calculation¥y. contains terms by the U.S. National Science Foundation Grant No. EIA-
proportional to bothA? andA?, which are responsible for the 0130383.
change of the dependence of the net velocity on the particle
der;sity[l;ig. f.(b)’ SO“S ?”d ?ﬁShe‘i C‘:.”’FS s d i APPENDIX A: NONLOCAL INTERACTION:

or attracting particles, the potential wells deepen wi
increasing particle density. In Fig. 7 this corresponds to the THERMODYNAMIC ANALOGIES
modification of the effective potentidk °" from a dashed It is interesting to note that in the general nonlocal case
(low density to a solid(high density profile. Thus, particles  the equilibrium solutiong, satisfies Eq(8)
(open circlg, moving on the bare potentiglow-density
case, get trapped by the deeper potential wells at higher u 1 (", , ,
density [Fig. 7(b), solid circle, solid curvg at smallA, the C(n)exp(— ﬁ) = o exp(E_f dX’ ho(X" )X~ X )>
net velocity diminishes in the case of attracting particles. B Bl

This is consistent with the results displayed in Figb)6  or, equivalently, using the “free energy?,(x),
solid line; namely, the net velocity for the attracting particles

decays linearly with for low values ofA, practically up to o ) Fo(x")

n=ng;. This behavior is associated with thelependence of Folx) =U(X) + J dX'W(x =X )exp(— T )
ja1(n). At larger ac amplitudes, the growing potential barrier - B

stops the undesirable motion in the opposite direction with -kgT In C(n), (A1)

respect to the net transpofffig. 7(c), lower pane]. This )
enhances the rectification as seen in Fig. 6, dashed line. ipyith

other words, with increasing the term proportional te\* Fo(X)

becomes important, thus resulting in the strong enhancement do(X) = exp(— 0 )

of the net velocity fom— n.;;, as now the deepening wells keT

provide a more pronounced anisotropy in the system. Introducing the “effective entropyS(x) through the identity

V. CONCLUSIONS U(x) - kBTS(X)>

We have developed a perturbation scheme to study an bo(X) :C(n)exp<— kaT
open system of interacting particles diffusing on an asym- )
metric substrate. The net velocit, of locally interacting  Ed. (A1) for Fo(x) can be rewritten as
particles maintained out of equilibrium by temperature oscil-

+oo
lations or gxternal ac Qrives he}s been anaIyzed.as a function S(x)=- c dx’ €5 U keTy ) (x — %)
of the particle density in the high-frequency limit. We have keT J ..
shown thatVy. diminishes with increasing density of the re- c) (*
pelling particles in a temperature ratchet, while it grows in a =———=| dxeSxXgUxkgTyy k) (A2)
rocked ratchet. keT J .

Our perturbation scheme is applicable to a system of at-: . .
tracting particles, too, but for densities below a critical vaIueEquat'Ons(Al) anQ(AZ) for the effective free energy and th?
Neit, When the nonideal gas of interacting particles begins téantropy. sfenonlineanand nonlopal because of the particle
condense at the bottom of the potential wells. In this d4ge Interactions. the that the effective free e_”e@’(X_) and
decays with increasing densityof the attracting particles at entropy S(x) satisfy the usual thermodynamic relation
small drive amplitudesA, while it may shoot up at large Fo(X) =UX) - KsTS(X).
enough drive amplitudes. The dependenc®gfon the par-
ticle densityn has been related to the deepening of the po-

tential wells for attracting particles and to their smoothing APPENDIX B: TEMPERATURE RATCHET:

for repelling particles. The net flow of orfer more species A HIGH-FREQUENCY EXPANSION

of interacting particles in a periodic ratchet can thus be con- . . ) )

trolled by varying their density. In this appendix, we show how our iterative procedure for

The unusual dynamics observed in this system can bgalculalti'ng the one-particle distri_bution functién and the
understood in terms of the flattening of the asymmetric efprobab|!|ty currentJ can be c_amed out fqr a temperature
fective potential acting on the repelling particles and theratchetin the high-frequency limit. Integrating the first equa-
deepening of the effective potential wells binding the attractfion of set(26), for the distribution function in the first ap-
ing particles. These very different mechanisms suggest afroximation we get
efficient control of the ratchet rectification process by tuning _ - "
the density of the interacting particles. 1= kgTalsin7) ¢ + Po(),

where the still unknown periodic functioR;(x) is normal-
ACKNOWLEDGMENTS ized to zero,f'odx P, =0. Substituting this equation fop,

This work was supported in part by the National Securityinto the second equation of 9&6) yields an equation for the

Agency (NSA) and Advanced Research and Developmentsecond coefficient of expansi@b), namely,
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dey offs time. Therefore, we must determine an appropriate function
PE —{kBTa(sm 7 doU ) P, in order to avoid breaking our perturbation scheme. We
start deriving an equation fd?, of the form

+[kaT ®(x) + kgTacosrlksTa(sin 7) g} 2 12,2

d
d (P uef‘f!_'_k TeffP’ ueff!+k Teff Al
+ [P + T P]] + kg Talcos)P]. ax| P2 ke TP, 4ol %o

k222

"o m —
The right-hand side of the last equation must contain only ¢°¢°>
zero-mean time-oscillating terms, lest the functign in-

creases with time and eventually excegélg, and 77wy, The last equation implies that

thus breaking the perturbation scheme. Setting to zero the 2 252
secular terms leads to an equation Ryt Po(U ™) + kg T Py =—j, + [y &™) +kgT &1
& frear ] k2T2 2
P(U") +kgT &P =]y, - dody s (B3)

with the integration constarj being a probability current. \yhere the current terrj} does not depend on Rewriting P,
Taking P; as P;(x)=B(x)¢o(x)/(ksT+g¢g), we obtain B’ as

=j1/ ¢o>0. Now, if j; #0, thenB monotonically increases

and the functiorP,(x) becomes aperiodic in space. This con- (X) = D(x) ¢o

flicts with the condition of spatial periodicity d?,. There- 2 (ksT+Q¢p)

fore, we come to the conclusion that=0, i.e., B=const.

Moreover, the functionP;(x)=Beg(X)/[KsT+geo(X)] satis-  Eq. (B3) yields
fies the condition/,dx P,=0 only if we takePy(x)=0. As a

24242
result, the equation fog, (with P, identically zerg takes the D(x) = f (kBT a [y) (U U+ kgT e (y)]’
form do(y)\ 2 0
d
%""BT""@'”T)—W U+ keT ] L (y)f} -Jz) +Do, (B4)
K3T2a%(sin 27) ¢y . (B1)  Now the currentj, is determined by the condition thi is

a spatially periodic functioiji.e., D(x)=D(x+1)], while the
constant D, can be calculated from the condition

Integrating the last equation overyields the following ex- f{)dx P,(x)=0. Using the relations

pression forg,:

et = KeT o
$2=- kBTa(COST)—[¢ (U™ + kT ] R
1 and
- Zk@Tzaz(cos 2y + P, (B2) |
o : o . f dyl o In go(Y)/T *(y)]
The time-independent spatially periodic functiBp and the Iy _ | 0 bo(X)
probability currentJ,=j,/w?7® can be obtained only by 7 ~| N $o(x) + i Ty’
working out the equation fops, i.e., retaining all the terms J dyl po(Y)/T & (y)]
up to order 1&?: 0
(BS)
% = J effy s eff gmr
or ax{( kgTacos o ™)’ +keT “'] an explicit expression for the probability current

=],/ w?7® follows immediately:

1 22,2 1" ffy 7 ff
- JkaT?a? cos g + Pz)(ue )" +kg(T*® J- kaT%a f dx[( « T¢o¢8
) | dbol\ T ¢
2w27/2< J dx/</>o> ° °

0

d
+ Tacosﬂ;( keTacos ¢yt ™)' +ksT g1’

l " WU '
- Zk@Tza cos 2r¢y + Pz) +gIET?a? sir? ¢y |- + (KeT + gebo) o ) g(% 2} +0(L/w?).

Integrating the equation above wifh,=0 would generate Long algebraic manipulations yield the final result for the
undesirable aperiodic terms which increase linearly withcurrent, Eq.(31), reported in the text.
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