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We propose a mechanism of coherent emission from driven vortices in stacked intrinsic Josephson junctions.
In contrast to super-radiance, which occurs only for highly ordered vortex lattices, we predict resonant radia-
tion emission from weakly correlated vortex arrays. Our analytical results for the terahertz wave intensity,
resonance frequencies, and the dependence of terahertz emission power on dissipation are in good agreement
with the ones obtained by recent simulations.
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I. INTRODUCTION

It has been experimentally observed1–3 and confirmed
both analytically4,5 and numerically6,7 that moving Josephson
vortices �JVs� emit sub-terahertz electromagnetic radiation.
Terahertz radiation has applications in physics, astronomy,
chemistry, biology, and medicine.8 This motivates recent
proposals9 for terahertz filters,10,11 detectors,12 quantum
devices,13,14 and emitters5,6 based on highly anisotropic lay-
ered superconductors �e.g., Bi2Sr2CaCu2O8+��, that can be
modeled as coupled intrinsic Josephson junctions �IJJs�.

The ultimate challenge in this field is to produce coherent
terahertz radiation. It is commonly believed that this goal can
be achieved by controlling super-radiance from highly or-
dered vortex lattices.15,16 A vortex lattice is deemed neces-
sary because the constructive interference of Josephson
plasma waves from individual JVs is strongly suppressed by
small amounts of disorder. Unfortunately, driven periodic lat-
tices are often very unstable �especially in the presence of
impurities, defects, and pinning centers�, and moving JVs
form either a mixture of coexisting different lattices17 or
even disordered arrays.6 Moreover, a broad radiation spec-
trum by individual vortices results in a broad spectrum of the
emitted radiation �e.g., Ref. 5�, in contrast to a desirable
resonant IJJ, where coherent radiation is characterized by
sharp spectral lines.

In this context, recent interesting simulations by Tachiki
and co-workers6 show that coherent radiation may be gener-
ated by JVs moving as disordered arrays, instead of just or-
dered ones. This raises the question as under what conditions
JVs in layered superconductors emit coherent radiation.
Solving this problem is crucial to the effective design of
Bi2Sr2CaCu2O8+�-based terahertz emitters.

The experimental demonstration3 of terahertz radiation in
zero magnetic field and various failed attempts at detecting
terahertz emission in the presence of magnetic fields cast
serious doubts on the initial idea that moving JVs can radiate
in this frequency domain. Indeed, the now prevailing inter-
pretation is that JVs ought to be considered as perturbing
degrees of freedom, which destroy the layer coherence and
thus cause the suppression of terahertz radiation. In this

study, however, we reach the conclusion that, under appro-
priate conditions, applied magnetic fields do help amplify
and tune terahertz emission. This interesting result is also
consistent with the recent systematic studies in Ref. 18.

Below, we show that the nonlocal nature of JVs in layered
superconductors is responsible for a two-scale dynamics. A
longer scale, �EM, characterizes the intervortex magnetic in-
teraction; spatial dispersion, or disorder, of vortices up to
such a scale has no appreciable impact on the radiation
mechanism. In other words, in contrast with super-radiance,
which is suppressed by vortex disorder, in our approach ra-
diation coherence is preserved even if the vortex distribution
can become appreciably modulated by the radiation itself for
wavelengths shorter than �EM. The shorter relevant length
scale �G determines the cross section of the nonlinear vortex
core �where the linear approximation sin ��� with the
gauge-invariant phase difference across the junction having a
vortex is not valid�. According to this picture, for �G��EM
and for a sufficiently high vortex density, radiation is emitted
through a linear mechanism, as from a JV lattice whereas the
vortex-radiation coupling occurs mainly in the inner JV
cores. Under these conditions, the magnetic interaction
among vortices is much weaker than their interaction with
the emitted radiation. Our approach explains the spatial
modulation of the JV density numerically found in Refs. 6
and 7. Our analytical estimates, based on a one-dimensional
�1D� sine-Gordon model, prove to be in good agreement
with their simulations and explain their results.

Let us now summarize a central idea of our approach.
Consider a moving JV lattice emitting radiation. This radia-
tion will bounce back and forth the sample edges, like in a
laser cavity. This radiation accumulates and creates a stand-
ing wave with a wavelength about �EM. This standing wave
modulates the JV density which is now in resonance with the
standing wave. This positive feedback enhances the radiation
of vortices. Namely, the JV motion emits radiation, which is
weaker at first. This radiation bounced inside the sample
�acting as a cavity� locks the collective motion of the JVs.
This collective motion produces stronger emission. The JVs
then interact more strongly with the electromagnetic standing
wave, compared with the now much weaker vortex-vortex
interaction. Thus, the triangular vortex lattice, produced by
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the vortex-vortex interaction, is finally replaced by a more
disordered but still modulated by the radiation and vortex
structure.

II. NONLOCAL SINE-GORDON MODEL

Layered superconductors can be considered as stacks of
strongly interacting IJJs. As the superconducting layers are
only a few nanometers thick, i.e., the interlayer distance s is
much smaller than the magnetic field penetration depth �ab,
the currents flowing through different junctions are coupled.
On neglecting, for the time being, external drives and inter-
nal dissipation, a system of stacked IJJs is well described by
the coupled sine-Gordon equations,19

�1 −
�ab

2

s2 �n
2���tt

�n�

�p
2 + sin ��n�� − �2�xx

�n� = 0, �1�

where ��n� is the gauge-invariant phase difference across the
nth junction. Here, �p is the Josephson plasma frequency, �
the London penetration depth �� /�ab=�� along the layers,
and the operator �n

2 is defined by �n
2f = f �n+1�−2f �n�− f �n−1�.

A full analysis of this set of equations is a complicated
problem which requires numerical simulation. However, if
we restrict ourselves to the case of moderate magnetic fields,
when JV cores do not overlap, we can reduce Eq. �1� to an
effective 1D problem. Indeed, as was shown in Ref. 20 �see
Eqs. �21� and �22� and Fig. 2 there�, the phase difference �
decreases very fast away from the junction where a vortex
located. Thus, a reasonable strategy could consist in neglect-
ing the nonlinear couplings between junctions at a distance
of some s from the vortex center; on solving the linearized
Eq. �1� for such junctions, one would end up with a few
coupled nonlinear equations for a few junctions in the vicin-
ity of the vortex center. The case when the nonlinearity was
restricted to one junction only has been considered in Ref. 5.
The coupled junction system of Eq. �1� boils down to a 1D
Josephson junction described by a nonlocal sine-Gordon
equation. We assume below that retaining the nonlinear cou-
pling between more junctions can lead to the same nonlocal
1D sine-Gordon equation with additional noiselike weak per-
turbations.

For simplicity, let us consider the pair of adjacent junc-
tions j and �j+1� locating a moving JV. We then reduce the
description of the IJJ stack to a 1D problem by assuming the
nonlinear coupling to be important only for the paired junc-
tions and linearizing Eq. �1� for all other junctions �i.e., for
n� j , j+1�. It is interesting to note that the importance of
the interaction between two neighboring junctions is numeri-
cally well established.21 Moreover, Koshelev22 recently re-
duced the multijunction system to two coupled junctions, and
this model reproduced the simulation data in Ref. 21 and
interpreted the experimental results of Ref. 3.

Following the approach in Refs. 5, 23, and 24, the equa-
tion for the averaged phase difference across a junction pair
�= ���j+1�+��j�� /2 can be written as

�tt

�p
2 + sin � =

�s

2	
� dx�K0� 	x − x�	

�
��xx�x�� + P�
�sin � ,

�2�

where K0 is the modified Bessel function and

P�
� = 1 − cos 


with 
= ���j+1�−��j�� /2. The length

�G 

�s

2
=

�EM
2

�
�3�

defines the size of the JV core. Again, the contribution of the
next-to-neighbor junctions to the dynamics of the tagged JV
weakens fast20 with their distance from the vortex center,
thus, allowing all other nonlinear Eq. �1� to be replaced by an
effective nonlinear medium.

An additional equation for 
 can be derived for a pair of
JVs in two adjacent junctions so that the equations for � and

 form a closed set.2,5 However, when extending Eq. �2� to
describe the collective motion of N traveling JVs �randomly
distributed along Nl stacked IJJs of length L�, the phase �
can be regarded as a mean-field superposition of the n
=N /Nl individual JVs phases, �v

�i�, contained in one layer,
only.

In our one-IJJ description, we assume that 
 is relatively
small; this may be the case, for instance, due to the random
superposition of the vortex dynamics in different junctions.
Anyway, the good agreement between the analytical results
reported here and earlier numerical simulations, validates a
posteriori our assumption. Thus, the functional P�
� can be
modeled as a spatial perturbation �+�P�x�, where the real
function P�x� can be either periodic or random in x, depend-
ing on the operating conditions. The constant � is a measure
of the strength of the perturbation while the small offset �
can be conveniently eliminated by rescaling the dimensional
parameters �p and �G, as appropriate. Here, we assimilate
such a perturbation as an effective quenched Gaussian disor-
der along the IJJs; that is, P�x� is modeled as a random,
delta-correlated function with

�P�x�� = 0, �P�x�P�x��� = 2��x − x�� �4�

and �¯ � denoting the average over different disorder real-
izations. The constant � will be taken as a perturbation pa-
rameter and only effects to leading order in � will be consid-
ered. Moreover, deviations from the Gaussian statistics,
implicit in the definition of P�
�, are assumed to be negli-
gible within this approximation.

A. Josephson vortex array

We now introduce dimensionless units by expressing x
and t in units of the characteristic length �EM and the recip-
rocal of the plasma frequency �p, respectively, that is,

x → x̃ = x/�EM, t → t̃ = �pt .

As a consequence, the system characteristic lengths � and �G
get rescaled as follows:
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� → �̃ = �/�EM, �G → �̃G = �EM/� = 1/�̃ ,

and, of course, �EM → �̃EM =1. Correspondingly, ��x , t� is
given in units of the magnetic-flux quantum �0 and all
speeds in units of �p�. Hereafter, for the sake of simplicity,
we shall only use dimensionless variables and, therefore,
omit the “tilde” notation altogether.

The field ��x , t�, corresponding to a dense distribution of
JVs traveling with speed V�1, can be expanded as25,26

��x,t� = p�x − Vt� −  sin�p�x − Vt�� + ¯ , �5�

where p=2	� and �=n /L denotes the linear JV density with
number n of vortices located along the length L. The linear
term in Eq. �5� corresponds to the phase difference of a uni-
form vortex spatial distribution whereas the periodic correc-
tion accounts for a residual phase modulation on the lattice
scale 1 /�, with amplitude  to be determined self-
consistently. In the expansion �5�, we assume high JV densi-
ties, p�1, and small amplitudes . On inserting expansion
�5� for ��x , t�, the nonlocal field Eq. �2� can be approximated
to an effective sine-Gordon equation, where

1

	�
� K0� 	x − x�	

�
��xx�x��dx� → cp

2�xx,

cp
2 = �1 + �p��2�−1/2, �6�

and, consistently,

 = ��V/cpp�2

with

�V = �1 − V2/cp
2�−1/2.

In the regime considered in Refs. 6 and 7, where ��1 and
�V1, the parameter cp can be further approximated to
�p��−1/2.

The validity condition for truncating the expansion �5� to
its first order, �1, or equivalently cpp�1, implies a direct
core-core interaction; that is, 1 /��1 / p. We recall that here
1 /� represents the size of a vortex core in dimensionless
units. Accordingly, for ��1, cp must be regarded as the
maximum velocity of a vortex array in a layered supercon-
ductor, to be compared with the maximum dimensionless
velocity 1 /� of a single vortex �i.e., �p�G in dimensional
units2,5�.

In the opposite limit, p /��1, vortices only weakly inter-
act on the magnetic length scale �EM �rescaled here to 1�; the
limiting velocity cp grows larger than 1 /� and the JV array
becomes unstable.

B. Radiation mechanism

The emission of radiation by fast-moving JVs also takes
place on the magnetic length scale �EM. The effective phase
difference � associated with an array of JVs moving along
an IJJ, thus, obeys the perturbed local sine-Gordon equation,

�tt − cp
2�xx + sin � = − ��t − f + �P�x�sin � . �7�

Note that, in leading order, �= p �x−Vt�, as can be seen
from Eq. �5�. Here, for completeness, we have restored the

viscous term −��t and the current-induced drive f , that allow
us to control the net JV speed V �see, e.g., Ref. 24�.

Like in the more conventional single sine-Gordon-soliton
perturbation schemes,27,28 we consider the Ansatz,

��x,t� → ��x,t� + ��x,t� , �8�

which, inserted in Eq. �7�, yields26

�tt − cp
2�xx + �cos ��� = − ��t + �P�x�sin � , �9�

where �=0 is the ground state and only terms O��� have
been kept. The wave number q and the angular frequency �
of the unperturbed plasmon modes �i.e., for �=�=0� form a
continuum spectrum,27 with

�2 = 1 + cp
2q2. �10�

However, as for the field �Eq. �5�� with p�1, the radiation-
vortex coupling �cos ��� becomes negligible, and the
plasma-wave dispersion relation can be approximated to �
=cp	q	. On introducing the spatial Fourier components of
P�x� and ��x , t�, defined by

P�x� =
2

	
�

−�

�

P�k�eikxdk, ��x,t� =
2

	
�

−�

�

�q�t�eiqxdq ,

Eq. �9� can be rewritten as29

d

dt
B�q� −

�

2
B�q� =

�

2i
�ei��−pV�tP�q − p� − �p → − p�� ,

where

B�q� 
 ��̇q − i	q	�q�ei�t

is directly related to the spectral density of the array emission
power,

W�q� =
4

	

d

dt
	B�q�	2,

that is,

W�q� =
2�2

	
� 	P�q − p�	2��/2�

��/2�2 + �� − pV�2 + �p → − p�� . �11�

Here we use that P�x� is a real function so that P��k�
= P�−k�. The notation “�p→−p�” denotes the symmetric
term obtained by replacing p→−p in the first term inside
the square brackets. This means that two waves propagate
in opposite directions with the same frequency �; for
	P�q− p�	= 	P�q+ p�	, they generate standing plasma oscilla-
tions, like those reported in Refs. 6 and 7. To simplify our
notation, hereafter we restrict ourselves to JVs driven in one
assigned direction, say V�0.

The spectral emission power �Eq. �11�� is key to our
analysis of a resonant IJJ. The spectrum W�q� can be easily
specialized for any choice of P�x�. In the case of quenched
Gaussian disorder, see Eq. �4�,

�	P�k�	2� =
1

8
�12�

so that on disorder-averaging Eq. �11�, we obtain the IJJ
spectral emission power per unit of length,
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w��� =
�2

4	
� �/2

��/2�2 + �� − pV�2 + �� → − ��� . �13�

This spectrum holds for ��� or, equivalently, for V�� / p,
and has a sharp resonance maximum,

wmax =
�2

2	�
�14�

for

�r = pV . �15�

C. Vortex dynamics

Subject to a drive f produced by an externally applied
electrical current, the vortices in an IJJ flow with an average
speed V and, simultaneously, their cores interact with the
electromagnetic waves they radiate. For the relatively weak
vortex-core repulsion, 1 /��1 / p, simulated in Refs. 6 and 7,
we expect that the vortex array can be modulated, both in
space and time, by the resonant plasma modes.

To express the average speed V of a JV array with p /�
�1 as a function of the drive f , from Eq. �7� we derive the
energy balance equation per unit of length of radiating IJJ,15

w�V� + ��pV�2 = pVf . �16�

Equation �16� tells us that the rate at which the drive pumps
energy into the system �right-hand side�, must be equili-
brated by the radiative, w�V�, and the viscous loss, ��pV�2,
of the soliton array ��x , t� �left-hand side�.

For V�� / p, the total emission power of the radiating
sine-Gordon solitons,

w�V� =
�2

2
�17�

is computed by integrating the spectral emission power �Eq.
�11��; solving the ensuing Eq. �16� with respect to V, we
obtain

V�f� =
f � �f2 − 2��2�1/2

2�p
, �18�

where only the rising branch with the + sign is stable.29

Therefore, the observable velocity-drive characteristic V�f�
is expected to show a step at

f th = �2��1/2� �19�

and to grow linearly with f for f � f th, when the radiation loss
becomes negligible, namely,

V =
f

�p
. �20�

Note that, at variance with an emitting JV lattice,29,30 no
multiple hysteretic steps in the V�f� are predicted. Indeed,
the condition f � f th simply implies that the effective phase �
is not pinned by disorder;31 for f � f th, instead, the JV array
can move only by creeping, namely, through the nucleation
and the subsequent migration of array defects.32,33 Creeping

is likely responsible for the smooth low-current J-V charac-
teristics shown in Fig. 4 of Ref. 6. Moreover, in the linear
regime �Eq. �20��, the wavelengths �r of the emitted radia-
tion are expected to be much shorter than the length L of the
IJJ �see below� so that corrections due to the appropriate
standing-wave periodic boundary conditions are on the order
of �r /L.

A vortex is sensitive to the radiation field only when the
wavelengths �r excited in the IJJ are larger than its size. For
the parameter choice of Refs. 6 and 7, this can only occur on
the JV core scale �G because �G��r.

The interaction between the radiation standing wave, say,

��x,t� = �0 cos�qx�cos��t + �� �21�

and a single JV solution of the nonlocal sine-Gordon Eq. �2�,

��x� = 	 + 2 arctan��x� �22�

�both in dimensionless units� is well described by the non-
relativistic quasiparticle approach of Ref. 15. The JV center
of mass with coordinate X�t� is subject to an oscillating sinu-
soidal trap,

Ẍ = − �Ẋ + �0
q2

�
e−q/� cos�qX�cos��t + �� �23�

with an amplitude which is exponentially suppressed at short
wavelengths, i.e., for q /��1. However, for sufficiently large
trap amplitudes, the vortices in each layer get spatially dis-
tributed with wave vector q.

III. COMPARISON WITH NUMERICAL RESULTS

The results in Refs. 6 and 7 can be easily analyzed within
the above theoretical framework. To make contact with their
numerical data, one must express all lengths in units of �,
with �=200 �m; the velocities in units of the light speed in
the dielectric c=c0 /��c, where c0 is the speed of light in
vacuo and �c=10 is the simulated dielectric constant; the
forces in units of J /Jc, where Jc is the critical JJ current and
J is the superconducting current across the IJJs; and the an-
gular frequencies in units of the plasma gap frequency �p
=�p /2	=c /�=0.47�1012 Hz. Moreover, the actual layer
JV density is �=n /L0.6 �m−1 with L=100 �m, the layer
thickness is s=15 Å, and the penetration length ratio �
=500. For this choice of numerical parameters, the length
scales we introduced in the previous section read, respec-
tively, �G=0.38 �m, �EM =8.7 �m, and 1 / p=0.27 �m.

First, we note that the simulations of Refs. 6 and 7 corre-
spond to the physical condition where �G��r. As for the
resonant modes �0��, see Eq. �14�, the amplitude of the
driving force in Eq. �23� turns out to scale like ��� /�G�1/2,
which is strong enough to drag a JV against the disorder field
�Eq. �4�� and the array of restoring forces. This explains the
disordered spatial distribution of the emitting JVs, which, far
from forming any ordered lattice, seem rather to get trapped
by the plasma standing waves. In spite of the coherent nature
of the plasma radiation, the vortex distributions in each IJJ
can differ from one another because of the intrinsic disorder
brought about by the layer-layer coupling.
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In Fig. 1, we compare the current-voltage characteristics
from simulation, reported in Fig. 4 of Ref. 6, with the force-
velocity �f-V� curve of Eq. �20�. In the units of Ref. 6,

J

Jc
= 2	����

V

c
� = 2	�

V
Vp

, �24�

where V=���V /c� is the flux-flow voltage across a IJJ layer
and Vp
�p�0 with �0=h /2e denoting the flux quantum.
The agreement is quite good in the linear regime whereas the
depinning threshold �Eq. �19�� is clearly visible for J /Jc
0.2, which, in our units, corresponds to setting �=1.

The resonant plasma radiation is investigated in Refs. 6
and 7 on the linear branch of the J-V characteristics. Three
plots of the plasma standing waves, two in Ref. 6 and one in
Ref. 7, are shown for different J /Jc; from there we read out
the corresponding resonance wavelengths �r. Furthermore,
the resonance frequencies �r=2	�r are either given explic-
itly in the text or shown in the figure �see, e.g., Fig. 5 of Ref.
6�. The product �r�r appears to define a Swihart velocity,
denoted here by cS, independent of the simulation parameters
J /Jc and �, that is,

cS

c
 0.04. �25�

In view of our radiation mechanism �Eq. �9��, the ratio cS /c
can be identified with cp in Eq. �6�; accordingly, for ��1
and �V1,

cS

c


1
��p

�26�

is predicted to be on the order of 0.036, which is reasonably
close to the result in Refs. 6 and 7, given the accuracy of the
data available.

The average JV speed in a resonant IJJ structure is pro-
portional to the resonance frequency, that is, from Eq. �15�,

V =
�r

�
. �27�

This equation holds for all different choices of the simulation
parameters presented in Refs. 6 and 7. Note that the mea-
sured JV speeds are relatively small, V�c, as assumed in our
nonrelativistic treatment of Eq. �9�, where �V1. Moreover,
when combined with Eq. �24�, this equation yields the de-
pendence of �r on the simulation control parameters J /Jc and
�. The ensuing law

�r

�p
=

1

2	�

J

Jc
�28�

closely matches all spectral resonance peaks reported in Ref.
6, as shown in Fig. 2. Note that combining Eqs. �24� and �28�
yields the simple �-independent relation

�r

�p
=

V
Vp

. �29�

Finally, we notice from Eqs. �14� and �20� that wmax is pro-
portional to �2 /� and V is proportional to f /�; as a conse-
quence, one would expect that on decreasing � the IJJ spec-
tral emission band shifts to lower J /Jc while growing in
intensity, both inversely proportional to �. This is exactly the
dependence displayed in Fig. 6 of Ref. 6.

IV. CONCLUSIONS

We propose a mechanism of coherent radiation from the
moving Josephson vortices in layered superconductors. We
show that due to the two-scale structure of Josephson vorti-
ces, they radiate terahertz radiation on a characteristic scale
�EM, which is much longer than the Josephson vortex-core
size �G��s. Among all emitted waves, only standing modes
in the sample �working as a cavity� survive. These standing
modes produce modulation of the density of JVs. This, in

0 2 4 6 8
0.0

0.3

0.6

0.9

β = 0.02
J / J

c

V /Vp

FIG. 1. �Color online� Current-voltage characteristics �in dimen-
sionless units� for a damping constant �=0.02. The square symbols
are the simulation data extracted from Fig. 4 of Ref. 6. The red
straight line is our prediction from Eq. �24� for the linear Ohmic
branch. The horizontal black dotted line is an estimate, from the
numerics, of the depinning threshold in Eq. �19�.

0.6 0.8 1.0 1.2
4

5

6

7

8

β = 0.03

β = 0.02

νr/νp

J / J
c

FIG. 2. �Color online� Resonance frequency �r versus current
intensity J �both in dimensionless units� for two values of the vis-
cous constant �. The black dots are simulation data extracted from
Fig. 5 of Ref. 6. The two colored straight lines represent our theo-
retical predictions based on Eq. �28� and using two different values
of the damping parameter �.
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turn, makes vortices mainly radiate with wavelengths corre-
sponding to standing waves. Such positive feedback can re-
sult in relatively strong radiation with well-pronounced
maxima in the spectra. All our analytical estimates are in a
good agreement with numerical data.6,7

The experimental demonstration3 of terahertz radiation in
zero magnetic field and various failed attempts at detecting
terahertz emission in the presence of magnetic fields cast
serious doubts on the initial idea that moving JVs can radiate
in this frequency domain. Indeed, the now prevailing inter-
pretation is that JVs ought to be considered as perturbing
degrees of freedom, which destroy the layer coherence and
thus cause the suppression of terahertz radiation. In this
study, however, we reach the conclusion that, under appro-

priate conditions, applied magnetic fields do help amplify
and tune terahertz emission. This interesting result is also
consistent with the recent systematic studies in Ref. 18.
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