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We examine the Bose-Einstein condensation of exciton-polaritons in a semiconductor microcavity via an
electrical current. We propose that by embedding a quantum dot p-i-n junction inside the cavity, the tunneling
current through the device can reveal features of condensation due to a one-to-one correspondence of the
photons to the condensate polaritons. Such a device can also be used to observe the phase interference of the
order parameters from two condensates.
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I. INTRODUCTION

The essence of Bose-Einstein condensation �BEC� is the
macroscopic occupation of a single-particle state.1,2 The
achievement of BEC in dilute atomic gases has enabled the
study of the long-range spatial coherence in a well-controlled
environment.2 In contrast to the extremely low temperatures
needed for dilute atom gases, excitons in semiconductors
have long been considered a candidate for BEC at tempera-
tures of a few Kelvin, due to their light effective mass.3 In
the past few decades, numerous studies have shown
evidence4 for the existence of excitonic BEC. A recent prom-
ising realization for such a BEC is within a two-dimensional
quantum well in a microcavity, i.e., a condensate of
polaritons,5 which are half-light, half-matter bosonic quasi-
particles. Fascinating features of condensate polaritons, such
as phase interference,6 quantized vortices,7 Bogoliubov
excitations,8 and collective fluid dynamics,9 have been suc-
cessfully observed in experiments.

In a context related to the study of semiconductor micro-
cavities, an exciton in a quantum dot �QD� embedded inside
a microcavity can be used to study the phenomena of cavity
quantum electrodynamics.10 With the advances of fabrication
and measuring technologies, strong couplings between the
QD excitons and cavity photons have been observed both in
a semiconductor microcavity11 and in a photonic crystal
nanocavity.12 Another unique feature of artificial atoms, such
as QDs, is that they can be connected to electronic reservoirs.
For example, it is now possible to embed QDs inside a p-i-n
structure,13 such that electrons and holes can be injected
separately from opposite sides. This allows one to examine
the exciton dynamics in a QD via electrical currents.14

Motivated by these recent developments, we propose a
method to detect the BEC of polaritons via an electrical cur-
rent by embedding a QD p-i-n junction inside a microcavity,
where the condensation of polaritons takes place. This is, in
principle, feasible since the excitation energy of the QD ex-
citon �two-level spacing� is comparable to that of the cavity
photons. Once the condensation of polaritons occurs, the
one-to-one correspondence between the polariton and its
half-light part �photon� ensures that the photons also con-
dense to their ground state. In this case, the transport current
through the dot should “feel” the condensation. We will

show that the contribution to the coherent transport of the
current increases with the condensate fraction. Furthermore,
if the QD is coupled to two condensates, the current-noise
can reveal the phase interference between them.

II. QUANTUM DOT p-i-n JUNCTION IN A MICROCAVITY

Consider now a QD p-i-n junction embedded inside a
semiconductor microcavity, where the quantum well excitons
and cavity photons condense to their ground state as shown
in Fig. 1�a�. When this condensation occurs, a great number

of polaritons, b̂k, will occupy the zero-momentum state k0.
The canonical transformation1,2

b̂k = �N�ei��k,k0
+ �̂k �1�

is commonly used to describe N� condensed particles and
noncondensate particles with operator �̂k. The polariton op-

erator b̂k is composed of the exciton operator, ĉk, and photon
operator, âk,

b̂k = ukĉk + vkâk, �2�

where uk and vk are coefficients easily obtained from the
diagonalization of exciton-photon interaction.15 From Eq.
�2�, we can see that there is a one-to-one correspondence of
the polariton operator to the photon one. Therefore, the ca-
nonical transformation in Eq. �1� can also be applied to the
photon operator

âk = �Nei��k,k0
+ �̂k,

where �̂k represents the noncondensate photons. The photon
condensate fraction N is related to N� via the particular
choice of the diagonalization in Eq. �2�.

Considering spinless fermions and neglecting the polar-
ization of the photon, the exciton-photon interaction in the
QD p-i-n junction, Hex−ph, can now be written as

Hex−ph = T0ei��↑��↓� + �
k

Dk�↑��↓��̂k + H.c., �3�

where T0=�NDk0
, with Dk being the coupling strength be-

tween the dot exciton and the cavity photon.
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Here, we have assumed the photon energy to be on reso-
nance with the QD �ground-state� exciton energy, i.e., the
detuning is zero. In addition, the three dot states are intro-
duced in Eq. �3�: �0�= �0,h�, �↑ �= �e ,h�, and �↓ �= �0,0�,
where �0,h� means that there is one hole in the QD, �e ,h� is

the exciton state, and �0,0� represents the ground state with
no hole and no electron in the QD.14

One might argue that one cannot neglect the state �e ,0�
for real devices. This can be resolved by fabricating a thicker
barrier on the electron side so that there is little chance for an
electron to tunnel in advance. Also, the absence of bi-exciton
and trion states can be justified by the following reasons:
first, the Fermi energy of the hole reservoir is aligned with
the hole level of the dot as shown in Fig. 1�b�. After a hole
tunnels into the dot, an electron can tunnel into the ground-
state exciton level, with which the Fermi energy of the elec-
tron reservoir is aligned. Second, since we have assumed the
photon energy to be on resonance with the QD �ground-state�
exciton energy, the effect from other tunneling channels
should be small and can be neglected in principle.

We have essentially assumed a mean-field interaction, so
that the field of the condensate mode is just represented by a
c number: there is no back action from the QD to the cavity.
From the theory of transport through QDs, the first term in
Eq. �3� represents coherent tunneling,16 while the second
term describes incoherent tunneling14 The Hamiltonian de-
scribing the tunneling to the electron and hole reservoirs can
thus be written as

HT = �
q

�Vqd̂e,q
† �0��↑� + Wqd̂h,q

† �0��↓� + H.c.� , �4�

where d̂e,q and d̂h,q are the electron operators in the electron
and hole reservoirs, respectively. Here, Vq and Wq couple the
channel with momentum q of the electron and the hole res-
ervoirs.

One can now write the equation of motion for the reduced
density operator

d

dt
��t� = − i�Hcoh�t�,��t�	 − Trres


0

t

dt��Hincoh�t�

+ HT�t�,�Hincoh�t�� + HT�t��,�̃�t��	� , �5�

where �̃�t�� is the total density operator, and Hcoh �Hincoh�
represents the coherent �incoherent� tunneling in Eq. �3�.
Note that the trace, Tr, in Eq. �5� is taken with respect to both
the noncondensate photons and the electronic reservoirs.

III. TUNNELING CURRENT

If the couplings to the noncondensate photons and to the
electron/hole reservoirs are weak, then it is reasonable to
assume that the standard Born-Markov approximation with
respect to these couplings is valid. In this case, one can de-
rive the equations of motions of the system

�

�t
�n̂↑�t = − iT0��p̂�t − �p̂†�t� − ��n̂↑�t

+ 	L�1 − �n̂↑�t − �n̂↓�t� ,

�

�t
�n̂↓�t = iT0��p̂�t − �p̂†�t� + ��n̂↑�t − 	R�n̂↓�t,
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FIG. 1. �Color online� �a� Schematic diagram of the system: a
semiconductor quantum well is placed between two Bragg mirrors.
A quantum dot p-i-n junction is embedded between the well and the
mirror to detect the photon part of the polaritons. For simplicity, the
substrate of the QDs is not shown. �b� Energy-band diagram of a
QD inside a p-i-n junction. The Fermi energy of the hole reservoir
is aligned with the hole-level of the dot. After a hole tunnels into the
dot, an electron can tunnel into the ground-state exciton level, with
which the Fermi energy of the electron reservoir is aligned.
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�p̂�t = − iT0

0

t

dt�eiE0�t−t����n̂↑�t� − �n̂↓�t��

− 	R

0

t

dt�eiE0�t−t���p̂�t�,

�p̂†�t = iT0

0

t

dt�e−iE0�t−t����n̂↑�t� − �n̂↓�t��

− 	R

0

t

dt�e−iE0�t−t���p̂†�t�, �6�

where n̂↑= �↑ ��↑ �, n̂↓= �↓ ��↓ �, p̂= �↑ ��↓ �, and p̂†= �↓ ��↑ �.
Here, E0 is the quantum dot exciton bandgap, 	L �	R� is the
tunneling rate from the electron-side �hole-side� reservoir,
and � is the incoherent decay rate due to the noncondensate
photons. One can then obtain the tunnel current through the
hole-side barrier:14 I�t�
−e	R�n̂↓�t.

In the steady-state limit �t→
�, the analytical expression
for the tunneling current I is given by

I�t → 
� =
2	RT0

2 + 2��2

��2 + T0
2�2 + 	R/	L�	 + ��2�1/	R + 1/	L�

, �7�

where �2=E0
2+	R

2 . Note that, for convenience, we have set
the electron charge e=1 and Planck constant �=1. Examin-
ing Eq. �7� we note that, when the condensation number
N�
T0

2� becomes relatively large, the steady-state current
I�t→
� saturates to the value

I�t → 
� →
N→


	R

1 +
	R

2	L

, �8�

depending only on the values of the tunneling rates 	L and
	R. In the opposite limit of no condensation, Eq. �7� is re-
duced to the result of incoherent case17

I�t → 
� →
T0→0

� 1

	R
+

1

	L
+

1

�
�−1

. �9�

The curve in the inset of Fig. 2 shows that the current I
increases when increasing the occupation number N. Such a
phenomenon may be observed by increasing the power of the
laser excitation, as has been performed in experiments.5 Note
that in the inset of Fig. 2 and the following figures, we have
set the exciton bandgap E0=1.4 eV and the tunneling rates:
	R=0.1, 	L=0.01 meV.

IV. INTERFERENCE BETWEEN TWO CONDENSATES

Another important effect that can be examined is the in-
terference between two condensates, which has been ob-
served and verified in dilute atomic gases.18 Consider now an
additional quantum well in the microcavity, so that the exci-
tons in this well also form a condensate with the photons.
The interactions experienced by the p-i-n junction experi-
ences can be described by

H2ex−ph = �
j=1,2

�Tje
i�j�↑��↓� + �

k
Dj,k�↑��↓��̂ j,k� + H.c.,

�10�

where the two phases �1 and �2 come from the U�1�
symmetry-breaking of the two condensates. Assuming that
the exciton-photon couplings of the two wells are identical,
the coherent parts, Tj =�NjDk0

, contain the information of
the excitation numbers N1 and N2. The resultant steady-state
current is similar to Eq. �7�, besides the following replace-
ment:

T0
2 → Dk0

2 �N1 + 2�N1N2 cos��1 − �2� + N2	 . �11�

For a fixed N1, the dotted, red-dashed, and black curves in
Fig. 2 represent the steady-state currents as functions of N2,
for the phase differences �1−�2=0, 3� /4, and �, respec-
tively. As seen in Fig. 2, the dips in the currents reveal the
effect of destructive interference when �1−�2 approaches �.

We also suggest that the p-i-n junction can be embedded
inside an array of polariton condensates connected by weak
periodic potential barriers,6 where the in-phase �“zero state”�
and antiphase �“� state”� have been created. In this case,
Eqs. �7� and �11� can also be used to distinguish the zero
state and � state.

V. SHOT-NOISE MEASUREMENTS

Recently, interest in measurements of shot-noise in quan-
tum transport has grown owing to the possibility of extract-
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FIG. 2. �Color online� Under the influence of two independent
condensates, the dotted, red-dashed, and continuous black curves
represent the current through the QD p-i-n junction for different
values of phase difference: �1−�2=0, 3� /4, and �, respectively. In
plotting the figure, the values of T1 �=30 meV� and incoherent rate
� ��=	L� are kept fixed. The inset shows the current increases
when increasing the condensation number N �
T0

2� for the case of
only a single condensate. T0 is the coupling strength between the
dot exciton and the cavity photon.
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ing valuable information not available in conventional dc
transport experiments.19 Therefore, in addition to the current,
we now proceed to calculate the noise spectrum.

In a quantum conductor out of equilibrium, electronic
current-noise originates from the dynamical fluctuations of
the current away from its average. To study correlations be-
tween carriers, we relate the exciton dynamics with the hole
reservoir operators by introducing the degree of freedom n as
the number of holes that have tunneled through the barrier
connected to the reservoir of holes and write

ṅ0
�n��t� = − 	Ln0

�n��t� + 	Rn↓
�n−1��t� ,

ṅ↑
�n��t� = 	Ln0

�n��t� + iT�p↑,↓
�n��t� − p↓,↑

�n��t�	 − �n↑
�n��t� ,

ṅ↓
�n��t� = − 	Rn0

�n��t� − iT�p↑,↓
�n��t� − p↓,↑

�n��t�	 + �n↑
�n��t� ,

�12�

where nj
�n��t�, j=0, ↑ ,↓, represent the time-dependent occu-

pation probabilities for the diagonal elements: �0��0�, �↑ ��↑ �,
and �↓ ��↓ �, respectively. Here, p↑,↓�t� and p↓,↑�t� are the off-
diagonal matrix elements: �↑ ��↓ � and �↑ ��↓ �. T is the “coher-
ent” interaction that the dot experiences. The superscript “n”
in nj

�n��t� refers to the n holes that have tunneled the barrier
connecting to the hole reservoir.

Equations �12� allow us to calculate the particle current
and the noise spectrum SIR

��� from Pn�t�=n0
�n��t�+n↑

�n��t�
+n↓

�n��t�, which gives the total probability of finding n elec-
trons in the collector at time t. In particular, the noise spec-
trum SIR

can be calculated via the MacDonald formula20

SIR
��� = 2�e2


0




dt sin��t�
d

dt
��n2�t�� − �t�I��2	 , �13�

where d
dt �n

2�t��=�nn2Pn�t�. From Eqs. �12� and �13�, we ob-
tain

SIR
��� = 2eI�1 + 	R�ñ↓�− i�� + ñ↓�i��	� , �14�

where ñ↓�z� is the Laplace transformation of n↓�t�.
By fixing T1=30 meV and �1−�2=�, an interference ef-

fect can be observed in the noise spectrum as a function of T2
and �, as shown in Fig. 3�a�. The figure shows two symmet-
ric lobes around T2=T1, which represent the local minima.
To understand these features, we plot in Fig. 3�b� the Fano
factor �i.e., the zero-frequency noise divided by the current�
as a function of T2 for different values of the incoherent
decay rate �. One clearly finds that the magnitude of the
central peak decreases when increasing �. As the incoherent
process dominates due to the noncondensate photons over-
whelming the coherent ones, the Fano factor reduces to the
usual sub-Poissonian limit.21 In the opposite limit ��→0�,
the Fano factor approaches unity, i.e., the Poissonian value,
demonstrating that the revealing feature of destructive inter-
ference is a peak in the Fano factor �at �=0�, coinciding
with the dip in the steady-state current observed in Fig. 2.

VI. CONCLUDING REMARKS

In summary, we have shown that a single QD p-i-n junc-
tion can serve as a minidetector22 of a polariton condensate.
As the condensation occurs, the two-level exciton couples
with the photonic part of condensation polaritons and results
in a coherent tunneling inside the dot. The strength of the
coherent tunneling increases with the condensation number.

Furthermore, we have also shown that the features of in-
terference can be readout via the electrical current and
current-noise if the QD p-i-n junction is coupled to two con-
densates. Other features of polariton condensation, such as
vortex and nonequilibrium behavior, may also be readout by
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FIG. 3. �Color online� �a� Shot-noise spectra of a QD p-i-n
junction as functions of both � and the coupling T2 to the second
condensate. Here, the excitons are coupled to two condensates.
Similar to Fig. 2, one of the condensate numbers is kept fixed, i.e.,
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continuous black, red dashed, and dotted curves represent the Fano
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such a hybrid structure and deserves to be investigated in the
near future.

Finally, we mention that an alternative way to detect the
condensation of polaritons via electron transport is by di-
rectly embedding the quantum well between a p-n junction.
We expect that in this case the increase in the steady-state
current with the condensation number N might be observ-
able. However, the features we observed in the current-noise
spectrum may be invisible since the assumption of three dot
states is not valid in a quantum well.
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