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The Dicke model describes N qubits �or two-level atoms� homogeneously coupled to a bosonic mode. Here
we examine an open-system realization of the Dicke model, which contains critical and chaotic behaviors. In
particular, we extend this model to include an additional open transport qubit �coupled to the bosonic mode� for
passive and active measurements. We illustrate how the scaling �in the number of qubits N� of the super-radiant
phase transition can be observed in both current and current-noise measurements through the transport qubit.
Using a master equation, we also investigate how the phase transition is affected by the back action from the
transport qubit and losses in the cavity. In addition, we show that the nonintegrable quantum chaotic character
of the Dicke model is retained in an open-system environment. We propose how all of these effects could been
seen in a circuit-QED system formed from an array of superconducting qubits, or an atom chip, coupled to a
quantized resonant cavity �e.g., a microwave transmission line�.
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I. INTRODUCTION

Understanding and categorizing complex modes of behav-
ior, such as quantum phase transitions1 and quantum chaos,2

is an important part of quantum many-body theory. Recently,
concepts and formalisms from quantum information theory
have been used to understand and classify several aspects of
criticality.3–7 However, the realization of strong-coupling re-
gimes, coherent dynamics, and careful readout necessary to
observe these phenomena in laboratory conditions is chal-
lenging.

Our goal here is to show how a particular quantum phase
transition, the Dicke super-radiant transition7–9 behaves
when coupled to the environment and measured using trans-
port techniques, as is the case in realistic experimental con-
ditions. The Dicke model describes N two-level “atoms” or
qubits coupled to a common single-mode cavity. We focus
on this model because of the recent advances in on-chip “cir-
cuit QED,”10–18 where the strong-coupling regime is acces-
sible and which allow for coupling to a range of artificial
atoms and measurement apparatuses. In particular, we pro-
pose a dispersive measurement scheme to observe this tran-
sition by coupling either a superconducting qubit array or an
atom chip, to a cavity which is simultaneously �dispersively�
coupled to a nonequilibrium measurement device �a so-
called “transport” qubit19�, realizable with a superconduct-
ing single electron transistor, or double quantum dot. The
geometry of the proposed device is shown in Fig. 1 and
described in detail in its caption.

We begin by outlining the salient features of the phase
transition in the Dicke model, and existing work in this area
�Sec. II�, and discussing the closed �Sec. III� and open �Sec.
IV� descriptions of the model. We then investigate how cou-
pling to a transport qubit �TQ� allows readout of the phase-
transition properties and give analytical and numerical re-
sults for the current and current noise in the zero back-action
limit �Sec. V�. We then discuss our main result that the cur-

rent can be used as an observable order parameter to detect
the phase transition �Sec. VI�. This complements a recent
surge of interest in identifying signatures of complex behav-
ior in mesoscopic transport measurements.19–21 We then con-
sider back-action and decoherence �cavity-loss� effects using
a master-equation approach �Sec. VII�. We show that both
transport qubit back action and cavity loss appear to only
have a weak affect on the current measurement near the criti-
cal point. In addition, we show that the Liouvillian describ-
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FIG. 1. �Color online� Geometry of the proposed device. N qu-
bits are placed at the antinode�s� of a “cavity” with resonant fre-
quency � �depending on specific realization, they might alterna-
tively be placed at one antinode, or at subsequent antinodes, to
minimize qubit-qubit interactions�. Their energy splittings are on-
resonance with the oscillator �0=�. An additional “open” TQ
�shown in the left� is also coupled to the cavity off-resonance
����� and used to passively readout the state of the cavity mode.
In the figure, the solid lines represent tunneling while the dashed
lines represent energy gaps. The properties of the transport qubit are
defined by an energy splitting �, coherent tunneling rate � and
transport rates �L and �R. In addition, the cavity mode has a cavity
decay rate �b, not shown in the figure. Superconducting artificial
atoms coupled to an on-chip cavity �e.g., a quantized LC oscillator
or microwave transmission line� are a feasible realization using cur-
rent technology. The transport qubit can be realized using a charge
qubit in the transport regime, i.e., a superconducting single electron
transistor. Alternatively, a large number of qubits in the form of
two-level atoms in an atom chip, coupled to a transmission line, has
recently been proposed as a way to realize the large-N Dicke model
�Ref. 22�.
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ing the open-system dynamics has an eigenvalue spectrum
similar to that of the Wigner–Dyson distribution of random
matrix theory, as in the closed system case �Sec. VIII�. Fi-
nally, we briefly discuss practical schemes to realize this
model in an experiment10–16,22 �Sec. IX�.

The measurement scheme we are proposing is based on
charge transport through an effective qubit. Such systems are
well known to be highly sensitive detectors �electrometers�
but associated with the charge transport process is a large
back action on the system being detected. This is due to the
stochastic nature of the transport process.23 An alternative to
the transport scheme we propose here would be doing trans-
mission spectroscopy on the cavity/resonator itself.24 An-
other possibility, in the same spirit as our dispersive transport
qubit, would be using an additional off-resonance supercon-
ducting charge or phase qubit coupled to the cavity, which is
then probed using an appropriate qubit-spectroscopy
scheme.25

We point out that the properties we investigate here re-
quire the precise control of the couplings between qubits and
the resonator, and access to a very strong-coupling regime.
Fortunately, recent work has shown that this ultrastrong-
coupling regime, where the Jaynes–Cummings approxima-
tion no longer holds, is now accessible for circuit-QED
systems.26 Furthermore, in such systems the coupling
strength can be tuned by biasing the qubits away from the
degeneracy point or by tuning them off-resonance by apply-
ing ac stark or Zeeman shifts, thus reducing the effective
interaction.27,28

In addition, it was recently shown29 that the generalized
Dicke model, a variation in the Dicke model where the cou-
plings between the N qubits and the cavity are inhomoge-
neous, still has all the critical properties of the standard
Dicke model. This indicates the universality of the Dicke
phase transition, as well as making an experimental realiza-
tion more feasible. Furthermore, a realization using Raman
transitions in atoms in an optical cavity has also been pro-
posed as a method to reach a controllable strong-coupling
regime.24

II. DICKE SUPERRADIANT PHASE TRANSITION

Historically, the Dicke Hamiltonian describes the dipole
interaction between N atoms and nb bosonic field modes.
Typically30 the atoms are considered to be at fixed sites
within a cavity of volume V. The atoms are assumed to be
well separated and thus noninteracting. Hereafter we refer to
the atoms as “qubits” and the additional measurement qubit
as the “transport qubit.” To observe critical phenomena we
consider the single-mode case. We do not make the rotating
wave approximation, allowing the model to describe both
weak- and strong-coupling regimes �and we omit the A� 2

term�.
Previous work7,9 on this model has shown an exact ana-

lytical solution in the limit N→�. Furthermore, the transi-
tion was characterized as a breaking of parity symmetry at a
particular value of the coupling between qubits and cavity
�denoted by �, with the critical value being �c�. Both the
qubits and the cavity bosonic degrees of freedom become

“macroscopically occupied” �i.e., of O�N�, the number of
qubits� in the regime above the critical point ���c. For
finite arrays of qubits, N, the system is known to exhibit
power-law scaling,31 quantum chaos,9 and critical
entanglement.7,32

Several proposals for an experimental realization of this
system have already been made. For example, Dimer et al.24

proposed a cavity QED realization and discussed in detail the
effect of the cavity decay on the phase transition. In another
work, Chen et al.27 proposed using superconducting charge
qubits coupled to an optical cavity so that the critical prop-
erties can be observed in the optical mode using heterodyne
detection. In addition they proposed observing the phase
transition as a function of level splitting, rather than coupling
strength.

III. DICKE HAMILTONIAN

The single-mode Dicke Hamiltonian is defined as

HD = �0�
i=1

N

sz
�i� + �a†a + �

i=1

N
�

�N
�a† + a��s+

�i� + s−
�i��

= �0Jz + �a†a +
�

�N
�a† + a��J+ + J−� , �1�

where Jz=�i=1
N sz

i and J	=�i=1
N s	

i are collective angular mo-
mentum operators for a pseudospin of length j=N /2. These
operators obey the usual angular momentum commutation
relations, �Jz ,J	�= 	J	 and �J+ ,J−�=2Jz. The frequency �0
describes the qubit level splitting, � is the oscillator field
frequency, and � the qubit-field coupling strength. Because
of their mutual interaction with the oscillator field the qubits
are not independent. The � /�N scaling is important to realize
the thermodynamic limit. It essentially bosonizes the low-
energy part of the state space of the collective angular mo-
mentum. Physically, this scaling implies that the density of
qubits is constant so that the cavity volume becomes larger
as N is increased, consequently reducing the electric field
density and thus the effective interaction with each indi-
vidual qubit.

First, we will show analytical results for an entirely pas-
sive measurement of the system, using an off-resonance an-
cillary qubit with current transport. Second, we will treat the
back action of the ancillary qubit as a fully quantum interac-
tion, with Markovian transport properties, and including de-
cay terms for the cavity. We will see how this alters the final
current measurements, as well as how it changes the proper-
ties of the phase transition.

IV. MASTER EQUATION

To take into account the back action of the transport qubit
on the Dicke Hamiltonian, we can model the whole system
using a master equation,

d

dt

�t� = L�
�t�� = − i�H,
�t�� + L0�
�t�� ,
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H = HD + HTQ + Hint, L0 = LTQ + LC, �2�

where

HTQ = ��z + ��x �3�

is the Hamiltonian of the transport qubit where � is the level
splitting and � the coherent tunneling within the TQ,

Hint = g�za
†a �4�

is the off-resonance dispersive interaction between Dicke
system and TQ. The coupling g is actually second order in
the true cavity-TQ coupling, see, for example, Blais et al.33

The term LTQ contains the transport properties of the TQ19

and LC contains cavity damping terms �e.g., photons leaking
from the cavity�,

LTQ�
�t�� = −
�L

2
�sLsL

†
�t� − 2sL
†
�t�sL + 
�t�sLsL

†�

−
�R

2
�sR

†sR
�t� − 2sR
�t�sR
† + 
�t�sR

†sR� , �5�

LC = −
�b

2
�a†a
 − 2a
a† + 
a†a� , �6�

where

sL = �0�	L�, sL
† = �L�	0� , �7�

sR = �0�	R�, sR
† = �R�	0� , �8�

�L and �R are the left/right tunneling rates for the TQ and �b
is the decay rate of photons out of the cavity �throughout, we
set �=1�. Here 
�t� is the density matrix describing the state
of the qubit-array, cavity, and transport qubit system.

V. PASSIVE MEASUREMENT

If we assume no back action from the transport qubit onto
the Dicke model, the problem is very simple. However, the
form of the interaction between the transport qubit and the
effective cavity is still important. As mentioned, off-
resonance, ��, we assume the interaction is dispersive,25

Hint=g�za
†a. For an entirely nondestructive passive mea-

surement �with no feedback�, the state of the ancillary trans-
port qubit is then just shifted by the occupation of the trans-
mission line �i.e., considering the mean field of Eq. �3��,

HTQ 
 �� + g	a†a���z + ��x. �9�

We are able to calculate the analytical values of 	a†a� in
the limit N→�. The transport properties are easily calcu-
lated using a counting-statistics approach, which has been
well summarized elsewhere.19 Thus, the current and zero-
frequency current noise measured through the ancillary qubit
is simply given by

I

e
=

�2�R

�2�2 + �L/�R� + �R
2 /4 + �� + g	a†a��2 , �10�

S�0� = 2eI�1 – 8�L�24�� + g	a†a��2��R − �L� + �R�3�L�R + �R
2 + 8�2�

�4�2�2�L + �R� + �L�R
2 + 4�� + g	a†a��2�L�2 � . �11�

In the limit N→� the Dicke Hamiltonian has two distinct
solutions, corresponding to the two phases of the transition.
In the super-radiant phase both cavity and qubit array have a
macroscopic mean-field displacement.

In the lower, “normal phase,” we define the occupation of
the cavity 	a†a� by an effective temperature T and frequency
�,

	a†a� = m�

4�
+

�

4m�
�coth �

2T
� −

1

2
, �12�

where � and T depend on the eigenenergies of H,

��	
�1��2 =

1

2
��2 + �0

2 	 ���0
2 − �2�2 + 16�2��0� , �13�

where �− is only real for ���c, giving the range of this
solution. The dependence of T and � on the eigenvalues is
via the relations,

cosh �� = �1 +
2�−�+

��− − �+�2c2s2� , �14�

m� = ��1 +
2�−�+

��− − �+�2c2s2�2

− 1�1/2

�15�

�� ��− − �+�2c2s2

2��−s2 + �+c2�� , �16�

c � cos ��1�, s � sin ��1�, �17�

tan�2��1�� =
4����0

��0
2 − �2�

, �18�

where �=1 /kBT. These define two equations linking the
three parameters of the cavity/qubit system �, �0, and �, and
the three effective parameters of a thermal oscillator �, �,
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and m. By setting one energy scale of the original system
such that �=1 and that of the thermal oscillator such that
m=1, we can uniquely define the correspondence between
the two systems. We use the relations,

cosh���� = 1 + 2�−�+/D , �19�

D � �sc��− − �+��2, �20�

2�/sinh���� = D/��−s2 + �+c2� , �21�

� sinh���� =
2�−�+�1 + �−�+/D�

��−s2 + �+c2�
, �22�

coth���/2� = �cosh���� + 1�/sinh���� �23�

to obtain

	a†a� =
��−s2 + �+c2�

4
m

�
+

�

m�−�+
� . �24�

Thus, in this passive measurement regime, in the large N
limit, the occupation of the bosonic mode �which is an order
parameter of the phase transition� diverges as �−→0 when
�→�c. In the next section we discuss the effect of this on the
current measurement.

VI. POWER-LAW SCALING IN TRANSPORT
PROPERTIES

A. Results

We plot the current and current noise in Figs. 2 and 4. We
immediately see that, at the critical point �c, the large occu-
pation of the cavity mode �which is proportional to the num-
ber of qubits N� acts to blockade the current flow �by “push-
ing apart” the internal energy levels of the transport qubit�.
Similarly, the zero-frequency noise becomes strictly Poisso-
nian at the critical point. This is a consequence of the slow
current and charge-dominated dynamics. Thus, both the cur-
rent and current noise are operating as signatures, or order
parameters, of the phase transition, because of their direct
dependence on 	a†a�.

As mentioned earlier, in previous work8,9 the phase tran-
sition was studied as a function of multiqubit-oscillator cou-
pling �. However, the transition can also be observed for a
given constant �, by tuning the energy level of the qubits �0.
This is a more realistic approach with superconducting qu-
bits as a possible realization. Qualitatively, the properties of
the transition are the same. For instance, for �=0.1� the
transition occurs when �0,c→0.04�. The subradiant phase
occurs for �0��0,c while the super-radiant phase appears
when �0��0,c, both of which are experimentally accessible
regimes. However, because the interaction is off-resonance,
the convergence to the correct scaling behavior requires
much larger N.

B. Scaling with the number (N) of qubits

To observe power-law scaling with N, we must look at the
derivative of both the current and current noise with respect
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FIG. 2. �Color online� �a� The current I /e versus multiqubit-
oscillator coupling � through the transport qubit for �=0.1, �L

=�R=0.1, �=0, �=�0=1, and g=0.1 for N=4,8 ,16,20,24,�. �b�
The derivative of the current through the transport qubit for the
same parameter set versus �. �c� and �d� show one particular data
curve �N=4, �b=0.1� for the bosonic occupancy 	a†a� and the
current I /e for the three different approximations; zero back action
�ground state of the pure Dicke model�, master equation with cavity
damping, and master equation with cavity damping and transport
qubit feedback.
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to the Dicke multiqubit-oscillator coupling �. The minimum
value of these derivatives will act as a signature of “precur-
sor behavior” and from them we can extract the power-law
dependence. In Fig. 2�b� we show the derivative of the cur-
rent and in Fig. 3�a� we see that the position of the minimum
of the current derivative scales as a power law in N via

��m − �c� � N−0.68	0.05. �25�

This matches a previous result for the scaling of the en-
tanglement entropy.7 Similarly the value of the current at this
minimum point scales logarithmically as

d�I/e�
d�

m � �0.81 	 0.05�log2 N , �26�

as shown in Fig. 3�b�. The value of the current derivative
obeys similar scaling laws.

Vidal and Dusuel31 studied the scaling, in N, at the critical
point �c of several properties of the Dicke model. They pre-
dicted a scaling exponent for 1 / 	a†a�2 of �=2 /3. These ex-
ponents are different from those we observe here, as they
describe behavior of quantities measured exactly at �c. To
extract the same exponents from our numerics would require
very large values of N. However a recent numerical study by
Chen et al.34 describes a scheme where such exponents can
be calculated efficiently for large N and confirmed31 the cor-
rect exponents for some of these quantities. Their results
emphasizes the point that the true scaling exponents are only
visible for very large N, which may be difficult to reach for
some experimental realizations.

VII. BACK ACTION AND CAVITY LOSS

To take into account both the back action of the transport
qubit and the loss of photons from the cavity due to coupling

to the environment, we must solve the entire master equation
numerically. This is a nontrivial task, even with state-of-the-
art numerics and requires careful use of sparse-matrix tech-
niques to increase efficiency.

Dimer et al.24 investigated the thermodynamic limit of the
Dicke model including losses from the bosonic cavity. They
found that the critical point was shifted from its normal po-
sition as a function of the cavity loss �b. In Figs. 2�c� and
2�d� we do the same for the finite-N case, comparing the
three possible regimes: zero back action and no cavity loss,
zero back action with cavity loss, and a full treatment of
cavity loss and back action.

In Fig. 2�c� we see that around the critical point the oc-
cupancy of the bosonic cavity is almost exactly the same for
both master-equation treatments but differs slightly from the
ground-state Dicke case. Furthermore the strong-coupling
limit for the full master-equation treatment saturates because
of the bosonic Hilbert-space cutoff needed in solving this
complex problem. Furthermore, in Fig. 2�d� we see that the
full treatment of the combined transport qubit/Dicke model
shows a reduced current profile compared to the two situa-
tions with zero back action. This is also the case for other
values of N.

However the coupling to the qubit, and the loss of energy
from the cavity, has less obvious effects on the properties of
the phase transition itself. In particular, the parity,

� = exp�i��a†a + Jz + j�� �27�

is no longer conserved and the steady state will contain com-
ponents of both the ground state and excited states of HD.
Because of this, and the restrictions on the number of spins
we can efficiently model, it is not possible to extract expo-
nents from this data. However, we expect the large-N limit to
still exhibit features of the phase transition, as predicted by
Dimer et al.24

VIII. SIGNATURES OF QUANTUM CHAOS

Quantum chaos is a characteristic of nonintegrable quan-
tum systems. Emary and Brandes9 extensively studied the
�closed� Dicke model and its chaotic properties. In the
finite-N regime they showed that the eigenvalue spectrum of
the Dicke model fitted that of the Wigner–Dyson
distribution35 when the qubit-boson coupling was around the
critical point �
�c. Thus, the chaotic behavior is understood
to be a “precursor” of the phase transition, driven by the
parity conservation at the critical point.

Here we extend their work by identifying similar distribu-
tions in the eigenvalues,

�i = i�Ei
L� + �i �28�

of the Liouvillian L which include imaginary components
i�Ei

L� from HD, as well as real components �i from the
cavity-loss terms. Here we ignore the back-action and
electron-transport terms and focus on the effect of cavity
damping on the level statistics.

For the pure-state case �no cavity losses�, the von Neu-
mann equation of motion,

2 3 4
-4

-3

Log2[λm-λc]

Log2[N]

(λm-λc)∼Ν
−0.68

2 3 4

-3

-2

d(I/e)m
dλ

Log2[N]

d(I/e)m
dλ

~(0.81 Log2N)

(a)

(b)

FIG. 3. �a� shows the scaling with N and scaling exponent of the
position ��m� of the minimum of the current derivative: ��m−�c�
�N−0.68	0.05. �b� shows the scaling of the value of the current at this
minimum point to be � d�I/e�

d� �m� �0.81	0.05�log2 N. The parameters
used here are �=0.1, �L=�R=0.1, �=0, �=�0=1, and g=0.1 with
data taken at N=4,8 ,16,20,24,40,60.
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�t�
dt

= − i�H,
�t�� �29�

can be written as a set of NH
2 coupled equations of the matrix

elements of 
, where NH is the dimension of the Hilbert
space for the system described by the Hamiltonian H. If H
has NH eigenvalues Ek, k=1, . . . ,NH, and we take matrix
elements according to the eigenbasis of H, then we can write
these linear equations as a diagonal matrix with NH

2 imagi-
nary eigenvalues

Ei=j�k
L = �

k,j=1

NH

�Ek − Ej� . �30�

Every possible energy gap �not just nearest neighbor� in the
spectrum of H has an eigenvalue in L.

In Figs. 5 we show the positive branch of the imaginary
components of the eigenvalues of L for N=6 and �=�c, after
removal of the NH zeros, i.e., the stationary states and the
probability distributions of these components. Even though it
is not possible to unfold this spectrum, and all possible level
spacings are present, we see some characteristics of the
“picket-fence” distribution36 of the Rabi Hamiltonian and the
universal Wigner–Dyson distribution.35

We point out that the eigenvalues of this matrix, which is
a particular representation of the superoperator L, determine
many of the higher-order transport properties, like the
frequency-dependent noise. This is also seen in scattering
theory,37 where there much work has been done on applying
random matrix theory to transport problems. However, so far

the application of random matrix theory to master
equations38 has been limited in scope. We hope our results
will motivate readers to pursue further future studies beyond
these preliminary explorations.

IX. FROM CIRCUIT QED TO THE DICKE MODEL

Al-Saidi and Stroud39 have studied a realization of the
Dicke model using Josephson junctions coupled to an elec-
tromagnetic cavity. Operating in the regime “between”
charge and flux qubits they showed that, given the right pa-
rameters, the higher-lying levels of each junction can be ne-
glected. In the same way, it is possible to derive the Dicke
Hamiltonian, Eq. �1�, from the Hamiltonian describing super-
conducting qubits interacting with a cavity. The proposal and
realization of cavity QED �Refs. 10–16� in a circuit was an
important development for quantum optics and condensed
matter, and thus the observation of strong many-body effects
in these systems is a natural extension of previous work.

Alternatively, a large number of qubits, in the form of
two-level atoms in an atom chip, coupled to a transmission
line, was recently proposed as a way to realize the large-N
Dicke model.22 Finally we point out a recent proposal by
Mariantoni et al.17,18 on coupling two resonators together via
an intermediatory qubit. Such a scheme could be used to
realize, experimentally, the low-coupling �normal phase� re-
gion of the Dicke model in the thermodynamic �N→��
limit. It may also be possible to introduce more complex
interactions between the two resonators, to realize other
models from catastrophe theory.40
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FIG. 4. �Color online� �a� The current noise F�0�=S�0� /2eI ver-
sus multiqubit-oscillator coupling � for �=0.1, �L=�R=0.01, �=0,
�=�0=1, g=0.1, and for N=4,8 ,16,20,24,�. �b� The derivative
dF�0�

d� versus �. The peak scales as a power law of N, similar to the
minimum of the current derivative.

0 0.5
0

0.01

P(ELi)

ELi/smax

0 1000 2000 3000
0

5

10

15
ELi

i

FIG. 5. �Color online� The inset shows an example of the posi-
tive imaginary components of the eigenvalues �Ei

L� of the Liouvil-
lian for the damped Dicke model and the main figure shows their
probability distribution P�Ei

L�, normalized to the maximum energy
gap Smax, for N=6, �=�c, and �b=0.1. While this contains every
possible eigenvalue separation of the Hamiltonian �up to numerical
bosonic cutoff�, and has not been unfolded to remove secular varia-
tions, level repulsion is still visible.
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X. CONCLUSIONS

In conclusion, we have shown that current and current-
noise measurements could be used to test for criticality in an
“on chip” experiment. We extracted scaling exponents for the
Dicke phase transition from semianalytical and numerical
modeling, and illustrated how quantum chaos, a precursor
behavior to the phase transition, is retained in an open-
system environment.
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