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We analytically examine the excitation of surface Josephson plasma waves �SJPWs� in layered supercon-
ductors by an incident electromagnetic wave. The mechanism of excitation is related to the diffraction of the
incident wave due to a small periodic modulation in the ab plane of the maximum c-axis Josephson current
density. We show that the absorption of the incident wave can be substantially increased, for certain incident
angles, due to the resonance excitation of SJPWs. The absorption increase is accompanied by a decrease in the
specular reflection. Moreover, we find the dependence of the resonance value of the incident angle on the
parameters of the superconductor and the frequency of the incident wave, and the depth of the modulations
guaranteeing the total absorption �and total suppression of the specular reflection�. Numerical examples of the
resonance effects are presented for Bi2212 superconductors.
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I. INTRODUCTION

Over the last 20 years, the physical properties of layered
superconductors have attracted the attention of many re-
search groups. The strongly anisotropic high-temperature
Bi2Sr2CaCu2O8+� single crystals are the most prominent
members of this family. Numerous experiments on the c-axis
transport in layered high-Tc superconductors justify the use
of a model in which the superconducting CuO2 layers are
coupled, through the block layers, by the intrinsic Josephson
effect. The Josephson current flowing along the c axis is
coupled with the electromagnetic field inside the insulating
dielectric layers, thereby causing a specific kind of elemen-
tary excitations called Josephson plasma waves �JPWs� �see,
e.g., Ref. 1�. In other words, the layered structure of Bi-based
superconductors and related compounds favors the propaga-
tion of electromagnetic waves through the layers. These
waves are of considerable interest because of their terahertz
�THz� and sub-THz frequency ranges, which are still hardly
reachable for both electronic and optical devices. The fre-
quencies of terahertz waves are in the region of resonance
frequencies of molecules and are expected to have many ap-
plications.

The unusual optical properties of layered superconduct-
ors, including their reflectivity and transmissivity, caused by
the JPWs excitation, were studied, e.g., in Ref. 2. Earlier
works on this problem have focused on the propagation of
bulk waves, that is possible in the frequency range above the
Josephson plasma frequency �J, at ���J, only. The pres-
ence of the sample boundary can produce a new branch of
the wave spectrum below the Josephson plasma frequency,
���J, i.e., surface Josephson plasma waves �SJPWs�,
which are an analog of the surface-plasmon polaritons.3,4 Re-
cently, the existence of SJPWs in layered superconductors in
the THz frequency range was predicted.5–7 Surface waves

play an important role in many fundamental resonance optics
phenomena,8 such as the Wood’s anomalies in reflectivity4,9

and transmissivity10,11 of periodically corrugated metal
samples. A recent overview of unusual resonators can be
found in Ref. 8. Therefore, it is essential to study similar
resonance phenomena caused by the excitation of surface
waves in layered superconductors.

The dispersion curve, ��q�, of the surface waves lies be-
low the “vacuum light line,” �=cq, where q is the wave
number and c is the speed of light. This means that the sur-
face waves have wave vectors greater than the wave vectors
of light of the same frequency in vacuum. Thus, to excite the
surface waves by means of incident irradiation, it is neces-
sary to use special methods,4 such as, e.g., the attenuated
total reflection method or the surface modulation method.

In this paper, we study the excitation of surface Josephson
plasma waves while diffracting an electromagnetic wave in-
cident onto a periodically modulated layered superconductor.
We assume that the maximum c-axis Josephson current den-
sity, Jc, has small periodic modulations in the ab plane. In
this case, the wave vectors of one �or simultaneously two�
diffracted waves can coincide with the wave vector of the
SJPW for a definite resonance value of the incidence angle
and the excitation of SJPWs occurs under such conditions.
For simplicity, we present results for single-resonance cases,
when only one SJPW is excited. The excitation of SJPWs
affects the resonance absorption and reflection of the incident
electromagnetic waves. We calculate analytically the depen-
dence of the absorption and reflection on the frequency �
and the incident angle � using resonant perturbation theory.
Within this theory, the amplitudes of all diffracted waves,
except the amplitude of the excited SJPW, are assumed to be
small due to the small modulations in Jc. Under the reso-
nance conditions, the amplitude of the excited SJPW can be
very large, even though the Jc modulation is small. We show

PHYSICAL REVIEW B 79, 214501 �2009�

1098-0121/2009/79�21�/214501�8� ©2009 The American Physical Society214501-1

http://dx.doi.org/10.1103/PhysRevB.79.214501


that the reflectivity can be completely suppressed for optimal
depth of the modulations. These phenomena are potentially
useful for detecting THz radiation.

This work presents a detailed examination of the reso-
nance features for the diffraction of THz radiation on peri-
odically modulated layered superconductors. The resonance
is caused by the excitation of the SJPWs for definite combi-
nations of the incident angle and frequency, and is analog to
the widely studied surface-plasmon polariton resonance in
the visible and near-infrared region. The analytical approach
developed here allows us to predict strong resonance effects
�total suppression of the specular reflection and total absorp-
tion� for specific combinations of the parameters. These phe-
nomena have a direct interpretation: under the resonance
condition Eq. �1�, the spatial-and-temporal matching �coinci-
dence of both the frequencies and wave vectors� of one of
the diffracted modes and the surface Josephson plasma wave
occurs. In this case, a significant fraction of the energy com-
ing to the layered superconductor from the vacuum is trans-
formed into Joule heat due to quasiparticle resistance and the
reflectivity of the superconductor significantly decreases.
The suppression of the reflectivity can be complete for an
optimal depth of the modulations. Thus, if the conditions for
the total suppression of the reflectivity are satisfied, the en-
ergy flux �i.e., the z component of the Poynting vector of the
incident wave� is completely absorbed. The suppression of
the reflectivity �R�2 accompanied by the resonant increase in
the electromagnetic absorption can result in a transition of
the superconductor into the resistive or even into the normal
state. Thus, a new kind of resonance phenomena can be ob-
served due to the excitation of the SJPW.

II. MODEL

Consider a semi-infinite layered superconductor in the
simplest geometry shown in Fig. 1. The crystallographic ab

plane coincides with the xy plane and the c axis is directed
along the z axis. Superconducting layers are numbered by an
integer l�1.

Suppose that the maximum c-axis Josephson current den-
sity, Jc, is periodically modulated in the x direction with a
spatial period L. Such a modulation can be realized, for in-
stance, either by irradiating a standard Bi2Sr2CaCu2O8+�

sample covered by a modulated mask.12 Another way to
modulate the value of Jc is applying an out-of-plane mag-
netic field. In this case, according to, e.g., Ref. 13, the pan-
cake vortices appear in the sample. The period of vortex
lattice and, thus, the period of modulations are controlled by
the out-of-plane magnetic field.

A p-polarized �transverse magnetic� plane monochromatic
electromagnetic wave with electric, E= �Ex ,0 ,Ez�, and mag-
netic, H= �0,H ,0�, fields is incident onto a periodically
modulated layered superconductor at an angle � from the
vacuum half space. The in-plane and out-of-plane compo-
nents of its wave vector are

kx � q = k sin �, kz = − k cos �, k = �/c .

The in-plane periodic modulation results in generating the
diffracted waves with in-plane and out-of-plane wave-vector
components,

qn = q + ng, kzn
V = �k2 − qn

2, Re�kzn
V 	, Im�kzn

V 	 � 0,

where n is an integer and g=2� /L. The resonance excitation
of the SJPWs corresponds to the condition,

qn = k sin � + ng = sign�n�Re�	sw���	 , �1�

where 	sw����k is the SJPW wave number,7

	sw
2 ��� = k2
1 −

k2
ab
2 �2

��1 − �2 − i���−1

. �2�

The total magnetic field in the vacuum �z�0� is given by
the Fourier-Floquet expansion,

HV�x,z� = Hinc
exp�iqx − ikz cos ��

+ �
n

Rn exp�iqnx + ikzn
V z�� , �3�

where Hinc is the amplitude of the incident wave and Rn are
the transformation coefficients �TCs�. The time dependence
exp�−i�t� is omitted hereafter.

Using Maxwell equations, we express the tangential com-
ponent of the electric field in the vacuum in terms of the
magnetic field,

Ex
V�x,z� = Hinc
− �V exp�iqx − ikz cos ��

+ �
n

�n
VRn exp�iqnx + ikzn

V z�� , �4�

where �V=cos � and �n
V=kzn

V /k.
The electromagnetic field within the layered supercon-

ductor is related to the gauge-invariant phase difference, �l,
of the order parameter. The values of �l in the junctions are
governed by a set of coupled sine-Gordon equations. To the

FIG. 1. �Color online� Geometry of the problem: k and k0 are
the wave vectors of the incident and specularly reflected waves, 	sw

is the wave number of the SJPW. The case of backward resonance
diffraction in the rth order �r�0� is shown. Also, qr=q+rg
−	sw denotes the tangential component of the wave vector of the
resonance wave and g=2� /L is the period of the reciprocal grating.
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best of our knowledge, Sakai et al.14 were the first who de-
rived the set of coupled sine-Gordon equations for the phe-
nomenological description of the electrodynamics of layered
superconductors. Later on, many authors �see, e.g., Refs. 15
and 16� rederived the coupled sine-Gordon equations using
other approaches. Reference 17 presented a microscopic
theory of the superconducting phase and charge dynamics in
intrinsic Josephson-junction systems based on a BCS
functional-integral formalism. Under some conditions, their
theory also rederives the coupled sine-Gordon equations.
These equations are applicable to cuprates because they have
the same structure for superconductors with d-wave pairing
�see Ref. 16� and allow the incorporation of d-wave specifics
via material parameters, such as quasiparticle conductivities.

For the case when the Josephson plasma frequency �J is
modulated in the ab plane, the coupled sine-Gordon equa-
tions can be written in the form,

�1 −

ab

2

D2 �l
2�� �2�l

�t2 + �r
��l

�t
+ �J

2�x�sin �l� −
c2

�

�2�l

�x2 = 0.

�5�

Here 
ab is the London penetration depth across the layers, D
is the spatial period of the layered structure, the discrete
second derivative operator �l

2 is defined as �l
2f l= f l+1+ f l−1

−2f l,

�r =
4��c

�

is the relaxation frequency, �c is the quasiparticle conductiv-
ity across the layers,

�J�x� =�8�eDJc�x�
��

�6�

is the periodically modulated Josephson plasma frequency,
and � is the interlayer dielectric constant. The Fourier expan-
sion of �J

2�x� is

�J
2�x� = �J

2
1 + �
n�0

fn exp�ingx��, f−n = fn
�. �7�

Below we assume the modulation to be small, �fn��1.
As was shown in Ref. 18, the intralayer quasiparticle con-

ductivity, �ab, should also be taken into account if � is far
enough from the Josephson plasma frequency. The contribu-
tion of the in-plane conductivity to the dissipation can be
easily incorporated in our analysis. However, for the fre-
quency range considered here �close to �J�, this contribution
is strongly suppressed and can be safely omitted because the
relative value of the term with �ab is

�
ab


c
�2��ab

�c
��1 −

�

�J
� � 1.

Here 
c=c / ��J
��� is the London penetration depth along the

layers.
For the Josephson plasma waves, the nonlinear Eq. �5�

can be linearized, i.e., sin �l can be replaced by �l. We also
assume that the gauge-invariant phase difference experiences
small changes, ��l+1−�l�� ��l�, and thus we can use the con-

tinuum approach, replacing D−1�l�l by �z��z�. Then Eq. �5�
yields

�1 − 
ab
2 �2

�z2���J
2�x� − �2 − i��r	� −

c2

�

�2�

�x2 = 0. �8�

The magnetic and electric fields are related to the gauge-
invariant phase difference as

��

�x
=

2�D

�0
�1 − 
ab

2 �2

�z2�H , �9�

Ex = − ik
ab
2 �H

�z
, Ez = ik

�0

2�D
� , �10�

where �0=�c� /e is the flux quantum and e is the elemen-
tary charge.

Note that the component Ez of the electric field induces a
charge in the superconducting layers when the charge com-
pressibility is finite. This results in an additional interlayer
coupling �so-called capacitive coupling�. Such a coupling
significantly affects the properties of the longitudinal Joseph-
son plasma waves with the wave vector perpendicular to the
layers. The dispersion equation for the linear Josephson
plasma waves with arbitrary direction of wave vector, and
taking into account capacitive coupling, was obtained in Ref.
2. According to this dispersion equation, the capacitive cou-
pling can be safely neglected in our case when the wave
vector has a component q�� /c along the layers due to the
smallness of the parameter �=�RD

2 /sD. Here RD is the De-
bye length for a charge in a superconductor and s is the
thickness of the superconducting layers.

III. DIFFRACTION OF THE INCIDENT
ELECTROMAGNETIC FIELD

Inside the layered superconductor, we represent the
gauge-invariant phase difference and the electromagnetic
field as expansions over the eigenfunctions,

��x,z� = Hinc�
s

C̄s�̄s�x�exp�psz� , �11�

H�x,z� = Hinc�
s

Cs�s�x�exp�psz� , �12�

Ex�x,z� = − Hinc�
s

asCs�s�x�exp�psz� �13�

with

�̄s�x� = �
n

�̄s�n exp�iqnx�, �s�x� = �
n

�s�n exp�iqnx� .

�14�

Here we introduce the dimensionless variable

as = − ik
ab
2 ps.

Substituting the expressions �11�–�14� in Eqs. �8�–�10� gives
a set of linear equations which allows us to find the coeffi-
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cients �̄s�n and �s�n in the expansions �Eq. �14�	 and the

eigen-numbers ps. After excluding the coefficients �̄s�n, we
arrive at the set of equations for �s�n. It can be solved by
perturbations with respect to the small modulation, �fn��1.
In linear approximation and in the absence of the degeneracy
of the corresponding matrix, i.e., at

qs
2 � qn

2 for s � n , �15�

we obtain

�s�n = �s,n + �̃s�n, �̃s�n 
qs

2

qn
2 − qs

2�n−s, s � n ,

�s =
fs

1 − �2 − i�
, ��s� � 1,

ps 
1


ab

�1 +

c

2qs
2

1 − �2 − i�
+ O����2� , �16�

Re�ps	 � 0, Im�ps	 � 0, �17�

where �s,n is the Kronecker delta, �=� /�J, and =�r /�J.
Matching the tangential components of the electric and

magnetic fields at the interface z=0, we obtain an infinite set
of linear algebraic equations for the coefficients Cs and their
relations to the TCs Rn,

�
s

Dn�sCs = 2�V�n,0, �18�

Rn = �
s

Cs�s�n − �n,0, �19�

where

Dn�s = bn�n,s + dn�s, bn = �n
V + an, �20�

dn�s = ��n
V + as��̃s�n. �21�

To solve the infinite set of Eq. �18� for Cs we use resonant
perturbation theory, which allows presenting results in an
explicit analytical form.19 When all spatial field harmonics
are far away from the eigenmodes of the unmodulated lay-
ered superconductor �nonresonance conditions�, the diagonal

elements bs of the matrix D̂��Dn�s� are on the order of 1 or

larger, �bs����s
V��1. In this case, the matrix D̂ is diagonal

dominated, that is, its off-diagonal elements are small com-
pared to the diagonal ones, �dn�s����n−s�� �bs�. Then, the so-
lution of Eqs. �18� and �19� gives us a trivial result: the
specular reflection TC, R0, is close to the Fresnel coefficient,

RF =
cos � − a0

cos � + a0
� �RF�exp�i�� , �22�

and differs from it by terms proportional to �2. Other TCs are
small, Rn��n, n�0.

A much more interesting case occurs under the resonance
conditions when Eq. �1� holds for one �or simultaneously for
two� spatial field �resonance� harmonics,

qr = k sin � + rg  sign�r�Re�	sw	 . �23�

Here r�0�r�0� corresponds to the forward �backward�
propagation of the excited SJPW with respect to the incident
wave.

For simplicity, we restrict ourselves to the single-
resonance case. In the resonant case, the diagonal matrix
element Dr�r=br becomes anomalously small and the deter-

minant of the matrix D̂ decreases significantly �see, e.g., Ref.
19�. Recall that the normalized z component of the wave
vectors in vacuum, �s

V, can be either purely real or purely
imaginary. Therefore, the minimum of �br��1 holds in the
vicinity of the point in the �� ,�� plane where Im��r

V	=
−Im�ar	, which is the dispersion relation for SJPWs, Eq. �2�.

Thus, the set of equations Eq. �18� consists of one reso-
nance equation �with n=r�,

Dr�rBr + �
N�r

Dr�NBN = 0, �24�

and the subset of nonresonance equations �with “nonreso-
nance numbers” N�r�. Solving the subset for the nonreso-
nance coefficients BN we obtain

BN = 2�V�M̂−1�N�0 − Br�
N�

�M̂−1�N�N�DN��r, �25�

where M̂−1 is the matrix inverse of the nonresonance square

submatrix M̂ = �DN�N��. Substituting BN in Eq. �24� we obtain

Br =
Fr

D̃r�r

, �26�

where

D̃r�r = Dr�r − �
N,N�

Dr�N�M̂−1�N�N�DN��r, �27�

Fr = − 2�V�
N

Dr�N�M̂−1�N�0. �28�

We now examine the solution Eqs. �25� and �26� in the
main approximation, i.e., taking into account the linear-in-�
term in Fr,

Fr = −
2�Vdr�0

b0
, �29�

and quadratic-in-� terms in D̃r�r,

D̃r�r = �r
V + ar + Cr, Cr = − �

N

dr�NdN�r

bN
. �30�

In this approximation we keep only the zero-order term in

the series expansion of M̂−1��N,N� /bN�. Thus, we obtain

Br =
Fr

�r
V + ��r + Cr

, �31�

BN =
2�V�N,0 − dN�rBr

bN
. �32�
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Finally, using Eqs. �16� and �19� we derive the resonance,
Rr, and nonresonance, RN, transformation coefficients,

Rr = Br, RN = RF�N,0 + Rr��̃r�N −
dN�r

bN
� . �33�

It is convenient to present the resonance TC, Rr, in the form

Rr =
Fr

�r
V + ar + Cr��,�,��

, �34�

where Cr�Cr�� ,� ,�� is the parameter that describes the
coupling between waves in the vacuum and the layered su-
perconductor. Below we assume the coupling parameter Cr
to be small. However, even when �Cr��1, the coupling of the
waves in the vacuum and superconductor plays a very im-
portant role in the excitation of SJPWs and in the anomalies
of the reflection properties �Wood’s anomalies�.

First, the dispersion relation of the surface Josephson
plasma waves is modified, involving the radiation leakage in
the vacuum. The new spectrum of the SJPWs is defined by
equating the denominator in Eq. �34� to zero. Thus, the qua-
dratic in the modulation term, Cr, is responsible for the shift
of the position of the resonance, Im�Cr	, and its widening,
Re�Cr	. The region where the coupling �Cr��1 �when the
radiation leakage of the excited SJPW does not dominate�
corresponds to the strongest excitation of the surface waves
by the incident waves.

Second, due to the coupling, the specular reflection coef-
ficient, R0, in Eq. �33� differs from the Fresnel coefficient,
RF, and its modulus becomes less than one. Moreover, as we
show below, the reflection of waves with any given fre-
quency ���J can be totally suppressed for the specific in-
cident angle � and the modulation magnitude. This provides
a way to control and filter the THz radiation.

In Sec. IV, we study in detail the strong effects in the
excitation of the SJPWs, the enhancement of absorptivity,
and the suppression of the specular reflectivity near the reso-
nance.

IV. SUPPRESSION OF THE SPECULAR REFLECTION

The transformation coefficient R0 for the specularly re-
flected wave, Eq. �33�, can be rearranged as

R0 = RF

kzr
V /k + ar + Cr��,�,�� − �r��,�,��

kzr
V /k + ar + Cr��,�,��

, �35�

where � stands for �r and

�r��,�,�� =
2 cos �

cos2 � − a0
2 �a0 − ar��̃0r�̃r0. �36�

To study the resonance phenomena, we consider the case
most suitable for their observation when the following in-
equalities are satisfied:

D2


ab
2 sin2 � � �1 − �2�� � 1. �37�

The left inequality corresponds to the continuum limit for the
field distribution in the z direction, whereas the right inequal-

ity allows neglecting unity under the square root in Eq. �17�.
Note that the right inequality is not necessary for the obser-
vation of the resonance but allows us to significantly sim-
plify the expressions for the reflectivity of a superconductor.
Besides, we assume the dissipation parameter  to be small
as compared to �1−�2�,

 � �1 − �2� . �38�

The condition in Eq. �38� is necessary for the observation of
sharp resonances in the reflectivity and absorptivity of a su-
perconductor due to the excitation of SJPWs. For this fre-
quency region, the complex parameter ar=ar�� ,���ar�
+ iar� can be written as

ar =
k2
ab
c

2�1 − �2� 

1 − �2 − 2i��q̄r� , �39�

where we introduce the dimensionless variable

q̄n =
qn

k
= sin � + n

g

k
.

When restrictions Eqs. �37� and �38� are valid, the expres-
sion for the reflectivity coefficient can be significantly sim-
plified. First, the phase � of the Fresnel reflectivity coeffi-
cient, Eq. �22�, is small,

�  2
k2
ab
c

�1 − �2
tan � � 1. �40�

Second, the parameter ar in Eq. �39� depends weakly on the
angle � in the vicinity of the resonance, whereas it depends
strongly on the frequency detuning �1−�� and its real part is
sensitive to the magnitude  of the damping. Note also that
near the resonance, �r�� ,� ,�� in Eq. �35� is almost real,
�r�� ,� ,��−2 Re�Cr�� ,� ,��	.

Vanishing the imaginary part of the denominator in Eqs.
�34� and �35�,

Im�kzr
V /k + ar + Cr��,�,��	 = 0, �41�

defines a curve in the �� ,�� plane, where �Rr�� ,��� achieves
its maximum. In view of assumed smallness of the coupling
coefficient Cr, this curve passes close to

� = �0 � arcsin�1 − r
g

k
� . �42�

Separating the real and imaginary parts in the numerator
and denominator in Eq. �35�, we rewrite the specular reflec-
tion coefficient R0 the form,

R0 =
Xr��,�� + i�Re�Cr��,��	 − Copt����
Xr��,�� − i�Re�Cr��,��	 + Copt����

, �43�

where we introduce the incident-angle deviation �=�−�0.
For simplicity, below we restrict ourselves to the case of
harmonic modulation and consider the resonances in the
plus- and minus-first orders, r= �1. Then,

Xr��,��  r cos �0
1 − �2

k4
ab
2 
c

2 · �� − �res� , �44�
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�res  4
2 − g2/k2

�4 − g2/k2�2

k4
ab
2 
c

2

1 − �2

��r�2

cos �0
, �45�

Re�Cr��,��	 �k

g

�1 − rg/k�2

�2 − rg/k�5/2
k2
ab
c

�1 − �2
��r�2, �46�

Copt��� 


2�1 − �2�
. �47�

Equations �43�–�47� show that the modulus of the specular
reflectivity R0��� has a sharp resonance minima at �=�res,

�R0�min 
�Copt��� − Re�Cr��,��	�
Copt��� + Re�Cr��,��	

. �48�

Its angular width, ��, is

�� =


�1 − �2�2

k4
ab
2 
c

2

cos �0
� 1. �49�

It is clearly seen that �R0�min depends strongly on the fre-
quency detuning �1−��, dissipation parameter , and the
coupling between waves in the vacuum and the layered su-
perconductor, i.e., on the modulation magnitude �fr�. This
offers several important applications of the predicted
anomaly of the reflectivity in the THz range. For instance, if
the coupling parameter Re�Cr�� ,��	 is equal to Copt, i.e., the
modulation magnitude �fr� takes on the optimal value,

�fr�opt
2 



2
�g

k

�2 − rg/k�5/2

�1 − rg/k�2

�1 − �2�3/2

k2
ab
c
, �50�

then the specular reflection coefficient R0 at �=�res van-
ishes. This means that by appropriate choice of the param-
eters, the total suppression of the reflectivity can be achieved
due to the resonance excitation of the surface Josephson
plasma wave.

In the vicinity of the resonance, the relative amplitude of
the excited SJPW can be approximated by

Rr  2i
�r�1 − sin �0�tan2 �0

Xr��,�� − i�Re�Cr��,��	 + Copt����
. �51�

Note that equations �=�res and Re�Cr�� ,��	=Copt �i.e.,
�fr�= �fr�opt� constitute the conditions not only for the total
suppression of the specular reflection but also for the best
matching of the incident wave and the SJPW. Under such
conditions, the amplitude of the excited surface wave is
much higher than the amplitude of the incident wave,

�Rr�max 
�2�1 − �2�3/4

k�
ab
c

sin �0

cos3/4 �0
� 1. �52�

Thus, we can achieve a high concentration of THz radiation
energy in the SJPW.

The resonant decrease in the amplitude of the specularly
reflected wave is accompanied by the resonant increase in
the absorption. Evidently, for the optimal conditions, �
=�res and �fr�= �fr�opt, which correspond to the total suppres-
sion of the specular reflectivity, the energy pumped into the
layered superconductor from the vacuum can be completely

transformed into Joule heat due to the quasiparticle resis-
tance. For the diffraction on the harmonic grating, the depen-
dence of the absorptivity coefficient A on the wave frequency
and the incident angle is described by a resonance curve,

A��,�� = 1 − �R0��,���2,


4Copt���Re�Cr��,��	

Xr
2��,�� + �Re�Cr��,��	 + Copt���	2 , �53�

accurate within terms of order ��r�2. It should be noted that
the resonance increase in the electromagnetic absorption can
result in a transition of the superconductor into normal state.
Thus, new kinds of resonance phenomena can be observed in
layered superconductors due to the excitation of the SJPWs.
However, for rather low intensities of the incident wave, the
sample heating due to the Joule losses can be neglected.

We have illustrated our analytical results by the numerical
calculations of the specular and resonance TCs given in Eqs.
�34� and �35�. The angular dependences of �R0�2 and �Rr�2 for
the forward resonance diffraction in the first diffraction order
�r= +1� on a harmonic grating are shown in Fig. 2. The
asymptotic formulas �43� and �51� are in a good agreement
with these plots. The modulation magnitude, �fr�, was chosen
to achieve the total suppression of the specular reflection. Its
value is close to �fr�opt defined by the asymptotic expression
�50�.
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FIG. 2. �Color online� Numerical simulation of the total sup-
pression of the specular reflection. Black solid and red dashed
curves show the angular dependences of the specular and resonance
TCs, respectively, for the forward resonance diffraction �r=1� on
the harmonic grating. These calculations were performed using Eqs.
�34� and �35� for the harmonic grating with pitch L=1 mm and
modulation magnitude �fr�=3.6510−6. Other parameters used here
are: D=2�10−7 cm, 
ab=2.5�10−5 cm, =10−7, �=20, and �1
−�2�=1.2�10−5. The insets show the angular dependences of the
phases of the �a� resonance and �b� specular TCs.
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The minimum in the specular reflectivity �see Fig. 2� is
caused by the destructive interference of the waves scattered
via two different channels. The first channel is the direct
�approximately total� reflection from the unmodulated
vacuum-layered superconductor interface. The magnetic-
field amplitude of this wave is approximately equal to that of
the incident wave, RF1. The second channel is defined by
a two-step scattering process: the diffraction of the incident
wave into the SJPW and the rescattering of the SJPW into
the specular direction. By means of Eqs. �43� and �51�, one
can easily follow the phase changes in the resonance and
specular TCs. The value of Xr�� ,�� changes its sign when �
crosses the point �res. Correspondingly, the Rr experiences
the phase shift �� while the phase of R0 changes by �2�
�see insets in Fig. 2�.

We also illustrated the effect of total suppression of the
specular reflection by the distribution of the total magnetic
field in the vacuum, Fig. 3. The interference pattern is seen
for the nonresonant case when the amplitudes of the incident
and reflected waves practically coincide. Under the reso-
nance condition, when the reflected wave is totally sup-
pressed, the interference pattern in the far field disappears,
while the near-field “torch” structure of the SJPW is clearly
seen near the vacuum-layered superconductor interface.

V. CONCLUSIONS

In this paper, we present a systematic study of the reso-
nance features for the diffraction of THz radiation on peri-
odically modulated layered superconductors. The resonance
is produced by the excitation of the SJPWs for specific com-
binations of the incident angle and frequency, and is analog
to the well-known surface-plasmon polariton resonance in
the visible and near-infrared region. The analytical study de-

veloped here allows us to predict strong resonance effects
�total suppression of the specular reflection and total absorp-
tion� for specific combinations of the parameters. The inter-
pretation of these phenomena is clear: under the resonance
condition Eq. �1�, the spatial-and-temporal matching �coinci-
dence of both the frequencies and wave vectors� of one of
the diffracted modes and the surface Josephson plasma wave
occurs. In this case, a large fraction of the energy coming to
the layered superconductor from the vacuum is transformed
into Joule heat due to quasiparticle resistance and the reflec-
tivity of the superconductor drops significantly. The reduc-
tion in the reflectivity can be complete for an optimal depth
of the modulations. Thus, if the conditions for the total sup-
pression of the reflectivity are satisfied, the energy flux �i.e.,
the z component of the Poynting vector of the incident wave�
is completely absorbed. The reduction in the reflectivity �R�2
accompanied by the resonant increase in the electromagnetic
absorption can produce a transition of the superconductor
into the resistive or even into the normal state. Thus, a dif-
ferent type of resonance phenomena can be observed due to
the excitation of the SJPW.

The strongly selective interaction of SJPWs with the in-
cident wave having a certain frequency and direction of
propagation can be used for designing future THz detectors
and filters. A simple design for a detector is described in
Ref. 6.

In this paper, the simplest �in-plane� configuration for
TM-polarized incident wave was examined under single-
resonance conditions �i.e., excitation of one running SJPW�.
The approach used here allows a similar study of the simul-
taneous excitation of two SJPWs �double resonance� as well
as the examination of the so-called “conical diffraction
mount” �out-of-plane diffraction�. These items will be stud-
ied in the future. It seems interesting also to consider the
resonance diffraction features for superconducting films of
finite thickness. There the effects of resonance enhancement
of the transmissivity could exist.
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FIG. 3. The magnetic-field distribution for the nonresonant case,
�=60°, shown in �a� and for the resonant diffraction in diffraction
order +1, �=�res=48.93°, shown in �b�. Other parameters are the
same as in Fig. 2.
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