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We consider a nanomechanical resonator coupled to a double quantum dot. We demonstrate how the finite-
frequency current-noise spectrum through the double quantum dot can be used to distinguish classical and
quantum behavior in the nearby nanoelectromechanical resonator. We also show how the full-frequency
current-noise spectrum gives important information on the combined double quantum dot-resonator energy
spectrum. Finally, we point out regimes where the quantum state of the resonator becomes squeezed and also
examine the cross-correlated electron-phonon current noise.
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I. INTRODUCTION

The transduction of mechanical motion of resonators and
cantilevers1–6 has become increasingly important with the
observation of motion on the nanometer scale. In particular,
when the ground-state energy of the resonant mode of the
mechanical system becomes larger than the thermal back-
ground temperature, a quantized state involving millions of
molecules would materialize. As nanoelectromechanical sys-
tems �NEMSs� reach this regime it becomes increasingly fea-
sible and desirable to transduce their motion by coupling it to
a quantum degree of freedom, such as spin,7 charge,8 or flux.
However, the challenge of finding an appropriate measuring
apparatus, one whose back action would not destroy the frag-
ile quantum state, has not been overcome, even if such de-
vices could be cooled below the quantum limit.9,10

Here we propose using a quantized two-level “mesos-
copic transport” degree of freedom or “transport qubit” as a
transducer of quanta exchange and identify signatures of
quantum-coherent coupled phenomena between the mechani-
cal resonator and the transport qubit. If successfully ob-
served, this would validate the existence of a quantized me-
chanical state. Here we focus on a capacitively coupled
double quantum dot realization for the transport qubit. How-
ever, our analysis applies to several other possible devices,
such as superconducting single-electron transistors �SSETs�
�Ref. 9� and suspended double quantum dots,11 which will be
described later.

A. Probing mesoscopic transport

It is important to note that the types of experimental mea-
surement that can be made on mesoscopic transport systems
are limited; we can measure the average rate of particles
leaving the system �current�, the correlation between these
currents at long times �the zero-frequency noise�, and the full
Fourier transform of these correlations �full-frequency
noise�. Over the last few years, the zero-frequency noise has
been used with great success to experimentally verify coher-
ent quantum behavior �see, e.g., Ref. 12� and may in the
future serve as an entanglement measure13 and perhaps even

aid in realizing a solid-state test of Bell’s inequalities.14 The
full-frequency noise spectrum, often more difficult to mea-
sure in practice, is appealing because it contains information
about the full dynamics of the system; it reveals both coher-
ent dynamics stemming from the system Hamiltonian H and
incoherent dynamics from the environment. This makes it a
powerful tool for probing solid-state quantum systems.

B. Summary of our results

Our main result here is that we show how the coupled
quantum-coherent behavior, e.g., Rabi oscillations, and the
low-energy part of the coupled double quantum dot-
resonator spectrum can be observed as resonances in the full-
frequency current-noise spectrum. We also analyze the ef-
fects of temperature and decoherence on this signal and show
how the transition to the classical regime can be monitored
using our approach.

We now proceed as follows: we first define a general
model for a transport “qubit” coupled to the quantized fun-
damental mechanical mode of a nanoelectromechanical reso-
nator. This is a well-studied model in various forms and has
been used to illustrate, e.g., boson steering and micromaser
effects.8,15,16 Following this, we explain why current-noise
measurements can contain signatures of quantum-coherent
behavior. We illustrate this with results from our master-
equation model for two different parameter regimes. We also
identify signatures of quantum state squeezing17 of the reso-
nator, and we calculate the correlation between tunneling
events in the transport qubit and phonons leaving the me-
chanical resonator. Finally, we discuss other possible experi-
mental realizations, such as suspended double quantum
dots,11,15,18 spin states coupled to a magnetized resonator,7

and capacitively coupled superconducting single-electron
transistors.9

II. MODEL: TRANSPORT QUBIT COUPLED TO A
MECHANICAL MODE

The basic Hamiltonian for a transport qubit coupled to a
quantized mechanical resonator is as follows:
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H = ��z + ��x + g�z�a + a†� + �ba†a . �1�

Here �b is the fundamental frequency of the resonator, � is
the energy gap, or splitting, of the transport qubit states, and
� is the coherent tunneling rate between the two qubit states.
The bosonic operators a ,a† destroy and create excitations in
the resonator. The quasispin basis describes the two possible
states in our transport qubit, and we assume that the transport
process enters and leaves through the eigenstates of �z. For
example, for our case of a double quantum dot in the Cou-
lomb blockade regime �as shown in Fig. 1�, �z= �L��L�
− �R��R�, where L and R represent an excess electron �N+1
total electrons� in the left or right dot, and the state �0� rep-
resents the empty state �N total electrons�. Note that the ex-
cess electron in the double dot is well separated in energy
from the other electrons due to Coulomb blockade. Alterna-
tively, the superconducting single-electron transistor can be
defined by �z= �2��2�− �0��0�, representing the superposition
of charge states on the island. Even though superconducting
single-electron transistors are three-terminal devices, in cer-
tain regimes the model is equivalent to a double quantum
dot19 �see below�. The spin-blockade case would involve a
direct coupling, via the magnetization of the resonator,7 to
the electron spin �z= �↑ ��↑�− �↓ ��↓�. Hereafter we retain the
double quantum dot basis, ��L� , �R��.

A. Master equation

Transport, in all these cases, is in nonequilibrium �left to
right�, with a large bias applied to the device, and the current
measurement monitors the electrons or particles leaving the
device into the right lead or reservoir �here we neglect
displacement-current contributions�. The full equation of
motion �master equation� for this system is described by a
superoperator Liouvillian L that defines the transport of par-
ticles through the qubit �under the Born-Markovian approxi-
mation�, bath damping, and temperature terms for the reso-
nator,

d

dt
��t� = L���t�	 = − i�H,��t�	 + L0���t�	 ,

L0���t�	 = −
�L

2
�sLsL

†��t� − 2sL
†��t�sL + ��t�sLsL

†	

−
�R

2
�sR

†sR��t� − 2sR��t�sR
† + ��t�sR

†sR	

+
�b

2
�− a†a� + 2a�a† − �a†a	

+ n̄�b�− a†a� + a�a† + a†�a − �a†a	 , �2�

where

sL = �0��L�, sL
† = �L��0� , �3�

sR = �0��R�, sR
† = �R��0� , �4�

n̄ = e−	�b/kT/�1 − e−	�b/kT� , �5�

�L and �R are the left or right tunneling rates, �b is the decay
rate of vibrational quanta into the resonator thermal bath, and
T is the temperature of the resonator thermal bath �hereafter
we set k=	=1�. ��t� is the density matrix describing the state
of the resonator and the qubit.

B. Current-noise power

We derive the counting statistics of Eq. �2� using a
generating-function approach �Appendix�. Using these equa-
tions we can calculate the current-noise power,20

S���i,j 
 �
−





d�ei�����Ii�t + ��,�Ij�t��	t→
, �6�

where �Ii�t� are the current fluctuations and t→
 implies
that the fluctuations are around the steady-state expectation
values. This formalism describes the following:

�i� particle transport through our effective qubit �i= j=e,
electron or particle current�,

�ii� statistics of bunching “vibrational phonons” lost to the
background thermal bath of the resonator �i= j=b, where Ib
is an effective “bosonic” current�, and

∆

∋

g g

Tunneling
Rate

FIG. 1. �Color online� Schematic diagram of a double quantum
dot transport qubit �pink� coupled to a mechanical resonator �in
blue�. We assume a capacitive coupling g between the position of
the resonator and the electron charge state of the electron in the dot.
The double quantum dot is attached to two electron reservoirs in the
Coulomb blockade regime, with tunneling rates �L and �R. There is
a coherent tunneling rate � between the two charge states and a
tunable energy gap �. We assume that the mechanical resonator is
already cooled near the quantum limit �Refs. 9 and 10�. The param-
eter g is the coupling strength between the double quantum dot and
the mechanical resonator, whose fundamental frequency is �b. In
the schematic diagram, the placement of the components is purely
illustrative. Our model is also applicable to circuit-QED systems,
where coherent energy exchange between a resonator and a two-
level system has recently been observed �see, e.g., Ref. 21�.
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�iii� correlations between electron and phonon events �i
� j , i=e , j=b�.

The electron current is defined by the operator

Îe = �RsR��t�sR
† . �7�

Similarly, the vibrational phonon current is defined by the
operator

Îb = �ba��t�a†. �8�

Even though such “phonon statistics” are typically not ex-
perimentally accessible, we include them here because of the
connections of our model to circuit-QED systems,21–25 where
the photon statistics can be probed with incident microwave
fields and the state of the pseudospin �qubit� by suitable de-
tectors. Such a system would also be suitable for observing
the cross-correlation measurements we will present later.
Also, it is interesting to point out that in some sense the
vibrational mode of the resonator itself can be thought of as
an “acoustic phonon” with low frequency and long wave-
length. Thus in this paper, for brevity we often refer to the
“vibrational quanta of the fundamental mode of the resona-
tor” as phonons.

III. POLES IN THE CURRENT-NOISE
FREQUENCY SPECTRUM

To understand why the current-noise spectrum contains
direct signatures of coherent quantum behavior, we must
consider its dependence on the superoperator L. As discussed
by Emary et al.26 and Flindt et al.27 the eigenvalues, k, of
the superoperator L �e.g., Eq. �2�	 consist of imaginary “co-
herent” quantum-mechanical level-splitting terms, originat-
ing from H, and of real “incoherent” terms, originating from
background thermal baths and nonequilibrium tunneling
events. This can be seen by expanding the density matrix �
of the coupled system across the eigenstates of H, �
=�i,jci,j�i��j�, then the Liouvillian L acts as

L��	 = − iH� + i�H + L0��	 = − i��i − � j�� + L0��	 . �9�

As mentioned above, since all the operators in L0 are real,
the eigenvalues of L will consist of imaginary terms due to
energy-level splitting,

�E = ��i − � j� , �10�

and real terms from operators in L0.
In certain conditions,26 the current-noise power can be

expanded in terms of eigenvalues k of L and the coefficients

ck of the matrix �V−1ÎeV�kk, where Îe is the current operator
discussed earlier and V are the eigenvectors of L, so that

S��� = 1 – 2�
k=1

Nv ckk

�2 + k
2 . �11�

Here, Nv is the dimension of the superoperator L. If the in-
coherent terms, those outside the commutator in the Liouvil-
lian L �e.g., in Eq. �2�	, are much bigger than the coherent
energy-level splitting �E �e.g., �L,R ,���E�, then the eigen-
values of the Liouvillian are real, and the quantum noise is a
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FIG. 2. �a� shows the three important energy gaps ��Ei , i
=1,2 ,3� in the low-level energy spectrum of the Jaynes-Cummings
Hamiltonian �see text�. The parameter g is the coupling between the
electron and the resonator. �b� and �c� show, as contour plots, how
these gaps can be observed in the current-noise frequency spectrum
S���e,e /2eIe for �b=1, �L=�R=0.01, �=0.5, �b=0.05, and T
=0,�b. The energy gaps shown in �a� are clearly visible as three
resonances in �b� and �c�. The horizontal line corresponds to the
physical process of an electron tunneling without exchanging
quanta with the resonator. The top and bottom resonant lines are
proportional to the coupling g and thus represent the physical pro-
cess of the electron coherently emitting a phonon into the resonator.
As the temperature is increased, the visibility of the two “Rabi
peaks,” which are signatures of coherent quantum behavior of the
resonator, decreases.
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slowly varying function of frequency. If, however, the coher-
ent terms in Eq. �2� dominate, then there exist poles in the
current-noise spectrum around the absolute value of the
energy-level splitting,26

� = ��E + i� + O��/�E�� , �12�

giving rise to the resonant features we seek.

IV. OBSERVATION OF QUANTUM COHERENCE

To illustrate how to observe quantum signatures, we now
investigate the above model �Eq. �2�	 in two regimes: �1� an
effective Jaynes-Cummings regime �when the level-splitting
matches the resonator frequency 2�=�b� and �2� an off-
resonance regime �where 2���b�. Later on we will look at
the zero-frequency noise and make a comparison to a recent
experiment which measured the zero-frequency noise of a
double quantum dot in contact with a many-mode phonon
bath.

Hereafter, all results are calculated using the master equa-
tion and noise formalism described above, with a bosonic
cutoff appropriate for the parameter regimes being discussed.
We also discuss, where appropriate, the dynamics of an ef-
fective pure state to understand how the energy spectrum of
H contributes to the spectral structure of the noise.

A. First regime: Effective Jaynes-Cummings Hamiltonian

An effective Jaynes-Cummings Hamiltonian can be real-
ized if we set �=0 and 2�=�b. Then,

H = ��x + g�z�a + a†� + �ba†a . �13�

Large � implies18 that there is a strong overlap between the
particle wave functions in the two states, which may intro-
duce extra coupling terms with the resonator. However, for
simplicity, we assume that they are negligible.

First, we write the diagonal energy term for the qubit ��z�
in the off-diagonal basis ��x� by substituting raising and low-
ering operators in that basis,

�x
+ =

1

2
��z − i�y�, �x

− =
1

2
��z + i�y� . �14�

Then performing the rotating-wave approximation in this ba-
sis, by dropping counter-rotating terms, we obtain

HJC  g��x
+a + �x

−a†� + �ba†a + ��x

= g�1

2
��z − i�y�a

+
1

2
��z + i�y�a†� + �ba†a + ��x. �15�

This has the spectrum of an infinite number of noninteracting
multiplets with eigenstates,

� � �n =
1
�2

��n,1x�� � �n + 1,0x� , �16�

where �n� is the number state of the mechanical resonator
and �0�x and �1�x are the eigenstates of �x �i.e., the bonding

and antibonding states within the double quantum dot�.
If we consider the zero-temperature limit and a strong

damping of the bath, then only the lowest number states of
the mode n=0,1 strongly contribute to the transport pro-
cesses �this case is well into the quantum regime and the
ideal situation�. This regime is feasible if the effective tem-
perature of the resonator is below 	�b. In this case, if �L
�b then the initial state of each “round” of transport would
be

���t = 0�� = �0,L� =
1
�2

��0,0x�� + �0,1x� . �17�

The second component �0,1x� couples to the n=0 and n=1
states of the mechanical resonator via the �� �n=0 eigenstates
of HJC. The first component, �0,0x�, acts as an “interaction
free” transport route because it is the ground state of HJC.
The component �0,0x� has a unique “ground-state energy”
E0=−�, while the two �� �n=0 eigenstates of HJC have ener-
gies

E� = �b/2 � ��2 + 4g2/2, �18�

where

� = �b − 2� . �19�

Our numerical simulations in Figs. 2 and 3 show clearly how
the energy-level splittings �Ei �i=1,2 ,3� form resonances in
the noise frequency spectrum. In particular, because �=0
here,

�E1/2 = E� − E0 = 2� � g �20�

are the upper and lower resonance “branches” in Figs. 2 and
3, caused by the coherent coupling between the double quan-
tum dot and the mechanical resonator, and �E3=2� is the
central resonance because of coherent internal oscillations
within the dot alone. This occurs because of the �0,0x�
ground state of HJC, described above, which only evolves in
time with a phase factor E0=−�.

As we increase the temperature of the mechanical resona-
tor thermal bath, the upper and lower resonance branches
gradually disappear and the central resonance, determined by
�=2�, dominates. Increasing the temperature of the “bath”
means that the mechanical resonator would be in a thermal
mixture of number states; thus for the electron, more trans-
port channels become available. This is more clearly appar-
ent in the magnitude of the noise shown in Fig. 3, illustrating
that by monitoring the peaks in the current-noise transport
Se,e��� one can, in principle, distinguish classical and quan-
tum behavior. However, the observation of near zero-
temperature oscillations is not always proof of quantum
behavior5,28–32 as they can also be described by a classical
model of coupled linear oscillators. For example, in our
current-noise formulation “false signatures” from interac-
tions of the qubit with nearby classical oscillators may ap-
pear in the spectrum and be mistaken for quantum Rabi be-
havior. We will discuss this further in Sec. IV B.

One can understand the transition to the high-temperature
case by assuming the initial state to be
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���t = 0�� = ��
n

Cn�n�� �
1
�2

��0x� + �1x�� , �21�

which connects each multiplet in the spectrum of the Jaynes-

Cummings Hamiltonian with its two nearest energy levels.
The subspace of the Hamiltonian connecting �n−1,1x�,
�n ,0x� �n ,1x�, and �n+1,0x� is �where the basis here is for �x

diagonal�

Hn−1,n,n+1 =�
�n − 1��b + � g�n 0 0

g�n n�b − � 0 0

0 0 n�b + � g�n + 1

0 0 g�n + 1 �n + 1�� − �
� . �22�

Then, we easily see that the probability that the left dot is
occupied �corresponding to the probability of the superposi-
tion of bonding and antibonding states 1

�2
��0x�+ �1x��	 is given

by

PL�t� = �
n=0


 �Cn cos�− g��n + 1 − �n�t − 2t�

2
��2

.

�23�

Considering both an equal superposition, Cn=1 /�N �but with
cutoff of the sum in PL�t� at a given N	, and a coherent-state
distribution, Cn�z�=zne−z /n!, we observe that the oscillations
in the probability PL�t� collapse over time, until only small
oscillations with period � around PL=0.5 remain. This is
because the noncommensurate Rabi frequencies in Eq. �23�
interfere destructively. For a small number of number states
N or a small coherent-state distribution z, there is some re-
vival in PL�t�, but as N increases the number of revivals fall.
This is also true if the initial state is a separable density
matrix with the resonator state in a thermal Boltzman distri-
bution, as is the case for high temperatures.

B. Second regime: Off-resonant interaction

In Sec. IV A we showed that on resonance, 2�=�b, the
lowest part of the energy spectrum of the coupled system
was visible in the current noise. We can now verify that these
resonances really stem from the low-energy spectrum of the
Jaynes-Cummings Hamiltonian and indicate coherent quan-
tum dynamics by inspecting the off-resonant regime, 2�
��b, where the energy levels have a hyperbolic behavior. In
terms of the double-dot realization, we point out that assum-
ing a small � implies a tight confinement of the electron
within each dot.

Observing Fig. 4�a�, we can see upper and lower reso-
nance branches, but in this case �2���b� they have the
typical hyperbolic tails of an avoided level crossing. In ad-
dition, Fig. 4�b� shows that, as the coupling to the mechani-
cal resonator g is increased, the gap in the level crossing
increases. Once more we are successfully observing the low-
energy spectrum of the Hamiltonian in the power spectrum
of the current noise. For example, the upper and lower

branches are simply given by the lowest eigenvalues of the
Jaynes-Cummings Hamiltonian,

�E1,2 = ��b/2 � ��2 + 4g2/2 + �� .

Furthermore, we note that there is an energy gap which
halts the electron current in the limit when �=0 and when the
coherent tunneling within the dots is small relative to the
coupling to the mode, ��g. This occurs because the tunnel-
ing of an electron requires an energy loss proportional to the
displacement of the mode and because the rotating-wave ap-
proximation is no longer valid. For transport to occur, the
electron must tunnel from the left to the right state, which is
now shifted in �relative� energy by 2g�a+a†�. This becomes
more and more difficult as the coupling g is increased, re-
sulting in a “current blockade” effect.

Finally, as discussed in Sec. IV A, we point out that os-
cillations alone may not provide sufficient proof of quantum
behavior. Recent circuit-QED experiments28,29 have focused
on the idea of observing the square-root dependence of the
energy of the Jaynes-Cummings system on the photon occu-
pation number n, which is sufficiently distinct from the be-
havior seen in classical models. However, the preparation of
arbitrary Fock states in a nanomechanical resonator is not
readily realizable at this point in time.

C. Zero frequency noise: Comparing the single and many-
mode cases

In Secs. IV A and IV B we showed how the low-energy
levels of a Jaynes-Cummings Hamiltonian can be seen in the
full-frequency current-noise spectrum. However, most recent
experiments have focused on the zero-frequency noise. For
example, Kieszlich et al.12 showed, by comparing experi-
ment and theory, that coherent oscillations in a double quan-
tum dot produced super-Poissonian �S�0�e,e /2eIe�1	 signa-
tures in the zero-frequency noise, while incoherent
transitions �sequential tunneling induced by increasing the
temperature of the phonon bath� produce sub-Poissonian
noise �S�0�e,e /2eIe�1	.

Mimicking their parameter regime, i.e., considering their
device as coupled to a resonator �or phonon cavity�, now we
also look at the zero-frequency noise �as a function of double
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quantum dot level detuning ��. We observe similar signatures
to theirs in the noise spectrum but with a more complicated
structure. We also observe, in Fig. 5�a�, that increasing the
temperature of the single-mode resonator decreases the zero-
frequency current noise, eventually resulting in sub-
Poissonian behavior.

Similarly, increasing the bare coupling strength g to the
single-mode resonator has a drastic effect. As Fig. 5�b�
shows, the noise profile quickly becomes sub-Poissonian, de-
veloping another peak structure around �=1. Interestingly,
the �=0 point, where we earlier probed for coherent signa-
tures, remains around S�0�e,e /2eIe=1, indicating that coher-
ent transport is still occurring.
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FIG. 3. �Color online� Normalized current-noise frequency
spectrum, S���e,e /2eIe, versus � for �b=1, �L=�R=0.01, �=0.5,
�b=0.05, and T=0, 0.5�b, �b ��a�–�c�, respectively	 and a selection
of electron-resonator coupling strengths g; black, green, and red are
g=0,0.2,0.4, respectively. The resonances are marked by arrows.
As the temperature is increased, the system enters the classical re-
gime and the two Rabi peaks decrease and become hard to
distinguish.
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FIG. 4. Current-noise frequency-spectrum, S���e,e /2eIe, versus
both the tunneling rate � and frequency � for �a� g=0.1 and �b�
g=0.4. In both cases �b=1, �L=�R=0.01, �b=0.05, �=0, and T
=0. This was obtained numerically by solving the master equation
in Eq. �3�. As � approaches �b /2=0.5 we see the three resonance
points previously shown in Fig. 3. Increasing g increases the gap
between the resonant peaks. The hyperbolic behavior comes from
the well-known Jaynes-Cummings eigenvalue spectrum, as recently
observed experimentally in a similar system �e.g., Refs. 21, 28, and
29�.
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Figure 5�c� illustrates the �non-normalized� cross-
correlated noise, i.e., the correlation between electron-
tunneling events and phonons leaving the mechanical reso-
nator into a heat bath �with rate ��. As expected, there is no
correlation between tunneling events when the systems are
uncoupled. Furthermore, the correlated noise is large when
�=k�b, where k is an integer. While the correlated noise
grows for larger k, the current itself becomes smaller.15 This
is simply because as � increases, the current can only flow
through phonon-assisted tunneling, which happens at integer
numbers of the phonon frequency.

V. SQUEEZING THE QUANTUM STATE OF THE
RESONATOR

We have shown that the electron current noise, Se,e���,
serves as a detector of coherent interactions between the
double quantum dot and the single mode of the mechanical
resonator. Already this is a significant step as Se,e��� serves
as a tool for experimental observation. However, we can pro-
ceed a step further and briefly consider the statistics of the
phonons in the mechanical resonator. In such a mechanical
system, these quantities are difficult, if not impossible, to
access. However, it is informative to understand how the
phonon statistics of the resonator change as we increase the
temperature and leave the quantum regime.

A. Squeezing signatures

In the proposal by Rodrigues et al.8 they showed that the
resonator can exhibit properties akin to a micromaser due to
the nonlinear coupling to an SSET. In their case, the qubit is
represented by a superposition of island charge states �z
= �2��2�− �0��0�. However, they focused on the regime where
�b /�=1, observing that this is where the interaction between
the resonator and SSET is maximized. In the results, we
assume that the quantum dots and leads are weakly coupled,
�b /��1, as shown in Secs. I–IV. Furthermore, we assume
that the resonator is strongly damped �e.g., via cooling by
another SSET or by the double quantum dot itself10,33�, so
that only the few lowest bosonic levels are excited.

However, even for our “slow” regime, we see sub-
Poissonian signatures in the boson emission noise spectrum
emitted into its nearby heat bath Sb,b�0� /2Ib as well as in the
Fano factor FQ of the number-state occupation n of the
resonator,34–37

FQ =
�n2� − �n�2

�n�
, �24�

as shown in Figs. 6�a� and 6�b�. Both “measures” identify
similar regions of squeezing, though there is a conceptual
difference between the squeezing of the phonons emitted
�dynamically� into the heat bath and a direct measurement of
the static steady-state phonon occupation number. Further-
more, we see that as the temperature is increased, both quan-
tities increase nonlinearly in magnitude.

In addition, we consider the correlated electron-phonon
noise. We naively expect that stronger correlations will occur
in the quantum regime. Figure 6�c� verifies this and shows
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FIG. 5. �Color online� �a� Current-noise frequency-spectrum
S�0�e,e /2eIe versus � for �=1, �L=0.1, �R=0.001, �=0.1, �b

=0.01, and g=0.0008, increasing T from 0 to 2 in steps of 0.5.
Increasing the temperature reduces the super-Poissonian character
of the current noise. �b� S�0�e,e /2eIe for �=1, �L=0.1, �R=0.001,
�=0.1, �b=0.01, and T=0 for g from 0 to 0.4 in steps of 0.1
�besides g=0.3, which has been omitted for figure clarity�. For
strong coupling we see that the current noise becomes almost en-
tirely sub-Poissonian �as indicated by the shaded pink region�. �c�
The cross correlation S�0�e,b against � for the same parameters as
�b�. Recall that S�0�e,b is defined as the correlation between the
electron and phonon currents. For g=0 and for negative � there is
zero correlation between phonon and electron tunneling, as
expected.
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that a maximum in the correlated noise occurs around g
=0.1, and an increase in temperature reduces the overall
magnitude. This is an indication, continuing from previous
suggestive results,13 that the quantum noise correlation be-
tween two open systems could serve as a measure of en-
tanglement, though a direct correspondence has yet to be
identified.

B. Quadrature versus number-state squeezing

The squeezing in Fig. 6 is number-state squeezing, and a
sub-Poissonian variance in n �FQ� implies antibunching of
the phonon statistics.38 This is only one of several types of
squeezing. For example, in quantum optics, generalized
quadrature squeezing is often investigated. Typically the axis
of squeezing might not been known, so a homodyne mea-
surement of the occupation statistics must be performed. A
homodyne measurement,39 using a local oscillator to intro-
duce a relative phase, reveals the variance of any desired
quadrature. Thus, in principle, it is possible to measure the
normal ordered squeezing via

�:��Q�2:� = �:Q2:� − �Q�2, �25�

where Q is the quadrature defined by a desired angle �, so
that

Q = ae−i� + a†ei�. �26�

Squeezing of the quadrature is implied when

�:��Q�2:� � 0 �27�

for some given � because of the normal ordering. Again, in
a nanomechanical system such a measurement is not feasible
but has been proposed in transmission line resonators.40 It is
trivial to see

�:��Q�2:� = �a†2
�e2i� + �a2�e−2i� + 2�a†a� − �a†�2e2i�

+ �a�2e−2i� + 2�a��a†� . �28�

However, for our model and parameter space, we were not
able to observe any instance of quadrature squeezing. In
Secs. I–IV we discussed how strong contributions to the
steady-state solution of the master equation arise from the
low-level Jaynes-Cummings eigenstates. Our results illus-
trate that, in our system, these states only produce number-
state squeezing in the resonator mode but not quadrature
squeezing.38

VI. REALIZATIONS

As mentioned before, our model can correspond to charge
states in a double quantum dot in a capacitively coupled or
suspended geometry. For the suspended geometry,11,15 it has
been shown that there is a direct coupling between the elec-
tron wave function and a single phonon mode because of
van-Hove singularities in the density of states. However such
experiments have not yet been performed in the energy re-
gime of the fundamental vibrational mode of a mechanical
resonator. Also, our model is related to that of a supercon-
ducting single-electron transistor �SSET� capacitively
coupled to the resonator.8,9,19 Typically there are some differ-
ences in the transport properties as an SSET is a three-
terminal device, and the SSET drives the resonator into com-
plex types of limit-cycle behavior.8,41

A. Energy scales

To check the feasibility of our results we need to verify
the appropriate energy scales in real systems. We assume that
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FIG. 6. �Color online� �a� Bosonic current-noise frequency spec-
trum, Sb,b��� /2Ib, versus g for �b=1, �L=�R=0.01, �=0.5, �b

=0.05, �=0.0, and a range of temperatures. The pink regions �also
denoted by sub-Poissonian regime in �a�	 indicate the regimes
where quantum state squeezing occurs for low-temperature and in-
termediate couplings. �b� shows the number-state Fano factor
��n2�− �n�2� / �n� of the bosonic system. The zero-temperature case
closely corresponds to the “phonon current noise” in �a�. �c� shows
the electron-phonon correlated noise Se,b�0� versus g. Interestingly,
increasing the temperature decreases the correlated noise. More-
over, and as expected, the zero coupling point �g=0� remains
around S�0�e,b=0 for all values of temperature. Also, in a very small
regime of weak coupling �g→0�, S�0�e,b can be negative.
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our state-of-the-art resonator has a fundamental frequency of
�b=1 GHz. The corresponding “resonant” bias, �=	�, is
approximately 4 �eV. We assume we are near the quantum
limit, i.e., kT	�b, T50 mK. Normal capacitive coupling
strengths for an SSET are 100 MHz, corresponding to g
=� /10. In Fig. 2 we saw signatures of quantum-coherent
oscillations for this range of coupling strengths. The same
range �g�� /10� is feasible for the coupling between a
double quantum dot and the resonator �with capacitive
coupling10�. The achievable coupling strengths for suspended
geometries are not precisely known now, but because of van-
Hove singularities in the density of states one can expect
large effective coupling strengths.11,15 Finally, the interstate
tunneling, denoted by � in our discussion, is typically tun-
able for double quantum dots. Thus a range of �
�1 to 10 �eV is feasible.

B. Magnetized resonator interacting with electron spins

A recent proposal7 focused on a magnetized resonator
which interacts with one of the two electron spins in a spin-
blockaded double quantum dot system. In this case, the cur-
rent is used to measure the spin state because, if the two
spins are parallel, current cannot flow. An oscillating mag-
netic field, from the magnetized resonator, couples to one of
the spin states, and thus this spin plays the role of a transport
qubit in our earlier language. The question of cooling such a
magnetized resonator and then coupling it to a nearby elec-
tron spin via its quantized motion and henceforth the quan-
tized magnetic-field motion has not been addressed. In that
case, the Hamiltonian of the spin and the resonator is

HQ = −
��z

2
+ 	�ba†a + C� 	

2meff�b
�a + a†��x, �29�

where C=0.16 mT /nm. This �Eq. �29�	 differs from the
Hamiltonians in Eqs. �13� and �15� and that in Eq. �29� is
diagonal in the qubit energy basis. The ground-state motion
of a 1 GHz resonator is 2�10−14 m, which, using the pa-
rameters from Ref. 7, would generate a field of just 3.2
�10−6 mT and a Rabi frequency of about 100 Hz, which is
negligible in comparison to nuclear hyperfine and spin-orbit
effects. Optimizing device design can increase this Rabi fre-
quency considerably. For example, a larger magnetization
could be achieved by using a dysprosium �Dy� micromagnet
instead of cobalt �Co� �giving a factor of about 2�. Similarly,
a larger micromagnet thickness could also contribute a factor
of about 2 to the field felt by the electron spin. Decreasing
the distance between the dot and resonator could contribute
up to a factor of 10, and using a slower frequency resonator,
for a larger ground-state displacement, could add a factor of
about 5. Taking these factors into consideration gives a Rabi
frequency in the range of 10–100 kHz. This Rabi frequency
is still, in comparison to the charge-based quantum dot and
SSET systems, a weak coupling and is vulnerable to dephas-
ing from nuclear hyperfine fields. However, the future evo-
lution of this technology may make such an approach fea-
sible and desirable, especially considering the possible
benefits of combining spintronics and nanomechanics.

VII. CONCLUSIONS

We have illustrated how quantum-coherent behavior and
the energy spectrum of a nanomechanical resonator can be
identified using full-frequency current-noise measurements
through a nearby transport qubit. In the zero-frequency limit,
we showed that a single-mode “environment,” as represented
by a nanomechanical resonator, produces unique signatures
that differ from those observed in multimode environments.
Furthermore, we identified regimes where phonon squeezing
and cross-correlated noise, indications of complex quantum
phenomena, could occur. All of these features could be real-
ized with a double quantum dot or superconducting single-
electron transistor operating as the transport qubit. In a
broader context, we expect that noise measurements could
also be useful in two-resonator circuit-QED systems,25,42,43

which may offer an interesting area for future investigation.
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APPENDIX: NOISE FORMALISM

To calculate the quantum noise20 of a system with Hamil-
tonian H and corresponding transport environment described
by a Liouvillian L, we employ a generating-function ap-
proach. The master equation for the matrix elements of the
generating function g is

�

�t
g�s1, . . . ,sm,t� = M�s1, . . . ,sm�g�s1, . . . ,sm,t� , �A1�

which can be formally solved by diagonalizing

M�s1, . . . ,sm� = V�s1, . . . ,sm�D�s1, . . . ,sm�V−1�s1, . . . ,sm� .

�A2�

Here M is the Liouvillian L recast as a function of the count-
ing variables �s1 , . . . ,sm�. Each si is a continuous variable
which tracks the passage of the current through system i.
This gives a general formalism for calculating the generating
function of m coherent and interacting transport systems,
each with a single “one-way” current flow.

The next step is to use the MacDonald formula44 for the
symmetrized noise power correlator between systems i and j,

S���i,j 
 �
−





d�ei�����Ii�t + ��,�Ij�t��	t→
,

S���i,j

2e2�
= �

0




sin��������ni���nj���� −
�2�Ii��Ij�

e2 � ,

�A3�

which can be written as �s= �s1 ,s2 , . . . ,sm��,

DETECTING QUANTUM-COHERENT NANOMECHANICAL… PHYSICAL REVIEW B 78, 214302 �2008�

214302-9



S���i,j

2e2�
= ��si,sj

+ �i,j�si
��

0




d� sin����
�

��
Tr Ĝ�s���s=1,

�A4�

where an omitted term 2��I�2 in the integral does not con-
tribute in the final result obtained upon performing the

Laplace transformation. Noting that Ĝ�s ,�=0�=��0�, where
the initial condition ��0� is the steady-state-density matrix
and using

�

��
Ĝ�s,�� = M�s�Ĝ�s,�� = M�s�e�M�s�Ĝ�s,� = 0� ,

and the spectral decomposition of M�s�, one obtains

S���i,j = 2e2��si,sj
+ �i,j�si

�

� �V�s�
�2D�s�

�2 + D�s�2V−1�s�g�s,0��
s=1

, �A5�

where the notation ��xi1,j1
,xi2,j2

, . . . ,��
�i=0xii takes into ac-
count the trace in Eq. �A4�. Note that the first derivative in
the single system correlator �s yields 2e�I�, and therefore �s

2

provides the deviation from the shot noise. Using the Ramo-
Shockley theorem,20 the displacement-current contribution
can either be omitted �by assuming that the capacitances of
the devices are extremely asymmetric, so that cLcR�1� or
calculated using a multivariable approach because the total
current fluctuations can be written as

�I�t + ���I�t� = 2�IL�t + ���IL�t + �� + �2�IR�t + ���IR�t�

+ ���IL�t + ���IR�t� + �IR�t + ���IL�t�	 .

�A6�

The left and right correlations are trivially calculated using
separate counting variables for each lead.

Equation �A5� allows one to calculate the noise spectrum
for transport through an arbitrarily complex quantum system.
This can be evaluated either using finite difference deriva-
tives around s=1 or following the methods employed by
Flindt et al.45,46 In the latter case we can use their approach
to show that, in general, the cross correlator can be written as

�t�ni�t�nj�t�� = Tr�Li �
n1,n2,. . .

nj�
�n1�,�n2�,. . .�

+ Tr�Lj �
n1,n2,. . .

ni�
�n1�,�n2�,. . .� . �A7�

Furthermore the terms

�
n1,n2,. . .

nj�
�n1�,�n2�,. . . = �sj

Ĝ�s,���s=1 �A8�

can be evaluated by Laplace transforming the equation of
motion

��Ĝ�s,t� = �L0 + �
i

siLi�Ĝ�s,t� �A9�

and taking derivatives in the counting variables si, giving

�si
G̃�s,− i���s=1 = F�− i��LiF�− i����0� , �A10�

where

F�− i�� = �− i� − L�−1 �A11�

and ��0� is the steady-state initial condition. As shown by
Flindt et al.45 one can evaluate this inverse by writing

F�− i�� = − P/i� − R��� , �A12�

R��� = Q�i� + L�−1Q , �A13�

where

P = ��0� � 1, Q = 1 − P . �A14�

Inserting all these expressions into the cross correlator and
using P��0�=��0� and Q��0�=0 give the noise power as the
trace of an inverse,

S���i,j

2e2 = Re�− Tr�LiR���Lj��0�	 − Tr�LjR���Li��0�	�

+ �i,j Tr�Li��0�	 . �A15�

All of the above allows us to calculate the full-frequency
spectrum for an arbitrary number of coupled systems. In ad-
dition, it allows us to calculate phonon current and statistics.
We choose as the phonon current operator the operator which
absorbs a phonon number state from the mode and sets it in
the background bath.
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