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We describe the interaction between an electromagnetic field and a long Josephson junction driven by a dc
current. We calculate the amplitudes of emission and absorption of light via the creation and annihilation of
quantized Josephson plasma waves �JPWs�. Both the energies of JPW quanta and the amplitudes of light
absorption and emission strongly depend on the junction’s length and can be tuned by an applied dc current.
Moreover, photon-assisted macroscopic quantum tunneling in long Josephson junctions shows resonances
when the frequency of the outside radiation coincides with the current-driven eigenfrequencies of the quantized
JPWs.
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I. INTRODUCTION

The miniaturization of electronic devices allows the ob-
servation of quantum effects which were impossible to mea-
sure in the past. Systems of Josephson junctions �JJ�, char-
acterized by high frequency �up to several terahertz�, exhibit
a crossover to the quantum regime at relatively high tem-
peratures. Indeed, quantum oscillations and macroscopic
quantum tunneling1 �MQT� have been observed in charge,
flux, and phase qubits.2 Renewed interest in MQT occurred
after the recent discovery of MQT in high-temperature lay-
ered superconductors.3–6 The observed enhancement of MQT
was attributed to the spatial structure of the tunneling
fluxon.7,8 It is important to develop a theory of quantum
electrodynamics in long �about 1 �m in stacks of JJs, and
about tens of microns in low-Tc junctions� JJs where the
spatial distribution of the gauge-invariant phase difference is
crucial. In this problem, the standard quantum-mechanical
approach �where the phase difference is associated with the
coordinate of a quantum particle tunneling through an effec-
tive potential barrier� becomes invalid, and a more advanced
field-theoretical approach is needed.9,10

Here we consider a Josephson junction driven by a dc
current near its critical value and exposed to terahertz elec-
tromagnetic �EM� waves. In this configuration, as known for
pointlike contacts, the probability of MQT depends on the
intensity and frequency � of the incident EM waves. In con-
trast to the short-junction case, we predict several resonant
enhancements of the MQT escape rate, when the frequency
� matches the eigenfrequencies of the JPWs. We also pro-
pose a full quantum electrodynamical description of long JJs,
to calculate the probabilities of absorption and emission of
light by JPW quanta.

In Sec. II we derive the model and quantize the field of
the gauge-invariant phase difference �. In Sec. III we con-
sider the interaction of the quantized � with photons and
calculate the transition rates of absorption and emission of
light by JPW quanta. This allows us to find the mean values
of occupation numbers of JPW quanta and the mean energy

of the system, which is pumped by external terahertz radia-
tion. In Sec. IV we calculate the probability of photon-
assisted macroscopic quantum tunneling.

II. SECOND QUANTIZATION OF THE PHASE
DIFFERENCE FIELD

A. Lagrangian formulation

The geometry of the Josephson junction under study is
shown in Fig. 1. Two superconducting bars overlap a length
D in the x direction. An insulating layer of thickness s, about
several nanometers, is placed between these two bars. A su-
percurrent with density i flows through the junction in the z
direction. The width L of the JJ in the y direction is of the
order of, or less than, the Josephson penetration depth �J,
that is l=L /�J�1. The dynamics of the gauge-invariant
phase difference ��t ,x ,y� of such a junction is described by
the action

S��� =
1

�p
� dt�L��� + L����� ,

L��� =
�JEJ

L
� dxdy�1

2
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FIG. 1. Schematic of the Josephson junction. The wave vector
of the externally applied polarized terahertz electromagnetic wave
is directed along the x axis, while its electric �magnetic� field is
directed along the z �y� axis.
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L���� =
cEJ

4�icL


�

d	��H 
 ez�n. �1�

In these equations, the x and y coordinates are normalized by
�J, the time t is normalized by 1 /�p, where �p is the Joseph-
son plasma frequency, ic is the critical current density, and

EJ = ��p�, � =
ic�JL

2e�p
,

where � is considered to be much larger than unity, �1.
The integration in L���� is performed over a contour �
around the junction’s area, and the subscript n refers to the
component normal to the contour � in the XY plane of the
vector product of the magnetic field H and unit vector ez.

The classical equation of motion for � with action �1� is
the two-dimensional sine-Gordon equation

�2�

�t2 − � � + sin � = 0. �2�

The surface term in action �1� depicts the boundary condi-
tions to this equation,

� ��

�n
�

r��

= �H 
 ez�n. �3�

Representing the magnetic field in the form H=HJ+He,
where He is the external ac magnetic field and HJ is the field
generated by the flowing current, we obtain

� ��

�x
�

x=�d/2
= �

I

2
+

cHy
e

4�ic�J
,

� ��

�y
�

y=�l/2
= −

cHx
e

4�ic�J
, �4�

where

I =
iD

ic�J
, d =

D

�J
, l =

L

�J
.

When He=0, the stationary solution to Eq. �2�, corre-
sponding to the lowest-energy minimum, does not depend on
the y coordinate. Below we assume that the ac magnetic field
of the incident radiation is directed along the y axis �see Fig.
1�. In this case, only the plasma waves in the x direction are
excited, and �=��t ,x�. When D��J, the field ��t ,x� only
slightly depends on the x coordinate, and action �1� describes
the dynamics of the particle in the washboard potential
V���=−cos �− j�, where j= i / ic. When j�1, this potential
has an infinite number of minima, each one separated by a
potential barrier of the order of �1− j2. The probability of
quantum tunneling from one minimum to the nearest mini-
mum can be easily calculated in the semiclassical
approximation.11 When D��J, the spatial dependence of the
field ��t ,x� is essential, and the problem of quantum tunnel-
ing becomes more complicated. In the semiclassical approxi-
mation, the probability of tunneling can be written as12

� = �0�30B

�
exp�− B� ,

where B=2SE /�, and SE is the action, defined in Eq. �1�, in
imaginary time t= i� calculated along classical trajectories,
and �0 is the oscillation frequency of the field ��t ,x� near
one of the energy minima �0�x�. In one of our previous
papers9 we proposed an approach for calculating the tunnel-
ing exponent B for a current I= jd close to the critical value
Ic�d� �which now nonlinearly depends on d�. Here we con-
sider the effect of external electromagnetic radiation on the
probability of tunneling.

B. Quantum regime

We consider the interaction of � with electromagnetic
waves as perturbations. First, we quantize the field ��t ,x�
near the energy minimum �0�x� at He=0, find the energy
spectrum, and then calculate the transition rates of the field
�, from the ground state to its excited states and vice versa,
due to the interaction with the electromagnetic field. The
knowledge of the transition rates gives us the mean energy

Ē�� , P� of the field � in the presence of an external radiation
as a function of its power P and frequency �. Since the

effective potential barrier decreases with the growth of Ē, the
external radiation enhances the tunneling. It is clear that a
strong enhancement of the escape rate � should be at fre-
quencies � close to the eigenfrequencies �n of the � field.

The tunneling exponent B, as function of Ē, is found here
using the approach described in Ref. 9.

The static solution corresponding to an energy minimum
satisfies the static sine-Gordon equation

d2�0

dx2 = sin �0 �5�

with the boundary conditions

�d�0

dx
�

x=�d/2
= �

I

2
. �6�

The solution to this equation exists for currents I less than
the critical value Ic�d�. If d�4, the current density in the JJ
is approximately constant and the function Ic�d� increases
linearly with d; if d1, the current flows near the junction
edges and Ic�d� reaches the saturation value Ic

max=4. In order
to quantize � we represent it in the form

�̂�t,x� = �0�x� + �̂�t,x� ,

where the operator �̂ satisfies the boundary conditions

� d�̂

dx
�

x=�d/2
= 0, �7�

and expand the Lagrangian L in powers of �̂. We introduce
the momentum �t in units of 1 /�p�
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�̂�t,x� =
�L

���p
��̂�t,x�

�t
� = ��

��̂�t,x�
�t

, �8�

and require the standard simultaneous commutation relation

��̂�t,x�,�̂�t,x���− = i���x − x�� . �9�

The Hamiltonian of the system, Ĥ, has a form

Ĥ = �̂
��̂

�t
− L̂ = Ĥ0 + Ĥ�, �10�

where

Ĥ0 = EJ:�
−d/2

d/2

dx� �p
2

2EJ
2 �̂

2 +
1

2
�̂D̂�̂	 : ,

Ĥ� = EJ:�
−d/2

d/2

dx�−
1

6
sin �0�̂

3 −
1

24
cos �0�̂

4 + . . .	 : .

�11�

In these equations, the colons “:” mean “normal ordering”

and D̂ is a differential operator of the form

D̂ = −
�2

�x2 + cos��0�x�� . �12�

In the interaction representation, the operators �̂ and �̂ can
be written as

�̂ =� 1

2�
n

�n�x�
�n

1/4 �ei��ntb̂n
† + e−i��ntb̂n� ,

�̂ = i���

2 
n

�n
1/4�n�x��ei��ntb̂n

† − e−i��ntb̂n� , �13�

where �n, �n are, respectively, the eigenvalues and orthogo-

nal eigenfunctions of the operator D̂, that is,

D̂�n = �n�n, �
−d/2

d/2

dx�n�x��m�x� = �nm. �14�

In Eq. �13�, b̂n
† and b̂n are the creation and annihilation op-

erators of JPW quanta in the state n. Note that all �n’s are
positive when I� Ic�d� because the �0�x� corresponds to an

energy minimum. In terms of the operators b̂n
† and b̂n, the

Hamiltonian Ĥ0 takes the form

Ĥ0 = ��p
n

��nb̂n
†b̂n. �15�

The Hamiltonian Ĥ� describes the self-interaction of the

field �. Since �1, Ĥ� can be considered as a perturbation
if the energy of the system �counting from the “vacuum”

state corresponding to �0�x�� satisfies the condition Ē
���p�. In zeroth order, this energy is determined by the
occupation numbers Nn, and reads

Ē = ��p
n

��nNn.

The correction to this result due to self-interactions can be
found via perturbation theory.

III. INTERACTION WITH AN ELECTROMAGNETIC
FIELD: ABSORPTION AND EMISSION TRANSITION

RATES

Now we consider the interaction of the field � with elec-
tromagnetic waves, described by the vector potential A �we
choose the gauge A0=0, divA=0�. Substituting �=�0+�
into action �1� and expanding it in a power series of �, we

derive the operator V̂ describing the interaction of � with the
electromagnetic field:13

V̂ = −
cEJ

4�ic�JL


�

d	�̂�rot A 
 ez�n. �16�

Here we use the relation He=rot A /�J because we measure
distances in units of �J. The vector potential A in Eq. �16�
consists of two parts, describing both the incoming and out-
going radiation re-emitted by the JJ. We assume that the
incident electromagnetic radiation is fully polarized and
propagates along the x axis, as shown in Fig. 1. Below we
measure the frequency � in units of �p and the wavelength
in units of �J. In this case, A can be written as

Â�t,r� = − iez
c

�p
� d�

2�

E�

�
e−i��t−vx�

+�4�c2

V�p

k,�

�� �

2�k
e��k�e−i�kt+ikrâk�

+� �

2�k
e��k�ei�kt−ikrâk�

† � , �17�

where âk�
† and âk� are the creation and annihilation operators

of a photon with wave vector k and polarization �,

v =
�p�J

c

is the ratio of the Swihart velocity �p�J to the speed of light
c, �k= �k� /v, and V is the volume of space �dimensional�
where the electromagnetic field exists. The first term in Eq.
�17� corresponds to incoming radiation �which is here con-
sidered as classical�, where E� is the electric field at fre-
quency �. The second term describes the photons appearing
due to the interaction of the incoming electromagnetic waves
with the JJ. In this term, e� is the vector of polarization,
which satisfies the equality

k · e��k� = 0. �18�

Substituting Eq. �17� and the expansion �13� for �̂ into Eq.
�16�, and performing the surface integration, we derive:

V̂ = V̂ext + V̂q,
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V̂ext = i��c�LLv
4� 

n
� d�

2�
E�

�n��v�
��n

e−i�t


 �ei�ntb̂n
† + e−i�ntb̂n� �19�

V̂q = �c� �LL

2V�J


n

k�

S�ky�
��k�n

��kyhx
��k��n�kx�

+ hy
��k��n�kx��e−i�ktâk� + �kyhx

��k��n
��kx�

+ hy
��k��n

��kx��ei�ktâk�
† ��ei�ntb̂n

† + e−i�ntb̂n� , �20�

where �L is the London penetration depth, which is related to
ic and �J by the relation �it is supposed here that s��L�

�J
2 =

�c2

8�e�2�L + s�ic
�

�c2

16�e�Lic
.

In formulas �19� and �20�

�n = ��n, �21�

h��k� = k 
 e��k� , �22�

and functions �n�k�, �n�k�, and S�k� are the following:

�n�k� = − i��n�d/2�eikd/2 − �n�− d/2�e−ikd/2� , �23�

�n�k� = �
−d/2

d/2

dx�n�x�eikx, �24�

S�k� =
2 sin�kl/2�

kl
. �25�

A. Spontaneous photon emission

In first order of perturbation theory, there are only three
possible processes: �i� spontaneous emission of a photon by
the field �, �ii� induced photon absorption, and �iii� induced
emission.14 Let us first consider the spontaneous emission,

which is described by the operator V̂q. In the initial state, we
have the set of occupation numbers of JPW quanta, �Nm�,
and zero photons, and, in the final state, one of these num-
bers, say Nn, decreases by 1 and one photon appears in the
system. We neglect the effect of thermal radiation, proceed-
ing to the limit T→0. The probability per unit time of such a
process, w�−�, is proportional to Nn.

Following the standard approach,15 we derive for the
probability of emission of a photon having wave vector k
and polarization �:

dwn�
�−��k� = Nn

�c�LL

v�J
3

�Fn
��k��2

�k�n
���k − �n�

d3k

�2��3 , �26�

where

Fn
��k� = S�ky��kyhx

��k��n�kx� + hy
��k��n�kx�� . �27�

We introduce spherical coordinates in momentum space. Per-
forming the integration over k and the summation over �

taking into account relation �18�, finally, we derive

wn
�−� = Nn�p�n, �n =

�LLv

2��J
2�n, �28�

�n =
1

4�
�
� dm�Fn

���nvm��2, �29�

where m is a unit vector in momentum space.
For relatively short junctions, it is possible to obtain an

analytical expression for �n. The wavelength � of the elec-
tromagnetic radiation under consideration is about

� � c/�p = �J/v  �J,

since the typical value of v�3
10−2�1. Therefore, for D
��, one can expand Fn

���nvm� in Eq. �29� in powers of v.
Doing so, we derive in the lowest order

�2m+1 �
8

3
�2m+1

2 v2�2m+1
2 �d

2
� ,

�2m �
4d2

15
�2m

4 v4��2m
2 �d

2
� −

1

2
�̄2m�2m�d

2
� + �̄2m

2 	 ,

�30�

where

�̄n =
1

d
�

−d/2

d/2

dx�n�x� �31�

and �2m��2m+1. The difference between �n with odd and
even n comes from the symmetry properties of the JPW
wave functions: �n�−x�= �−1�n�n�x�.

The value of �n gives us the radiation width of the nth
level in units of �p. When d��J, we have from Eq. �30�:
�2m+1�v2 and �2m�v4. Considering L, �J�10−3 cm, �L
�10−5 cm, and v�3
10−2 we obtain �2m+1�10−8–10−7

and �2m�10−12–10−10, that is �2m��2m+1. Note that we do
not consider here another possible mechanisms of dissipa-
tion, which can substantially increase the width of the JPW
quanta energy levels.

B. Induced photon absorption and emission

Let us now consider processes of induced photon absorp-
tion and emission. These two processes are determined by

the operator V̂ext. We denote by inwn
�+� �inwn

�−�� the probability
per unit time of creation �annihilation� of a quantum of the �
field in the nth state due to induced photon absorption �emis-
sion�. These two probabilities satisfy the following equality

inwn
�+�

inwn
�−� =

Nn + 1

Nn
.

Thus, to first order in perturbation theory, the probability per
unit time of induced photon absorption and also accounting
for induced emission, wn

�+�= inwn
�+�− inwn

�−�, does not depend on
Nn, and is only determined by the power and frequency of
the external radiation. Making a similar calculation as for
wn

�−�, we derive

SBOYCHAKOV, SAVEL’EV, AND NORI PHYSICAL REVIEW B 78, 134518 �2008�

134518-4



wn
�+� =

c�LLv
2��p

� d�
�E��2

2�

��n��v��2

�n
��� − �n� . �32�

We assume that the incident radiation has a Gaussian distri-
bution with central frequency �̄ and width �̄, that is

�E��2

2�
=

4�P

c
��� − �̄� , �33�

where P is the radiation power per unit area and

���� =
1

�̄��
exp�− �2/�̄2� . �34�

The probability wn
�+� then becomes

wn
�+� =

2�P�LLv
��p

fn��̄�
�n

, �35�

where

fn��̄� =� d���� − �̄���n��v��2��� − �n� . �36�

In equilibrium, the probabilities wn
�+� and wn

�−� coincide.
This gives rise to a relation for the mean values of the occu-

pation numbers N̄n:

N̄n =
4�2P�J

2

��p
2

fn��̄�
�n�n

. �37�

The mean value Ē of the system energy �to zeroth order in

Ĥ�� then reads

Ē =
4�2P�J

2

�p


n

fn��̄�
�n

. �38�

If the frequency band of the radiation source is large
enough, that is, �̄�n, we can easily perform an integration
in Eq. �36�. As a result, the mean energy becomes

Ē =
4�2P�J

2

�p


n

��n��nv��2

�n
���̄ − �n� . �39�

In the opposite case of near-monochromatic radiation, �̄
��n, we should take into account that the energy levels of
JPW quanta have finite width �n �in units of �p�. Replacing
the delta function in Eq. �36� by

��� − �n� →
1

�

�n

�� − �n�2 + �n
2

and using ���− �̄�=���− �̄�, we obtain

Ē =
2P�LLv

�p


n

��n��nv��2

��̄ − �n�2 + �n
2 , �40�

where we take into account that �n�1.
Note that Eqs. �38�–�40� are valid only when the radiation

power of the electromagnetic waves is not too high: Ē
���p�. Otherwise, we should take into account anharmonic
terms in Hamiltonian �11�. Note also that here we only con-

sider single-photon processes. Multiphoton processes can be
calculated in higher orders of perturbation theory with re-

spect to V̂. It can be shown that the amplitudes of these
processes are negligible when the following condition is met

gext
2 �P� �

vP�LL

��p
2 � 1,

where gext�P� can be considered as an effective coupling
constant of the junction interacting with an external electro-
magnetic field.

C. Response of the junction to a wave packet

Consider now the response of a JJ to a wideband terahertz
wave packet. We now assume that the central frequency of
the incoming radiation �̄ is about �p and that the width �̄ of
the wave packet is large enough. In this case, the first several
energy levels of the system will be excited. The intensity
U��� of light re-emission at frequency � is given by the sum
��pn��ndwn�

�−��k�, with dwn�
�−��k� from Eq. �26�, integrated

over all directions of k. Taking into account relation �37� for

the mean values of the occupation numbers N̄n, and replacing
again the delta function in Eq. �26� by a Lorentzian curve,
we obtain

U��� = 2P�LL
n

����nv��2���̄ − �n�
�� − �n�2 + �n

2 . �41�

The function U���, for relatively short �d=2� and long JJs
�d=5�, is shown in Fig. 2. The wave packet of the incident

FIG. 2. �Color online� The frequency dependence of the inten-
sity of re-emission, U���, calculated for d=5 �red solid curve� and
d=2 �blue dashed curve�. Other parameters are: I / Ic�d�=0.98,
�L /�J=4
10−3, and L /�J=2. The green dot-dashed curve corre-
sponds to Gaussian distribution of the intensity of incoming radia-
tion with central frequency �̄=1 and the width �̄=0.2 �in units of
�p�.
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radiation has a central frequency �̄=1 and width �̄=0.2 �in
units of �p�. In this case, the first two �d=2� or three �d
=5� energy levels are excited. For short junctions, d�1, the
eigenfrequencies are, approximately

�0 � �1 − j2�1/4, �n �
�n

d
�0, n � 0. �42�

For increasing values of d, �1 tends to �0, and when d�4,
we have

�0 � �1 ��n, n � 1. �43�

The relation �1��0 is essential for the properties of macro-
scopic quantum tunneling in JJs. Namely, in this case we
have two channels of tunneling, corresponding to fluxons
arising near the junction’s edges. This situation is considered
in Sec. IV.

IV. PROBABILITY OF PHOTON-ASSISTED TUNNELING

A. Field-theoretic approach

Now we calculate the probability per unit time of quan-
tum tunneling to another vacuum state, stimulated by exter-
nal electromagnetic radiation, using the approach9 proposed
in one of our previous papers. In the semiclassical approxi-

mation, we can consider the quantum field �̂ as a classical
field ��� ,x� in imaginary time t= i�. The probability, �, then
reads12

��Ē� = �p�30B�Ē��0

�
exp�− B�Ē��, B�Ē� =

2SE

�
,

�44�

where SE is the action �1� in imaginary time. Substituting

���,x� = �0�x� + ���,x�

into Eq. �1� and expanding the action in powers of �, we
obtain

B�Ē� = 2��
0

�0

d���
−d/2

d/2

dx�1

2
��D̂ −

�2

��2�� −
1

6
sin �0�

3

−
1

24
cos �0�

4 − . . .	 −
Ē

EJ
� . �45�

The last term in Eq. �45� originates from the matching con-

dition for the wave function � of the quantum field �̂ inside

��in�exp�−SE /��� and outside ��out�exp�−iĒt /��� the bar-
rier. The field � in Eq. �45� satisfies the equation

�B�Ē� /��=0, that is

�2�

��2 − D̂� = −
1

2
sin �0�

2 −
1

6
cos �0�

3 − . . . , �46�

with the following initial and boundary conditions

� ��

��
�
�=0,�0

= 0, � ��

�x
�

x=�d/2
= 0. �47�

In Eqs. �45� and �47�, �0 is the final imaginary time of the

tunneling process. The value of �0 depends on the energy Ē
of the system and can be found using the approach described
below.

We seek a solution of the Eq. �46� in the form

���,x� = 
n

cn����n�x� . �48�

Multiplying Eq. �46� by �n and performing space integration
and using Eq. �14�, we obtain the system of equations for
cn���

c̈n − �ncn = −
1

2
mk

Unmk
�3� cmck −

1

6
mkl

Unmkl
�4� cmckcl − . . .

�49�

with initial conditions

ċn�0� = ċn��0� = 0. �50�

Here, the dot means “imaginary-time derivative,” and

Un. . .k
�i� = − �

−d/2

d/2

dx
�i�cos �0�

��0
i �n . . . �k. �51�

The tunneling exponent B�Ē�, Eq. �45�, can be expressed as

B�Ē� = ��
0

�0

d��1

6 
nmk

Unmk
�3� cncmck −

2Ē

EJ

+
1

12 
nmkl

Unmkl
�4� cncmckcl + . . .	 . �52�

When the current I is close to the critical value Ic�d�, we
have �0�1 and cn�1. So, we can neglect all terms in the
right-hand side of Eq. �49�, except the first one. Our analysis
shows that when d�4, �1��0, and we have the following

relation for the eigenvalues of the operator D̂

�0 � �1 ��n, n � 1.

In this case, c0, c1cn �n�1�, and we can consider only the
first two equations of the system �Eq. �49��, taking cn=0 for
all n�1 �for details, see Ref. 9�.

We now introduce new variables

�i��� =
�u0uici���

3�0
, i = 0,1, �53�

where

� = ��0�, ui = U0ii
�3�. �54�

The system of Eq. �49� takes the form
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�
d2�0

d�2 − �0 = −
3

2
��0

2 + �1
2� ,

d2�1

d�2 − ��1 = − 3u01�0�1, � �55�

where

� =
�1

�0
, u01 =

u1

u0
. �56�

The system �Eq. �55�� has the first integral

9�0
3

u0
2 ��d�0

d�
�2

+
1

u01
�d�1

d�
�2

+ V��0,�1�	 = −
Ē

EJ
, �57�

where we introduce a potential

V��0,�1� = �0
3 + 3�0�1

2 − �0
2 −

�

u01
�1

2. �58�

Taking into account the initial conditions �Eq. �50��, we
have, at the turning points:

V��0���0��, �1���0�����=0,�0
= −  ̄ , �59�

where

 ̄ =
u0

2Ē

9�0
3EJ

, 0 �  ̄ �  0 =
4

27
. �60�

Equation �59� defines the value of �0 as a function of system

energy Ē.
Thus, we reduce the problem of quantum tunneling of the

field � to the problem of tunneling a quantum particle in two

dimensions, where the �i’s play the role of the particle gen-
eralized “coordinates.” The potential V��0 ,�1� is shown in
Fig. 3.

When d�dc�I ,  ̄��4, there are three solutions of the sys-
tem of Eq. �55� with the conditions �Eq. �59��, �i

�0���� and
�i

������, which are characterized by the following relations

�1
�0���� = 0, �1

�−���� = − �1
�+���� .

The trajectories �i
�0���� and �i

������ are shown in Fig. 3. The
solution �i

�+���� ��i
�−����� corresponds to the formation of

vortex �antivortex� nucleus at left �right� junction’s edge,
while the solution �i

�0���� describes the tunneling of � as a

whole.9 The minimum of B�Ē� corresponds to the solutions
�i

������. The tunneling exponent then reads

B�Ē� =
24��0

5/2

5u0
2 b� ̄� , �61�

where

b� ̄� =
15

16
�

0

�0

d���0
3 + 3�0�1

2 − 2 ̄�, �0 = ��0�0.

�62�

Note, that we should multiply the probability ��Ē�, Eq. �44�,
by a factor of 2, since we have two channels for tunneling.

When d�dc�I ,  ̄�, all three solutions coincide, �1
�0����

=�1
�−����=�1

�+����=0, and the second equation of the system
�Eq. �55�� becomes trivial, while the first one can be easily
integrated. As a result, we obtain

b� ̄� =
15

16
�
�1� ̄�

�2� ̄�

d�
�3 − 2 ̄

��2�1 − �� −  ̄
, b�0� = 1, �63�

where �1,2� ̄� are the smaller and larger positive roots of the
cubic equation

�2�1 − �� −  ̄ = 0.

B. Results and discussion

The analysis of the tunneling exponent B on the junction’s
width d and current I was carried out in one9 of our previous
papers. Now we are interested in the effect of electromag-

netic radiation on B�Ē�. Using formulas �39�, �40�, �60�, �62�,
and �63�, we calculate the dependence of �b�0� /b� ̄��̄ , P��
−1� as a function of the radiation’s central frequency �̄, for
short d�dc, and long d�dc junctions. The results of the
calculations, both for wideband ��̄�n� and monochromatic
��̄��n� radiations, are shown in Fig. 4. It is clear that we
have several resonances at frequencies �̄=�n=��n �in units
of �p�.

For relatively short junctions, d�1, resonance peaks are
well separated from each other even for wideband terahertz
radiation, as it can be seen from Fig. 4; while for d�dc, we
have �0��1��n, and the first two peaks can merge into a
single peak. Note, that the inequality �0��1��n is valid
for not too large junction’s width d�20. In the opposite case
we should consider the large number of equations in the

FIG. 3. �Color online� The potential V��0 ,�1� calculated when
d=6, I / Ic�d�=0.98 �� /u01=1.18�. A particle tunnels from its initial
position near �i=0. The �i are collective coordinates for the tun-
neling fluxon. The curves correspond to three possible imaginary-
time trajectories of the particle: �i

�0���� and �i
������ �see text be-

low�. Note that the real-time potential equals to −V��0 ,�1�.
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system �Eq. �49�� to calculate the tunneling exponent.
When �̄=0, the resonance peaks are very narrow, and one

can switch the JJ to the resistive state �B=0� at small radia-
tion power, if �̄=�n. Note, that the condition �̄=�n can be
achieved by changing the applied dc current I, since �n de-
pend on I. In other words, if the frequency of the incoming
radiation lies near one of the �n, one can observe a resonance
behavior of the tunneling exponent B as a function of the dc
current. Such a resonant behavior of the tunneling exponent
B�I� and photon-assisted MQT escape rate ��I� on the ap-
plied dc current I was experimentally observed in low-Tc
�Nb /AlOx /Nb JJ, Refs. 16 and 17� and high-Tc �Bi2212
stacks of intrinsic JJs, Refs. 6� junctions. In particular, Ref.
17 reported several resonances in the tunneling probability
when the dc current satisfies the equality

�̄ =
�p

m
�1 − I2/Ic

2�1/4,

where m is an integer �m=1,2 ,3 ,4 ,5�. The case m=1 cor-
responds to the resonance �̄=�0�I� considered here. Since
the junction studied has a width D��J, its resonance fre-
quencies satisfy the Eq. �42�, and the levels with n�0 �con-
sidered here� cannot be excited. The authors of Ref. 17 at-
tributed the resonances with m�1 to multiphoton
absorption, corresponding to resonances at m�̄=�0�I�. Such
processes can be considered in the framework of our theory,

in higher orders of perturbation with respect to V̂. Note that
the quasiclassical theory of photon-assisted MQT in short
�D��J� junctions, based on multiphoton phenomena, was
developed in Ref. 18. Here we provide a quantum theory,
instead of a quasiclassical study. Also, here we study long
junctions, while Ref. 18 focuses on short junctions.

The second peak, corresponding to the resonance at �̄
=�1, is much wider than the first ��0� and the third ��2�
peaks, in the case of monochromatic incoming radiation
�shown by the red curves in Fig. 4�. Here we consider the
case when the width of the nth peak is defined by the radia-
tion width of the nth energy level, �n. Due to the symmetry
of the JPW wave functions �n�x�, the following condition is
met �2m��2m+1 �see discussion at the end of Sec. III A�,
and, therefore, the second peak �the peak with n=1� turns out
to be much wider than the first �n=0� and the third �n=2�
peaks. However, the widths of the peaks can be wider by
several orders of magnitude due to other possible mecha-
nisms of dissipation �which we do not consider here�. Thus,
the height of the peaks, that is the maximum enhancement of
the photon-assisted MQT, could be much smaller and deter-
mined by the phenomenological parameters �n measured by
independent experiments. For example, from the experiment
Ref. 17 on photon-assisted MQT, we obtain the following
estimate for �exp�10−2.

V. CONCLUSION

In conclusion, we proposed a quantum field theory for
Josephson plasma waves interacting with external electro-
magnetic radiation. We also calculated the macroscopic
quantum tunneling of a fluxon, stimulated by terahertz light,
in a long Josephson junction driven by a dc current. The
probability of absorption and emission of terahertz light de-
pends on the current and the length of the Josephson junc-
tion. The MQT escape rate shows several resonance maxima
as a function of the frequency, corresponding to eigenfre-
quencies of Josephson plasma-wave quanta. This could be
potentially useful for a variety of superconducting quantum
terahertz devices. Classical terahertz devices are discussed in
Ref. 19.

Note that the approach proposed here for calculating
photon-assisted quantum tunneling is somewhat reminiscent
of the quantum-mechanical approach considered in Ref. 20,
where a system of master equations for the probabilities of a
quantum particle to occupy discrete energy levels is used.
However, the method developed in Ref. 20 describes the
tunneling of a single-quantum particle from a potential well,
and cannot be applied for distributed systems such as con-
tinuum fields and, thus, fails to describe MQT in the long
Josephson junctions considered here. In our case, instead of a
system of master equations, we have a set of detailed-balance
equations for the transition rates, wn

�+�=wn
�−�, which provide a

set of occupation numbers N̄n describing the state ��Ē� with

the energy Ē of the quantum field �̂. The MQT escape rate

��Ē� of the quantum field in this state is then calculated
using the approach developed in our previous paper Ref. 9.

Our approach can be easily generalized to the case of a
system of intrinsic JJs. It would allow to calculate the prob-

FIG. 4. �Color online� The frequency dependence of
b�0� /b� ̄�� , P��−1, calculated for d=2 �upper graph� and d=5
�lower graph�. Other parameters are I / Ic�d�=0.98, L=2�J, and v
=1 /30 for both cases. Solid curves correspond to monochromatic
incoming radiation, while the dashed curves describe the response
on wideband terahertz radiation with �̄=5
10−2 �in units of �p�.
The radiation power P is the same for all curves and is chosen such
that max� ̄�� , P��=0.3 0=2 /45 for wideband radiation.
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ability of photon-assisted tunneling in high-Tc superconduct-
ors, which can be considered as a stacks of coupled intrinsic
Josephson junctions. Note that such calculations were carried
out in Ref. 21, but only for very short stacks and only for
capacitively-coupled junctions, which is not the case for ex-
perimentally realistic superconducting samples. The collec-
tive excitations in the system of JJs considered in Ref. 21
correspond to JPWs in our theory. However, the spatial dis-
tribution of phase differences inside junctions was not taken
into account in Ref. 21. But the spatial distribution of a tun-
neling fluxon is essential10 for samples of a micron size.
Indeed, our theory successfully explains the large enhance-
ment of the MQT escape rate observed in recent
experiments6 on MQT in Bi2Sr2CaCu2O8+� stacks of intrin-
sic JJs �for details, see Ref. 10�.
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