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We analyze theoretically the effect of a weak nonlinearity on the propagation of Josephson plasma waves in
layered superconductors. The nonlinearity originates from the Josephson relation between the current density
across superconducting layers and gauge-invariant phase difference of the order parameter. We show that
strong nonlinear effects can be observed for electromagnetic waves with frequency slightly above or slightly
below the plasma frequency. We study the nonlinear plasma resonance accompanied by the hysteretic depen-
dence of the wave amplitude on the frequency. This hysteresis transforms the continuous terahertz radiation
into a series of short electromagnetic high-amplitude pulses. We also consider the propagation of a nonlinear
terahertz beam localized in the direction across the superconducting layers. This phenomenon is an analog of
the self-focusing effect in nonlinear optics. The nonlinear phenomena in layered superconductors considered
here can be potentially useful for the design of a new generation of terahertz devices.
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I. INTRODUCTION

The physical properties of layered superconductors, e.g.,
Bi2Sr2CaCu2O8+�, have attracted considerable interest from
many research groups. The strongly anisotropic high tem-
perature Bi2Sr2CaCu2O8+� superconductors are characteristic
members of this family. Intensive experimental studies of the
c-axis conductivity in layered high temperature supercon-
ductors �HTSC� justify a model in which the superconduct-
ing CuO2 layers are coupled by intrinsic Josephson
junctions.1 The Josephson current flowing along the c axis
interacts with the electromagnetic field inside the insulating
dielectric layers, producing Josephson plasma waves
�JPWs�.1–12 In other words, the layered structure of super-
conductors favors the propagation of electromagnetic waves.
A challenge is to excite13 and to control14,15 electromagnetic
waves in Bi2Sr2CaCu2O8+� �BSCCO� samples because of
their subterahertz and terahertz frequency range,11,16 which is
still hardly reachable for both electronic and optical devices.

Linear electromagnetic phenomena, including Josephson
plasma resonance, propagation of Josephson plasma waves,
reflectivity, and transmissivity, etc, in anisotropic supercon-
ductors were considered in many experimental and theoreti-
cal works �see, e.g., Refs. 17–28�. Here, we consider essen-
tially nonlinear phenomena in JPWs propagation, originated
from the nonlinear Josephson relation between the current
density J across the layers and gauge-invariant phase differ-
ence �, i.e., J=Jc sin �. Here, Jc is the maximum Josephson
current density.

The electrodynamics of layered superconductors is de-
scribed by a set of coupled sine-Gordon equations for the
gauge-invariant interlayer phase difference � �see Refs.
29–34�. In the strongly nonlinear regime �����, the sine-
Gordon equation possesses soliton and breather
solutions.35,36 However, the nonlinearity becomes crucial

even at small wave amplitudes, at ����1, due to a gap in the
spectrum of the JPWs. In Refs. 38 and 39, we discussed such
phenomena. Some of these, �e.g., JPWs self-focusing effects,
the pumping of weaker waves by a stronger one, nonlinear
plasma resonances, and nonlinear surface and wave-guide
propagation� have analogs37 in traditional nonlinear optics.
In addition, the unusual stop-light phenomenon caused by
both nonlinearity and dissipation was predicted in Ref. 38.

In this paper, we consider in detail two important nonlin-
ear phenomena that can be observed just above or slightly
below the Josephson plasma frequency �J. One of them is
the nonlinear geometric Josephson plasma resonance that can
be observed in layered superconductors when ���J. This
effect, being well-known in nonlinear physics, was not inves-
tigated for Josephson media until recently, despite the fact
that the one-dimensional sine-Gordon equation was previ-
ously studied by many research groups �see, e.g., Ref. 35 and
references therein�.

Another phenomenon considered here is specific for lay-
ered Josephson media for frequencies � below �J. We have
predicted in Ref. 38, and study here, the propagation of a
nonlinear terahertz beam localized across the layers, which is
an analog of the self-focusing effect in nonlinear optics.

II. COUPLED SINE-GORDON EQUATIONS

Consider a layered superconductor with the layers in the
xz plane and the y axis along the c axis. We assume that the
magnetic field H is along the z direction and study the waves
propagating along the layers in the x direction. In this case,
the electric field E of the JPWs has only x and y components,
Ex, Ey, and the fields do not depend on z. The electromag-
netic field inside the superconductor is defined by the distri-
bution of the gauge-invariant phase difference �l�x , t� of the
order parameter between lth and �l+1�th layers. The dynam-

PHYSICAL REVIEW B 78, 024511 �2008�

1098-0121/2008/78�2�/024511�9� ©2008 The American Physical Society024511-1

http://dx.doi.org/10.1103/PhysRevB.78.024511


ics of �l�x , t� can be described by a set of coupled sine-
Gordon equations. These equations can be derived either in
the model of S-I �superconductor-insulator� multilayered
system29 or on the basis of the Lawrence-Doniach
model.30–32 The latter approach is more natural for HTSC
and we will use it below. In this case, the equations related to
�l�x , t� and the magnetic field Hl between the lth and �l
+1�th layers can be written as40,41

�2�l

�t2 = ���l
2 − 1��	c

��l

�t
+ sin �l −

� h̃l

�x
� , �1�

��l
2 −

D2


ab
2 �1 + 	ab

�

�t
��h̃l +

D2


ab
2 �1 + 	ab

�

�t
� ��l

�x
= 0, �2�

where the dimensionless coordinates, time, and magnetic
field are introduced according to

x →
x


c
, t → �Jt, h̃l =

Hl

H0
. �3�

Here, 
ab and 
c=c / ��J�
1/2� are the London penetration

depths across and along the layers, respectively, the operator
�l

2 is defined as �l
2f l= f l+1+ f l−1−2f l, � is the parameter of the

capacitive coupling,

�J = �8�eDJc/���1/2

is the Josephson plasma frequency. The characteristic field
H0 is

H0 =
0

2�D
c
. �4�

Moreover, Jc is the maximum Josephson current, � is the
interlayer dielectric constant, D is the interlayer spacing, and
0 is the flux quantum. The dissipation parameters,

	ab = 4��ab/��2�J, 	c = 4��c/��J, �5�

are determined by the quasiparticle conductivities, �ab and
�c, along and perpendicular to the layers, respectively, �
=
c /
ab is the anisotropy parameter. Note that 	c�	ab�1
for BSCCO.41 We normalize the y coordinate to 
ab, y
→y /
ab and denote the position of the lth layer as yl. When
deriving Eqs. �1� and �2�, the quasiparticle charge imbalance
and displacement current in the ab plane are neglected. The
spatial variations in the y direction of fields inside the very
thin superconducting layers and the magnetic-field depen-
dence of �ab and �c are also ignored.

In the present work, we study weakly nonlinear plasma
waves with frequencies near the plasma resonance ���1�
varying on a large scale, �y, in the y direction compared
with the interlayer spacing D. These allow us to simplify
Eqs. �1� and �2�. We can present a solution �l as a Fourier
series

�l = 	
q

�ql�x,t�exp�iqyl� ,

then

�l
2�l = 	

q

q̃2�ql�x,t�exp�iqyl� ,

where q̃2=2�1−cos qD /
ab�. The condition �y�D means
that only the terms �ql with qD /
ab�1 are of importance.
Thus, we can approximate q̃2= �qD /
ab�2 and use Eqs. �1�
and �2� in the continuum limit substituting �l

2

→ �D /
ab�2�2 /�y2. Moreover, we can neglect the term with
the capacitive coupling ��l

2 in Eq. �1� since ��1 in
HTSC.41,42 As a result, we derive from Eqs. �1� and �2�

�1 + 	ab
�

�t
−

�2

�y2�� �2�

�t2 + 	c
��

�t
+ sin �� = �1 + 	ab

�

�t
� �2�

�x2 .

�6�

The dissipation parameters are small in HTSC, 	ab ,	c�1.
So, we omit terms with 	ab and 	c. The applicability of this
simplification is discussed at the ends of Secs. III and IV.

We investigate the effects of a weak nonlinearity and ex-
pand sin � in Eq. �6� up to third power in �. Thus, we arrive
at our basic equation for further study,

�1 −
�2

�y2�� �2�

�t2 + � −
�3

6
� −

�2�

�x2 = 0, �7�

Below, we analyze Eq. �7� with its corresponding boundary
conditions by means of an asymptotic expansion taking into
account that the wave frequency � is close to �J, that is,
�1−�2��1 in dimensionless units.

III. NONLINEAR PLASMA RESONANCE

Consider an electromagnetic wave with frequency ��1
and wave vector k= �k0 ,q�, incident from the vacuum, x�
−l, at the edge of a slab of a layered superconductor, −l�x
� l, Fig. 1. The magnetic field H of the wave has only the z
component while the electric field E contains both x and y
components. In dimensionless units for the wave in vacuum
at x�−l, we have

H = Hi exp�ik0x� + Hr exp�− ik0x� , �8�

H

y

−−−− l l

VACUUM VACUUM

x

incident
wave

reflected
wave

transmitted
wave

SUPERCONDUCTOR

FIG. 1. �Color online� Geometry of the problem. A terahertz
wave irradiates a slab of layered superconductor that occupies the
region −l�x� l. The superconducting layers are parallel to the xz
plane.
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Ex = −
q
�

��
H , �9�

Ey =
k0


�

�
�Hi exp�ik0x� − Hr exp�− ik0x�� , �10�

where Hi and Hr are the amplitudes of the incident and re-
flected waves. Here and below we omit the multiplier
exp�−i�t+ iqy�. The dispersion law for the wave in the
vacuum has the form

q2

�2 + k0
2 =

�2

�
.

In the half-space x� l, there exists only a transmitted
wave with

H = �Ht exp�ik0x�, Ex = −
q
�

��
H , �11�

Ey =
k0


�

�
Ht exp�ik0x� . �12�

The relation between the gauge-invariant phase difference
and the y component of the electric field in the superconduct-
ing sample can be presented as32

Ey =
H0


�

��

�t
. �13�

The nonlinear relation between the phase difference � and
the magnetic field H can be derived from the Maxwell equa-
tion

curl H =
4�

c
J +

�

c

�E

�t
. �14�

Using the expression

Jy = Jc sin �  Jc · �� −
�3

6
� �15�

for the y component of the current density J we obtain

−
1

�

�H

�x
=

H0

�
�� −

�3

6
� +

�Ey

�t
. �16�

A. Linear approximation

Equation �7� can be solved by a standard perturbative ap-
proach. First, we examine this problem in the linear approxi-
mation and seek a solution for JPWs in the sample in the
form of a sum of waves propagating forward and backward,

H = A exp�ikx� + B exp�− ikx� , �17�

� = a exp�ikx� + b exp�− ikx� , �18�

with the dispersion law

k2 = ��2 − 1��q2 + 1� . �19�

From Eqs. �13�, �4�, and �16�–�18� we find:

�H

�x
= H0��2 − 1�� , �20�

the relations between the amplitudes A ,B and a ,b,

a =
ikA

H0��2 − 1�
, b = −

ikB

H0��2 − 1�
, �21�

and the expression for the electric field Ey,

Ey =
k�


���2 − 1�
�A exp�ikx� − B exp�− ikx�� . �22�

Equation �14� relates also Ex and H at the sample edges,

Ex = −
q

��
�
H, x = � l , �23�

since Jx=0 at these surfaces.
Now we should match the solutions in vacuum and in the

sample requiring the continuity of the magnetic field and the
tangential component of the electric field, Ey, at the sample
boundaries. This yields

Hi exp�− ik0l� + Hr exp�ik0l� = A exp�− ikl� + B exp�ikl� ,

Hi exp�− ik0l� − Hr exp�ik0l� = Q����A exp�− ikl�

− B exp�ikl�� ,

Ht exp�ik0l� = A exp�ikl� + B exp�− ikl� ,

Ht exp�ik0l� = Q����A exp�ikl� − B exp�− ikl��a , �24�

where

Q��� =
k�2

k0���2 − 1�
.

Solving these algebraic equations, we express all the ampli-
tudes �A ,B ,Hr ,Ht� via the amplitude Hi of the incident
wave,

A =
2�1 + Q�Hi exp�− i�k0 + k�l�

�1 + Q�2exp�− 2ikl� − �1 − Q�2exp�2ikl�
, �25�

B = −
2�1 − Q�Hi exp�− i�k0 − k�l�

�1 + Q�2exp�− 2ikl� − �1 − Q�2exp�2ikl�
, �26�

Hr = − i�1 − Q�sin�2kl�A exp�− i�k0 − k�l� , �27�

Ht =
2Q

1 + Q
A exp�− i�k0 − k�l� . �28�

One can see that the reflected wave disappears and the
amplitudes of the JPW in the sample increase under the reso-
nance condition kl=�n /2, where n is an integer. For this
case, we derive from Eqs. �25�–�28�

A = in1 + Q

2Q
Hi exp�− ik0l� , �29�
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B = �− i�n+11 − Q

2Q
Hi exp�− ik0l� , �30�

Hr=0, and �Ht�= �Hi�. The values of Qn for the resonance
conditions are

Qn 
2�l�1 + q2�


��n
. �31�

Here, we take into account that k0� /�1/2 since ��1 for
any layered high-Tc superconductor. If Qn�1, the resonance
amplitudes of the wave in the sample, Eqs. �29� and �30�, are
much higher than far from the resonance. Thus, the electro-
magnetic energy stored in a sample of length 2L=2l
c in-
creases, under resonance conditions, by a factor of about

Qn
2 � 4L2/�2�
c

2n2

in dimensional units. For a sample with L=1 cm, 
c
=10−2 cm, and �=20, this value is about 200 for n=1.

B. Nonlinear effects

Now we take into account the nonlinearity in Eqs. �7� and
�16�, which gives rise to corrections to the wave amplitudes
and the dispersion law �19�. The main idea of the following
calculations is analogous to that in the case of nonlinear
oscillators.43 It is of interest to study the system behavior
near the first �n=1� resonance at � close to 1, when Q1
�Q�1 and the power of the JPW in the sample is maxi-
mum.

The nonlinearity results in a shift of the dispersion law,
which we describe by replacing k→k0+�k, where �k is a
function of the wave amplitude. So, we rewrite the denomi-
nator � in Eqs. �25� and �26� as

� = �1 + Q�2exp�− 2ikl� − �1 − Q�2exp�2ikl�

= − 2i�1 + Q2�sin�2kl� + 4Q cos�2kl� .

In the vicinity of the first resonance, 2kl=�+2�kl and Q
�1, we obtain in first approximation

� = − 4Q�1 − iQ�kl� .

Substituting the last expression in Eqs. �25� and �26�, we
obtain

A = − B =
iHi exp�− ik0l�
2�1 − iQ�kl�

. �32�

Correspondingly, by means of Eqs. �29�, �30�, and �32�, we
derive

a = b = −
Hi

H0

Q
� exp�− ik0l�
2a�1 − iQ�kl�

. �33�

To analyze the nonlinear problem, it is more suitable to
use real values. Then, the phase difference in the first-order
approximation can be written as

��0� = a0�cos��t − kx − qy − �� + cos��t + kx − qy − ��� ,

�34�

where

a0 =
QHi

2H0


�


1 + Q2�k2l2
,

� = − k0l + tan−1�Q�kl� �35�

We seek a solution of Eq. �7� in the form �=��0�+��1�. Sub-
stituting this into Eq. �7� we find, in first-order approxima-
tion in ��1� and �k,

��1 + q2��1 − �2� + k�0�2���1� = �1 −
�2

�y2���0�3

6
− 2k�0��k��0�.

�36�

Following Ref. 43, the value of �k should be chosen to elimi-
nate the first harmonics �resonance terms containing
cos��t�kx−qy−��� in the right-hand side of Eq. �36�. Sub-
stituting Eq. �34� into Eq. �36� we obtain

�k =
3�1 + q2�

16k�0� a0
2. �37�

As in the case of ordinary nonlinear oscillators,43 the shift of
the dispersion law is proportional to a0

2.
Let us now consider a wave frequency not equal to the

resonance frequency and different from �res by a small
slowly-varying value �det�t�, i.e., ��t�=�res+�det�t�. In this
case, the variation of the wave vector,

�k� =
�k

��
�det = �det� 1 + q2

�res
2 − 1

�1/2

, �38�

should be added to Eq. �37�,

�k =
2�1 + q2�l

�
� 3

16
a0

2 + �det� . �39�

Here we take into account that �res1 and k�0�=� /2l. Sub-
stituting this relation into Eq. �35� we derive a self-
consistency condition for the wave amplitude

f�a0
2,�det� = a0

2�1 + �2�3a0
2

16
+ �det�2� − h2 = 0, �40�

where

h =
�1 + q2�lHi

�H0
, � =

4�1 + q2�2l3

�2
�
. �41�

Equation �40� defines the dependence of the wave ampli-
tude a0, near the resonance, on the detuning frequency �det,
and the amplitude Hi of the incident wave. The function
a0��det� is shown in Fig. 2 for different Hi. One can see that
this dependence is single-valued if Hi is smaller than some
critical value Hcr. When Hi�Hcr, there is an interval of fre-
quencies where the function a0��det� has three branches. As
usual, the intermediate branch is unstable while the lower
and upper branches are stable. These stable branches can be
reached when �det�t� either increases or decreases. As a re-
sult, a hysteresis in the a0��det� dependence can be observed
if Hi�Hcr. Obviously, to observe the hysteresis jumps in
a0�t�, the magnitude of the frequency change should exceed a
critical value, i.e., �det� ��det

�cr��.
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The critical values Hcr and �det
�cr� can be derived from Eq.

�40� and the condition �2f /�a0
2=0. The latter condition re-

sults in

3�2� 3

16
�2

a0
4 +

3

4
�2�deta0

2 + 1 + �2�det
2 = 0. �42�

This is a quadratic equation with respect to a0
2. It has real

roots if its discriminant D��det� is positive. Thus, the thresh-
old frequency deviation �det

�cr� is defined by the evident con-
dition D��det

�cr��=0. From this we obtain

�det
�cr� = −


3

�
. �43�

From Eqs. �42� and �43� we calculate the critical amplitude
acr that corresponds to �det

�cr�

acr =
25/2

33/4�1/2 . �44�

Finally, by means of Eq. �40�, we obtain the inequality to
determine the minimum incident wave amplitude

h � hcr =
8
2��det

�cr��1/2

3

necessary to observe the hysteresis effect. In dimensional
units, this produces the condition

Hi � Hcr =
25/2�

33/4
�1/4

�1 + q2�l5/2H0. �45�

Using the same values as for the estimate after Eq. �31�,
we obtain �det

�cr�−10−5. Thus, the critical detuning frequency
is approximately −5 MHz for Josephson plasma frequency
�0.5 THz. The estimate for the critical amplitude gives the
ratio Hcr /H010−4. If D=1.5 nm, then H021 Oe and
Hcr2·10−3 Oe.

The hysteresis of the wave amplitude can result in an
interesting phenomenon: the transformation of the input con-
tinuous terahertz radiation into a set of short bursts with am-
plitudes significantly higher than the amplitude of the inci-
dent wave �see animation at http://dml.riken.jp/nonlinear/
nonlinear.swf�. Indeed, while the frequency of the incident
wave increases approaching �res �corresponding to the A
→B→C→D �or ABCD� route in Fig. 2�, the energy of the
electromagnetic wave is accumulated in the sample. When
the frequency is decreased �route DCEFA in Fig. 2�, the
amplitude of the wave decreases abruptly �sudden jump E
→F� and a significant part of the stored energy is released in
the form of a short terahertz pulse.

Here, we neglect dissipation effects due to quasiparticle
tunneling. These effects can suppress the nonlinear plasma
resonance. To analyze the applicability of the obtained re-
sults, we study the dispersion law k�� ,q� taking into account
terms in Eq. �6� with the dissipation parameters 	ab and 	c.
Linearizing this equation under conditions the 	ab ,	c ,q2�1,
we obtain

k2 = ��2 − 1 − i	c���q2 + 1 − iq2	ab�� . �46�

Comparing this dispersion equation with the dispersion law
Eq. �19�, we conclude that the obtained results are valid if

q2	ab, 	c � �det. �47�

C. Sample heating

The heating of the sample can also be important for the
predicted nonlinear effects. Here, we derive the conditions
under which the overheating �T is small and we can neglect
the change in the sample properties. The heat power dissi-
pated in the sample, per unit volume, is �abEx

2+�cEy
2. Fol-

lowing a standard approach used for estimating the super-
conductor overheating,44 we can write �T as a sum of the
temperature difference �T1, between the sample bulk and the
sample surface, and �T2, between the sample surface and the
ambient volume. The Bi2Sr2CaCu2O8+� single crystals usu-
ally have the shape of a plate, with the smallest dimension
Ly �0.1 mm in the c direction. In this case, the ratio
�T2 /�T1 is determined by the Biot criterion,44 that is, the
ratio of the transverse thermal conductivity �c and the prod-
uct of LyW, where W is the surface heat transfer coefficient

FIG. 2. �Color online� Amplitude a0 �of the nonlinear Josephson
plasma wave inside the sample� versus the detuning frequency �det

near a resonance, for different incident wave amplitudes. The brown
�lower� curve corresponds to Hi /H0=5·10−5. The red �in the
middle� curve is for the critical value Hi /H0=10−4. Note that, at
stronger incident waves, the two stable and one unstable solutions
for the amplitude of nonlinear waves inside the sample are possible.
The blue �upper� curve is for Hi /H0=5·10−4. The values of other
parameters used here are: l /
c=100, �=20, q=0.25.
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also known as the Kapitza conductance. For HTSC single
crystals in any realistic case LyW��c and44

�T  �T2 = ��abEy
2 + �cEy

2�Ly/W .

Using Eqs. �19�, �22�, and �23�, we can rewrite the last con-
dition for ��−1��det and Hi=Hcr in the form

�T 
Hcr

2 �cLy

4W��det
�1 +

q2�det�ab

�2�c
� . �48�

Taking, for estimates, �=500, �=20, �c=2·10−3 �−1 cm−1,
�ab=4·104 �−1 cm−1,41 W=10−1 W /cm2 K �cooling by liq-
uid helium�, or 103 W /cm2 K �cooling by liquid nitrogen�,44

Hcr=2 ·10−3 Oe, q=1, �det=1 ·10−4, and Ly =0.1 mm, we
obtain �T10−2 K �helium� and 10−6 K. Thus, we can ne-
glect the sample heating in any case.

IV. LOCALIZED TERAHERTZ BEAM

Another example of a nonlinear effect in layered super-
conductors is the possible formation �below the plasma fre-
quency �J� of plasma waves localized across the layers. The
existence of such localized beams can be understood by
means of a simple analysis of the coupled sine-Gordon equa-
tions �Eq. �7�� and the dispersion law �Eq. �19�� for the linear
plasma waves. The tails of the localized beams can be con-
sidered as linear waves. They can propagate along the x di-
rection with ���J due to the concave profile of ��y�. In-
deed, Eq. �19� shows that the x component of the wave
vector k can be real for the waves with ���J only in the
case of imaginary q, with q2+1�0. In other words, the tails
of the beam should have a form

� � exp�ikx − i�t � �y�

with real �. Note that such a concave profile of ��y� also
describes surface Josephson plasma waves localized near the
sample boundary.39,45,46 The middle part �the “peak”� of the
beam cannot have the concave profile of ��y�. However, this
part of the beam can propagate when ���J due to the non-
linearity. Indeed, in the nonlinear regime, the cubic term �3

in Eq. �7� can change the sign of the sum in the second
bracket if the wave amplitude exceeds some threshold
value.38 Thus, we can imagine the localized �in the y direc-
tion� beam consisting of two “linear tails” decaying as
exp��−��y��, with ��1 when �y�→�, that are connected with
each other via the nonlinear “peak,” where the amplitude of
the wave exceeds the threshold value.

We now seek a solution of Eq. �7� using the asymptotic
expansion

� = 	
n=0

�

a2n+1�y�sin��2n + 1���t − kx�� . �49�

Here, we only keep the amplitudes a2n+1 of the odd harmon-
ics because we study the cubic nonlinearity. For waves with
amplitudes

a1 � �1 − �2�1/2 � 1,

the nonlinear term �3 in Eq. �7� is of the same order as the
linear one, �2� /�t2+�, and even a weak nonlinearity plays a

key role in the wave propagation. Substituting the expansion
�49� in the sine-Gordon Eq. �7�, we obtain a set of ordinary
equations for the harmonic amplitudes a2n+1�y�. A standard
analysis shows38 that the amplitudes of higher harmonics de-
crease with increase of n as

a2n+1 � �1 − �2�n+1/2.

Therefore, we restrict our study to the first harmonics only.
The equation for the amplitude of the first harmonics has

the form,

�1 −
d2

dy2���1 − �2�a1 −
a1

3

8
� + k2a1 = 0, �50�

with boundary conditions

a1���� = 0 �51�

corresponding to a localized solution. Introducing the new
variables,

A =
a1

�1 − �2�1/2 , � =
k

�1 − �2�1/2 , � = �y , �52�

we rewrite Eq. �50� in the form

�1 − �2 d2

d�2��A −
A3

8
� + �2A = 0. �53�

Using Eqs. �13� and �16�, we obtain the relation between
the phase amplitude A��� and the components of the electro-
magnetic field of the beam:

H = H���cos��t − kx� , �54�

H��� = H0
�1 − �2�

�
h��� , �55�

h��� = − A��� +
A3���

8
, �56�

Ex = Ex���sin��t − kx� , �57�

Ex��� = − H0

ab


�
c

�1 − �2�h���� �58�

Ey = Ey���cos��t − kx� , �59�

Ey��� = H0�1 − �2�1/2 1

�

A��� . �60�

Equation �50� has a first integral. After integration, we
derive

�dA

d�
�2

=
C + A6 − 12A4��2 + 4

3� + 64A2��2 + 1�
�2�8 − 3A2�2 . �61�

Using this equation, we can construct the phase diagram in
the �A ,A�� plane �here prime denotes the derivative with
respect to ��. For simplicity, we now restrict our analysis to
the case when ��1, since this simplification does not
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change the results qualitatively. In this limit, Eq. �61� yields

�A��2 = −
4

3
+

G

�8 − 3A2�2 . �62�

The phase diagram of Eq. �62�, i.e., the set of A��A�
curves for different constants G is shown in Fig. 3�a�. Ac-
cording to the boundary conditions Eq. �51�, the point �0,0�
in the phase diagram in Fig. 3 corresponds to �y�=�. Thus,
the black solid lines at �A�����
8 /3 correspond to the tails
of the beam. As it follows from Eq. �56�, the value of A is
negative at the tails if we demand the positiveness of the
magnetic-field amplitudes. The corresponding parts of the
phase trajectories are shown in Fig. 3�b� by black solid lines.
The peak of the beam can be described by one of the green
�dashed� lines in Fig. 3�a� �see also Fig. 3�b�� where the point
with A�=0 and A��0 �the point of beam maximum� exists.
At the beam peak, A����
8, as it also follows from Eq.
�56�. Obviously, the transition from tail to peak of the beam
is possible only through the jumps between the phase trajec-
tories, as indicated by the dotted arrows in Fig. 3�b�. Such
jumps are not forbidden if the conditions of continuity of the
magnetic h��� and electric Ex��� fields are satisfied. When
changing the coordinate �, the point �A� ,A� moves along the
route 1-2-3�-2�-1 in Fig. 3�b�.

It is convenient to illustrate the beam behavior in the plot
h�A�, Eq. �56�, shown in Fig. 4. The point �0,0� in this plot

corresponds to �= ��. When increasing � from −�, the
value of A decreases while h increases �see the route from
point 1 to point 2 shown by the arrow in Fig. 4�. This move-
ment corresponds to the left tail of the beam. At A=AJ1�0,
the transition from tail to peak of the beam occurs. This
transition is shown in Fig. 4 by the horizontal arrow from
point 2 to point 3 with A=AJ2�2
2. With further increase of
�, both values of A and h increase when moving from point
3 to point 4. Point 4 corresponds to the beam maximum,
A��=0�=Am and h��=0�=hm. At ��0, we follow the same
route, 4–3-2–1, in the reverse direction since the beam is
symmetric with respect to �=0. The magnetic field is evi-
dently continuous at the points �= ��J where the jumps oc-
cur. The condition of continuity of the electric field Ex deter-
mines both the positions ��J of the jumps and the values AJ1
and AJ2.

Integrating Eq. �62�, we derive the form of the beam for
the case ��1. For the peak of the beam, the constant G is
determined from the condition A��0�=0, that is, G=4�8
−3Am

2 �2 /3. So, the peak of the beam is described by the
implicit expression,

�
A���

Am du�3u2 − 8�

3�Am

4 − u4� − 16�Am
2 − u2�

= 2����, ��� � �J.

�63�

This equation taken at the point �=�J,

�
AJ2

Am du�3u2 − 8�

3�Am

4 − u4� − 16�Am
2 − u2�

= 2��J, �64�

relates to the position of the jump with AJ2. For the tails of
the beam, G=256 /3 since A�=A=0 at ���=�. Thus, we have
from Eq. �62�
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FIG. 3. �Color online� The phase diagram �A� ,A� of Eq. �62�.
�a� General appearance; �b� the parts of the phase trajectories that
correspond to the localized beam �solid and dashed thick lines�,
dotted arrows represent �-jumps. Vertical dotted lines correspond to
A=−
8,−
8 /3,
8 /3,
8.
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FIG. 4. �Color online� Dimensionless magnetic field h�A� �de-
termined by Eq. �56�� versus amplitude A �defined in Eq. �52��. The
route 1–2-3–4-3–2-1 corresponds to the localized beam profile
when the coordinate � varies from −� to �.
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�
AJ1

A��� du�8 − 3u2�
u
16 − 3u2

= 2����� − �J�, ��� � �J. �65�

The asymptotics of the A��� dependence when �→�, A
�exp�−���, coincides with the y-coordinate behavior of the
linear surface waves.45

The continuity conditions for h��� and Ex��� produce two
equations for AJ1 and AJ2:

AJ2�1 −
AJ2

2

8
� = AJ1�1 −

AJ1
2

8
� ,

AJ1
2 − AJ2

2 + Am
2 =

3

16
�AJ1

4 − AJ2
4 + Am

4 � .

Thus, the form of the beam, positions of the jumps, and the
values AJ1, AJ2 depend on the parameters �, �, and Am. The
form of the beam is illustrated in Fig. 5. The dependences
A��� and h��� are shown by the blue solid and the red dashed
lines, respectively.

Note that the transverse electric field Ey��� exhibits jumps
at the points �= ��J. This means the breaking of charge
neutrality at the boundaries between the peak and tails of the
beam. However, the results obtained in this section, by solv-
ing the simplified Eq. �7�, are valid even in this case and
there is no need to use the full system of sine-Gordon Eqs.
�1� and �2�. Indeed, for the parameters used in our calcula-
tions, the characteristic sizes of the beam peak and tails are
of the order �J�1. Correspondingly, the condition

��qD/
ab�2 � 1

is valid for the obtained solutions and we can neglect the
charge neutrality breaking in the beam peak and tails. The
analysis of Eqs. �1� and �2� reveals that the spatial scale of
the electric-field jump at the peak-tail boundary must be of
the order of D. Then, from the mathematical point of view, it
is reasonable to treat the peak-tail boundary as the surface of

discontinuity, and match the fields on the left and on the right
side at this boundary, which was done in the above consid-
erations.

The obtained results are valid under conditions of suffi-
ciently small dissipation, that is, we have to require that 	c
�1−�2 and 	ab�1, as it can be seen from Eq. �46� and a
simple analysis of our calculations. The next requirement is
the smallness of the sample overheating. Using Eqs. �13� and
�23�, and results shown in Fig. 3, the value of Ey can be
estimated as Ey �H0�
8�1−�2� /� and Ex�qEy


�1−�2� /�.
Then, similar to Eq. �48�, we derive

�T 
8H0

2�1 − �2��c�y

W�
�1 +

q2�1 − �2��ab

�2�c
� , �66�

where 2�y=2�J
ab is the thickness of the beam peak, where
the main heat release occurs. Assuming that 1−�2=0.01, we
obtain �T / �Tc−T��0.5 K �in liquid helium� and 5
�10−4 K �in liquid nitrogen� for the parameter values used
for the estimates of overheating in Sec. III. Thus, the validity
requirement for the existence of a terahertz beam can be
satisfied for standard material parameters.

V. CONCLUSIONS

We analyzed theoretically two nonlinear effects for Jo-
sephson plasma waves in layered superconductors. One of
them is the nonlinear plasma resonance accompanied by the
hysteretic behavior of the wave amplitude-frequency depen-
dence. The hysteresis can be observed if the incident wave
frequency � is slightly higher than the Josephson plasma
frequency �J and the wave amplitude exceeds a threshold
value. The hysteretic jumps in the amplitude-frequency de-
pendence give rise to the interesting phenomenon of trans-
forming the continuous input terahertz radiation into a series
of short and strong electromagnetic pulses. Another phenom-
enon considered in this paper is the propagation of a nonlin-
ear terahertz beam localized in the direction across the su-
perconducting layers. This beam can exist at frequencies �
slightly below �J. The nontrivial structure of the beam was
studied in detail. This phenomenon is an analog of the self-
focusing effect in nonlinear optics. These types of nonlinear
phenomena in layered superconductors could be used to de-
sign a new generation of terahertz devices.
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