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A two-band Hubbard model in the limit of strong on-site Coulomb repulsion is used to describe the band
structure and phase separation �PS� in strongly correlated electron systems with a special emphasis on cuprate
superconductors. The PS corresponding to the inhomogeneous charge density occurs in such a system due to
the redistribution of charge carriers between the bands. This mechanism does not require any magnetic inter-
action or intersite Coulomb repulsion. The interband hybridization gives rise to a peak in the electron density
of states and, in the PS state, the Fermi level in one of the phase is located near this peak. The resulting charge
density redistribution can affect the dependence of the superconducting critical temperature Tc on the doping
level.
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I. INTRODUCTION

The phenomenon of self-organized electron inhomogene-
ity or phase separation �PS� is common to many strongly
correlated electron systems.1,2 For example, PS in the form
of droplets, stripes, and checkerboard patterns has been ob-
served in doped magnetic oxides �manganites�.1 Nanoscale
spatial variations in the electronic characteristics are also ob-
served in different high-Tc superconductors in the form of
stripes,1 granular droplet-like structures,3 four-unit-cell peri-
odic �checkerboard� patterns,4 or even more intricate
arrangements.5 Such inhomogeneous electron structures in
superconducting cuprates and related materials are predicted
by several theoretical models.6–13

The important role of PS for superconductivity in cuprates
was widely discussed starting from the late 1980s. The cu-
prates are an example of strongly correlated electron systems
usually studied in the framework of the multiband Hubbard
model and its generalizations.12,14–23 Many theoretical ap-
proaches �see, e.g., Refs. 1, 2, and 7–11� explain PS in man-
ganites and cuprates as a result of the competition between
electron localization due to antiferromagnetic correlations
and delocalization in the nonmagnetic �or ferromagnetic� re-
gions. It should be noted, however, that the phase separation
is observed in cuprates in a wide doping range, even near
optimal doping, where one could not expect significant anti-
ferromagnetic correlations.24–26 Another possibility that was
discussed in the literature is the formation of inhomogeneous
structures due to the nearest-neighbor Coulomb
repulsion.12,15–20 In both cases, the existence of spin or
charge degrees of freedom is essential for PS, whereas spe-
cific features of the band structure do not play a fundamental
role. Even when the multiband Hubbard Hamiltonian is re-
duced to the effective single-band model, PS can arise.20

However, as it was predicted in Ref. 27 based on the mean-
field �Hubbard I� approximation, PS can arise in two-band
�or multiband� Hubbard models due to the on-site Coulomb
repulsion in the absence of any fluctuations related to a mag-
netic or charge order. This mechanism of PS is based on the

following physical idea: the strong Coulomb correlations
make the width of one band dependent on the occupation of
another band. When the Fermi level is in the region where
the two bands overlap, the redistribution of the charge carri-
ers between the bands gives rise to a nonmonotonic depen-
dence of the energy on the doping level. In certain range of
parameters �e.g., when the hopping integrals for the two
bands are significantly different�, the energy as a function of
the doping can have two minima. So, it may be favorable for
the system to form an inhomogeneous state consisting of two
phases with the charge carrier densities corresponding to
these minima. Here we apply the approach of Ref. 27 to the
analysis of the PS, taking into account interband hybridiza-
tion, which is an important feature of the cuprates.22 Analyz-
ing the Hubbard model in the Hubbard I approximation, we
show that the multiband �in particular, two-band� nature of
the cuprates gives rise to PS in a wide range of the model
parameters without antiferromagnetic correlations or any ad-
ditional terms �e.g., nearest-neighbor Coulomb interaction�
in the usual Hubbard Hamiltonian.

The two-band Hubbard model allows us to describe the
PS of the droplet-type �including the droplet size� observed
in experiments �see, e.g., Refs. 3 and 5�. This mechanism for
PS produces a density of states �DOS� at the Fermi level,
which corresponds to the optimum doping in one of the
phases. As a result of the PS, the number of charge carriers in
the system is not directly determined by the doping level and
can depend on temperature. The difference between the dop-
ing level and the number of charge carriers occurs, in par-
ticular, for superconducting cuprates.22,26,28,29 It is possible
that a slow variation of the critical temperature observed
within a broad doping range in high-Tc superconductors is
related to such type of PS.

II. TWO-BAND HUBBARD MODEL

Many theoretical studies of the electronic properties of the
superconducting cuprates are based on the multiband Hub-
bard Hamiltonian accounting the hybridization of oxygen p
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orbitals with copper d orbitals.22 The commonly used model
to describe superconducting cuprates is based on the Hub-
bard Hamiltonian with three bands: Cu�3dx2−y2�, O�2px�, and
O�2py�.22 In earlier studies, this Hamiltonian was reduced to
an effective single-band Hubbard Hamiltonian.16,20,22,30

However, recent computations �see, e.g., Refs. 31 and 32�
show that two distinguishable Cu-O bond lengths in the
CuO6 octahedron and the direct tunneling of holes between
the oxygen atoms lead to the effective two-band Hubbard
Hamiltonian:32

H = − �
�nm����

t���an��
† am�� + H.c.� − �

n��

�� + ���nn��

+
1

2 �
n�,�

U�nn��nn��̄ +
U�

2 �
n�,���

nn��nn�̄��. �1�

Here, an��
† and an�� are the creation and annihilation opera-

tors for holes in the state �= �p ,d� at site n with spin projec-
tion � ��̄ , �̄ denote not-� and not-��, the symbol �. . .� de-
notes a summation over the nearest sites, � is the chemical
potential, �d is the energy difference between the centers of
the d and p bands, and �p=0. The first term in Eq. �1� is the
kinetic energy of the conduction holes; the second term is
due to the chemical potential and the shift between the cen-
ters of d and p bands. The last two terms correspond,
respectively, to the intraband and interband on-site Coulomb
repulsion. In agreement to Ref. 32, we assume that the
Coulomb interaction is strong enough, that is U� , U�
� t�� , �d. Applying the Hubbard I approximation,

�T̂am���t�nn����t�an0��
† �t0��→ �nn�����T̂am���t�an0��

† �t0�� �T̂
is time-ordering operator�, for Hamiltonian �1�, we derive the
relationship

�	 + � + ���G���	,k� = g��1 + �



��
�k�G
��	,k�	 ,

�2�

for the one-particle Green’s functions G��,����n−n0 , t− t0�
=−i�T̂an���t�an0���

† �t0�� in the frequency-momentum �	 ,k�
representation, where g�=1−n�̄−n� /2. The form of the
function ����k� depends on the symmetry of the crystal lat-
tice. We analyze here a simple cubic lattice. In this case,
����k�=w����k�, w��=zt��, and ��k�=−
cos�k1d�
+cos�k2d�+cos�k3d�� /3, where d is the lattice constant. Be-
low we consider a purely paramagnetic state, that is, n�↑
=n�↓=n� /2, and neglect the �a�

†a�̄� averages. Note, however,
that the latter assumption does not significantly affect the
results obtained.33

The Hubbard I approximation is an appropriate method to
find the main features of the electron band structure, which is
confirmed by comparison to experiments and numerical
results.34 It is well known that the Hubbard I approximation
overestimates the electron-electron correlations. In particular,
it leads to an energy gap even at small values of U. The main
problems with the Hubbard model arise when t�U and the
situation in this parameter range is still under discussion
even for more advanced approximations than Hubbard I.
Nevertheless, when tU the situation is relatively simpler,

and the Hubbard I approximation captures the main correla-
tion effect, that is, the dependence of the band width on the
number of charge carriers �see, e.g., Ref. 35�. The other cor-
relation effects are related to nonzero spin correlation func-
tions and finite U, which we do not consider here, limiting
ourselves to the case U→�.

Equation �2� forms a linear set of equations for G��,
which can be easily solved. The calculated Green’s functions
determine the DOS and the energy of the system. Following
this approach, we derive the DOS,

����E� = −
1

�
 d3k

�2��3 Im�
G���	 + i0,k���	+�=E, �3�

in the form

����E� = �g�g� �
j=�1

 d3k

�2��3v�
j �k�v�

j �k���E − �̄ j�k�� ,

�4�

where �̄ j
��k�� and v�
j 
��k�� are the eigenvalues and eigen-

vectors of the matrix �̄�����=�g�g�w���−�����. Solving
this eigenvalue problem, we obtain the energy spectrum
�̄ j�k� of charge carriers in two new bands �labeled by j
= �1� and coefficients v�

j , determining the transformation
from p and d holes to the quasiparticles in these bands

�̄ j���k�� =
1

2
��w̄aa + w̄bb�� − �

− j�
�w̄aa − w̄bb�� + ��2 + 4�w̄ab�2� , �5�

v j��� =
1

�
w̄aa� − �̄ j�2 + �w̄ab�2�2
� − w̄ab�

w̄aa� − �̄ j ,
	 , �6�

where w̄��=�g�g�w��. In contrast to p and d holes with
short lifetime due to interband transitions, the new quasipar-
ticles with spectrum �5� have a longer lifetime and are scat-
tered by, e.g., phonons and impurities. We denote the lower
band as j=1 and the upper one as j=−1. We can write ���

using the dimensionless DOS �0�E��=��
E�
−��k��d3k / �2��3 of uncorrelated electrons,

����E� = �g�g� �
j=�1

v�
j ���v�

j ���� �� j

��
�−1

��0�����=�̄j�E�, �7�

where �̄ j�E� is the inverse function of �̄ j�E�. The number of
electrons in the state � is

n� = 2
�min

�

dE����E,na,nb� , �8�

where �min= �̄1��=−1� �note that ��� depends on n� through
the functions g��. The total number of charge carriers per site
is n=��n����. This equality, alongside with Eqs. �5�–�8�,
form a set of equations for the calculation of n� and �.
Employing coefficients �6�, we can find the Green’s func-
tions corresponding to the band spectrum �5� and the DOS,
� j for two j-bands
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� j�E� = ��
�
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j ����2�� �� j���

��
�−1

��0�����=�̄j�E�. �9�

Each band is split into two Hubbard subbands due to the
on-site Coulomb repulsion. Thus, in the two-band Hubbard
model we have four bands, two lower and two upper bands,
separated by a gap of the order of U. We consider here the
doping range n�1 and in the limit U→�, the upper Hub-
bard bands do not contribute to the total electron energy.

III. BAND STRUCTURE AND DENSITY OF STATES

Superconducting cuprates vary from strongly anisotropic
to nearly isotropic materials. To account for this, we consider
two limiting cases: square and cubic lattices. The obtained
results are quite similar, and below we present the band
structure and DOS �Figs. 1 and 2� calculated using Eqs. �5�
and �9� only for the case of simple cubic lattice. Two quali-
tatively different quasiparticle spectra are shown in the insets

of Figs. 1�a� and 1�b�. The anticrossing of two bands shown
in the inset in Fig. 1�a� corresponds to a metallic behavior for
any doping. When doping increases, the chemical potential �
�shown by the dotted green line� shifts upward: at low dop-
ing we have one “metallic” band and one empty band; then
two metallic bands; by further increasing the doping, one
metallic and one filled band. For larger interband hybridiza-
tion, tpd� �tpptdd�1/2, we obtain a transition to an insulator at
some doping level. Indeed, for some doping, � is located in
the gap between zones. Nearby the anticrossing point of the
two bands, the spectrum � j
��k�� becomes flatter. For ener-
gies close to the anticrossing points, the DOS exhibits peaks
�Fig. 1�, which are large,

� j � �E0 − E�−1/2,

when n is close to 1 in the vicinity of the band gap 
Fig.
1�b��. The optimal doping for superconductivity corresponds
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FIG. 1. �Color online� Density of states ��1 versus energy E for
quasiparticles �holes� located in bands j= �1 for two different
types of spectra, shown in the corresponding insets. The gapless
spectrum shown in the inset �a� was calculated at n=0.6, �d

=0.15 eV, wpp=1 eV, wdd=0.1 eV, and relatively small interband
hybridization wpd=0.25 eV. The gapped spectrum in the inset �b�
was calculated for the same parameters but for stronger interband
hybridization wpd=1 eV. In case �b�, the transition to the insulating
state occurs at a certain doping level for which the chemical poten-
tial � �shown by the green dotted line� is located inside the gap. In
both cases, a large peak in the DOS is observed at energies corre-
sponding to the anticrossing of the bands, where a significant flat-
tening of the Fermi surface �see insets� takes place. The quasiparti-
cle energy spectra are shown in the insets as a function of the
variable �, since � j depends on the crystal momentum k only
through ��k�.

0.5 1
-0.4

-0.2

0 0.5 1.0
0

0.1

0.1

1

100

0.5 1
0

1

E
ps

E
hom

E/w
ab

n

(b)

(a)

n

T
c
/T

D

t p
d

/2

n
2

n
1

ρ
+1

ρ
-1

ρ j

n
2

n
1

HS

PS

HS
c

n

FIG. 2. �Color online� �a� The density of states at the Fermi
level versus doping in the two-band Hubbard model. Inset in �a�:
energy of the homogeneous �red solid line� and the phase separated
�blue dashed line� states. The dependence of the energy in the ho-
mogeneous state, Ehom, on n has a negative curvature if n1�n
�n2. In this range of doping, the PS state becomes more favorable
since its energy, Eps, is lower than Ehom 
see inset in �a��. The values
n1,2 are indicated in the main panel of �a� by black vertical dotted
lines. The point n2 is near the peak in the DOS. �b� The critical
temperature, Tc, of the superconducting transition versus doping
level n for the homogeneous �red dashed line� and PS �blue solid
line� states calculated using Eq. �12�. The Tc�n� of the homogeneous
state decreases fast when the doping n deviates from its optimum
value about n2. In contrast to this, Tc�n� in the PS state is a broad
function and exhibits a plateau within the n1�n�n2 range. The
inset in �b� demonstrates the dependence of the concentration c of
the phase with lower hole content on n. The regions of homoge-
neous �HS� and PS states are indicated in the inset. Here we use the
following parameters: �d=0.2 eV, wpp=1 eV, wdd=0.3 eV, and
wpd=0.7 eV.
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to the case when � is close to the energy where the peak of
the DOS is observed.

We do not claim to provide a detailed description of the
actual energy band structure of the cuprates. For our analy-
sis, it is of interest the existence of the peaks in the DOS near
the Fermi level. In the simple model under study, the nature
of these peaks is not related to some particular approxima-
tion. The peaks arise near the crossing of the initial �not
renormalized� bands as it always occurs when the degen-
eracy of the initial bands is lifted. Note that for the two-band
Hubbard model, the Fermi level could be pinned at the DOS
peak related to the van Hove singularity.36

IV. PHASE SEPARATION

The energy,

Ehom�n� = 2�
j


�min

�

dE E� j�E� , �10�

of the homogeneous state, versus doping n, is shown in the
inset of Fig. 2�a�. The curvature of Ehom�n� is negative be-
tween the two marked points n1 and n2. This indicates the
instability of the homogeneous state with respect to the sepa-
ration into two phases with hole densities n1 and n2, n1�n
�n2 �see, e.g., Ref. 23�. The energy

Eps�n� = cEhom�n1� + �1 − c�Ehom�n2� �11�

of the PS state with relative phase fractions c and 1−c,
which are determined by the charge conservation condition
n=cn1+ �1−c�n2, is lower than Ehom�n� between n1 and n2

see dashed line in the inset of Fig. 2�a��. In a wide parameter
range, the hole concentration n2 turns out to be near the
optimum value. A typical dependence of the phase concen-
tration c versus doping is shown in the inset of Fig. 2�b�. For
low doping, the system is in a homogeneous state �c=1�. If
n�n1, the sample becomes segregated into droplets with two
different hole concentrations, n1 and n2. Further increasing n,
the relative concentration c of the phase with lower hole
content n1 decreases almost linearly, and when n�n2 this
phase disappears and the system becomes homogeneous
again. Further analysis shows that the PS state occurs in the
parameter range where wpd�wpp. If wpd�wpp, the two-band
Hubbard Hamiltonian reduces to an effective single-band
model, and the discussed cause for the PS in the system
disappears. Note once more that the PS in the effective
single-band models20–22 can arise either due to nearest-
neighbor Coulomb repulsion or antiferromagnetic correla-
tions.

The PS leads to a redistribution of the charge carriers and
charge neutrality breaking. The structure of the PS state can
be either ordered �e.g., checkerboard structure� or random
�i.e., randomly distributed droplets of one phase within a
matrix of the other phase�. The charge redistribution and fi-
nite droplet size give rise to the additional size-dependent
terms in Eq. �11�. For the random PS state, the droplet size D
is determined by the competition between the Coulomb and
surface energies. Following the approach developed in Ref.
23, we can estimate D in the range from three to six lattice

constants d when wpd�wpp�1 eV, in agreement with the
experimental data reported in Ref. 3, where spatial variations
of the DOS and superconducting gap were measured using
STM.

The above results were obtained for the simple cubic lat-
tice, which is not the actual crystal structure of high-Tc ma-
terials. However, as it was mentioned above, the rough quali-
tative picture of the PS is nearly the same for the cubic and
square lattices. So the specific crystal structure is not of fun-
damental importance for our qualitative study of PS using
the Hubbard I approximation.

V. CRITICAL TEMPERATURE VERSUS DOPING

In this section, we analyze the possible effect of the PS
considered above on the critical temperature Tc of the super-
conducting transition. We do not focus on any particular
mechanism of superconductivity in the cuprates. We just try
to qualitatively relate the DOS to Tc. We also assume that Tc
grows with the DOS. Then, to illustrate the possible effects,
we use the simplest BCS formula for Tc, accounting for the
Coulomb repulsion38

Tc = TD exp
− 1/�� jVp − �c�� , �12�

where TD is the Debye temperature, Vp is the BCS electron-
phonon coupling constant,

�c = � jVc/
1 + � jVc ln��/kBTD�� �13�

is the Coulomb pseudopotential, and Vc�Up�5 eV are the
Coulomb matrix elements. Note that the possible applicabil-
ity of Eq. �12� in the case of high-Tc cuprates is discussed in
Ref. 29. Here, the BCS formula is only used for illustration
purpose, just as an oversimplified illustration.

In our approach, the homogeneous superconducting state
can appear in different bands depending on doping �see Fig.
1�: in band j=1 for low doping and in j=−1 for higher dop-
ing. The dependence of Tc on doping n for the homogeneous
state is shown by the dashed line in Fig. 2�b�. For the chosen
range of parameters, Tc is nonzero only for a narrow doping
level and achieves a maximum at the optimum doping �see
insets in Fig. 1�. Away from the optimal doping, Tc�n� de-
creases fast with n. In the PS state, one of the phases retains
the optimum hole concentration within a wide interval of
doping levels. This results in a slower decrease 
see blue
solid line in Fig. 2�b�� of Tc when n deviates from the opti-
mal value n2. This provides a possible explanation of the
observed dependence of Tc on hole doping in cuprates �see
Refs. 26 and 29, and references therein�. Note that the above
picture is related to the variation of the density of states with
doping, which was widely discussed for many other models
�see, e.g., Refs. 21 and 39�.

VI. CONCLUSIONS

We used the two-band Hubbard model to study the
mechanism of phase separation in strongly correlated elec-
tron systems without magnetic ordering, of interest for su-
perconducting cuprates and other multiband systems with
strongly correlated electrons. Using a Green’s functions tech-
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nique, we calculated the band structure and the density of
states at the Fermi level. The density of states exhibits a large
peak at the crossing of the initial energy bands. For a certain
range of the model parameters, a spatial phase separation of
the charge carriers occurs due to the electron redistribution
between the two bands. Our estimates of the spatial scale of
PS are in good agreement with important experimental
results.3 The discussed mechanism of PS is an alternative to
the usual explanation of PS in cuprates, which is attributed to
strong antiferromagnetic correlations �see, e.g., Refs. 1 and
2� or nearest-neighbor Coulomb repulsion.12,15–20 In our ap-
proach, the relation between the number of charge carriers
and doping level is indirect, which also implies the indirect
dependence of Tc versus doping. Using, only for illustration
purposes, the simplest BCS expression for Tc, accounting for
Coulomb repulsion, we show that Tc�n� is near its maximum
within the doping range where PS occurs.
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