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We studied the quantum dynamics of ferromagnetic domain walls �topological kink-type solitons� in one-
dimensional ferromagnetic spin chains. We show that the tunneling probability does not depend on the number
of spins in a domain wall; thus, this probability can be large even for a domain wall containing a large number
of spins. We also predict that there is a strong interplay between the tunneling of a wall from one lattice site
to another �tunneling of the kink coordinate� and the tunneling of the kink topological charge �so-called
chirality�. Both of these elementary processes are suppressed for kinks in one-dimensional ferromagnets with
half-integer spin. The dispersion law �i.e., the domain wall energy versus momentum� is essentially different
for chains with either integer or half-integer spins. The predicted quantum effects could be observed for
mesoscopic magnetic structures, e.g., chains of magnetic clusters, large-spin molecules, or nanosize magnetic
dots.
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I. INTRODUCTION

Domain walls play an important role in the physics of
magnets. For macroscopic bulk magnetic samples, domain
walls, being extended classical objects, determine the de-
magnetizing processes, see, e.g., Refs. 1–3. For one-
dimensional magnets, domain walls �kink-type solitons� play
a different role: they are nonlinear excitations responsible for
the destruction of long-range order. Thus, domain walls
should be taken into account together with the linear excita-
tions �magnons�.4,5 Quantum properties are inherent to kinks
in one-dimensional magnets �spin chains� with small spin
values, like S=1 /2 or S=1, and high anisotropy.4

Classical solitons in one-dimensional Heisenberg ferro-
magnets have been investigated in detail. For continuum me-
dia, their dynamical properties are determined by the
Landau–Lifshitz equation for the magnetization vector
m�x , t�, where m2=1, see, e.g., Refs. 3, 4, and 6. For such
systems, kink-type solitons can be treated as classical par-
ticlelike objects. However, kinks are extended objects, and
for spin chains with low anisotropy K�J �J is the exchange
integral and K the anisotropy constant�, a kink involves a
large number of spins Nkink�S�J /K�1. For this reason, do-
main walls for low-anisotropy magnets should be formally
considered as a mesoscopic, rather than a microscopic, ob-
ject. Thus, it is not obvious whether or not the effects of
quantum coherence are essential for domain wall dynamics
in mesoscopic ferromagnets.

Artificial quasi-one-dimensional �1D� mesoscopic materi-
als �including chains of small magnetic elements, such as
small magnetic particles of nanometer size �magnetic dots�,
patterned magnetic films, magnetic clusters, and high-spin
molecules� are of great importance7–14 and are promising el-
ements for computers.9 These materials often manifest
unique physical properties that are absent in bulk samples,

for instance, macroscopic quantum coherence and quantum
tunneling, see, e.g., Refs. 7 and 8. These quantum properties
of small magnetic systems could be potentially useful for
quantum computing.15

Quantum coherence can occur when states with the same
energy are separated by a small potential energy barrier.
Kink-type solitons can demonstrate a rich variety of different
quantum effects. Indeed, solitons are particlelike objects and
their quantum dynamics include the tunneling of the kink
coordinates through a potential barrier, separating equivalent
positions in 1D chains. These tunneling effects are coherent,
and, as for electrons in crystals, they lead to the formation of
band spectra.

Another type of tunneling involves the domain wall
chirality. Namely, a domain wall is characterized by the de-
viation of the magnetization from the easy axis. The corre-
sponding value of the total spin S� is quite large, i.e., �S�� is
of the order of SNkink�1. For biaxial magnets, the domain
wall state has a twofold degeneracy along the S� direction.
From a mathematical point of view, the sign of the quantity
S� corresponds to the value of topological charge or chirality
�= �1. Thus, the kink structure is doubly degenerate over
the sign of this topological charge, implying the possibility
of a quantum coherent superposition of two states with dif-
ferent chiralities.

The tunneling of topological charges has previously been
discussed for different topological solitons �kinks, vortices,
and disclinations� in antiferromagnets; for a review, see Ref.
16. It is worth noting here that the static distribution of the
corresponding order parameters, the normalized magnetiza-
tion vector m for ferromagnets �m2=1� and the sublattice
magnetization vector l �l2=1� for antiferromagnets, are all
identical. For antiferromagnetic spin chains, the rate of the
chirality tunneling process appears to be unexpectedly high
because the tunneling exponent is of the order of the atomic
spin S, being independent on the number of spins Nkink�1
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within the kink.17 Thus, quantum effects could be essential
not only for literally 1D objects such as spin chains but also
for mesoscopic antiferromagnetic samples such as thin anti-
ferromagnetic wires.18

The dynamic properties of ferromagnets are described by
the Landau–Lifshitz equation for the vector m with no iner-
tial term. This is in strong contrast with the inertial dynamics
of antiferromagnets, described by the so-called sigma-model
equation for the sublattice magnetization vector l, e.g., Refs.
3 and 4. It might look a bit paradoxical that the quantum
properties of ferromagnets are much more complicated than
for both quantum antiferromagnets and quantum Josephson
junctions.19–21 The reason is because within the sigma-model
approach, the dynamics of the vector l is similar to that of the
usual inertial dynamics of a particle �strictly speaking, the
dynamics of a particle along the surface of the sphere l2=1�,
whereas the Landau–Lifshitz Lagrangian contains a compli-
cated Dirac-monopole term with nontrivial topological prop-
erties �Berry phase�, see, e.g., Ref. 22. This circumstance
leads to a number of subtle and intriguing effects, e.g., the
suppression of tunneling transitions due to the interference of
the instanton trajectories.23,24

An example of strikingly different quantum dynamics of
ferromagnets and antiferromagnets is the tunneling chirality.
For kinks in antiferromagnets, chirality tunneling is not cor-
related with the translational motion of kinks.17,18 In contrast,
some results known in the literature imply that for ferromag-
nets, the situation can be different. Reference 25 noted that
unmovable kinks with different values of the chirality must
have different values of the momentum. Reference 26
pointed out that the chirality tunneling rate grows with the
intensity of the kink spatial pinning. Reference 27 showed
that for a free �i.e., with no pinning� domain wall in a ferro-
magnet, the momentum of which is conserved, the tunneling
of the chirality is prohibited.

In this paper, we develop a consistent quantum theory of
domain walls in one-dimensional ferromagnets, with a com-
plete description of all possible coherent quantum effects.
We show that the tunneling of the chirality can be described
as a tunneling in momentum space. This is closely connected
with the tunneling of the kink coordinates; indeed, all these
tunneling processes are naturally described within phase
plane �X , P�.

The paper is organized as follows. In Sec. II, we introduce
the Hamilton variables: kink coordinate X and kink momen-
tum P. In this section, we show how to consistently define
the chirality of a kink via the value of kink momentum. A
Hamiltonian approach, valid for describing both quantum ef-
fects, tunneling of kink coordinates and kink chirality, will
be developed in the same section. Then, in Sec. III, specific
tunneling effects will be analyzed based on this approach.
Kink dispersion relations will also be derived there.

II. HAMILTON DESCRIPTION OF KINK DYNAMICS

In order to describe a one-dimensional system of mesos-
copic magnetic particles allowing kink dynamics, we assume
that each particle has an internal magnetic anisotropy, with
the chosen axes to be parallel for all particles in a system.

The geometry of the problem is shown in Fig. 1. We will also
consider isotropic nearest neighbor interactions. Moreover,
we assume that any internal degrees of freedom of the par-
ticles can be neglected, and each particle can be treated as a
single magnetic moment �spin�.

Note that kinks in a ferromagnet with pure axial symme-
try C� cannot move because the projection of the total spin
on the easy axis S3

�tot� should change while the kink is mov-
ing. However, the Hamiltonian is invariant under rotations
around the easy axis and it commutes with S3

�tot�, prohibiting
such dynamics. In order to allow kink dynamics, we can
consider the twofold magnetic anisotropy. This is in contrast
with antiferromagnets, where kinks can move even for
purely uniaxial anisotropy, with an easy axis of C� symme-
try.

A. Model

The Hamiltonian of a chainlike system of magnetic par-
ticles can be written in the same form as for a discrete fer-
romagnetic chain �one-dimensional lattice with atomic spac-
ing a� with a spin operator Sn located in each lattice site n,

H = − J�
n

Sn · Sn+1 + �
n

�K1S1,n
2 + K2S2,n

2 � . �1�

Here, the first term describes the isotropic exchange inter-
action of spins, and the second sum corresponds to the two-
fold magnetic anisotropy. We have chosen K2�K1�0, so
that the orthogonal axes 3, 1, and 2 are the easy axis, the
medium axis and the hard axis, respectively. We consider
each spin operator to be a classical vector with constant
modulus S=Sm and unit vector m �i.e., this vector points in
the unit sphere m2=1�. The dynamics of the variables mn is
governed by the discrete version of the Landau–Lifshitz
equation

�S
�mn

�t
= 	mn �

�W

�mn

 , �2�

where W�W�mn� is the energy of the considered ferromag-
netic chain. The dynamics of the variable mn, for a given

FIG. 1. �Color online� The geometry of the problem: �a� aniso-
tropy axis for a single magnetic particle and �b� a schematic repre-
sentation of a chain of particles. Each particle is represented by its
spin.
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point n in a lattice, is determined by the Lagrangian

L = − �S�
n

n

1 + �n · mn�
· 	mn �

�mn

�t

 − W , �3�

where n is an arbitrary unit vector. For the continuum ap-
proximation, the set of variables mn determined on the lattice
sites n should be replaced by a smooth function of the con-
tinuous coordinate x: mn→m�x�. In this continuum approxi-
mation, the Lagrangian takes the form

L = −� dx	A ·
�m

�t

 − W, A =

�S

a
·

�n � m�
1 + �n · m�

, �4�

where W is an energy functional written by expanding over
gradients of m; see, for example, Ref. 28. The vector A has
the form of a vector potential of a Dirac-monopole field, i.e.,
the curl of A over the variable m is proportional to m,

curlm A = �Sm/a ,

see, for example, Ref. 22. The vector potential has a singu-
larity �Dirac string� for �m ·n�=−1, i.e., on a half-line in m
space. It is important to note that the vector potential A is
accurate within some gauge transformations, which includes
changing the direction of the Dirac string, but the Landau–
Lifshitz equations containing rotm A are invariant with re-
spect to gauge transformations.22 It is worth mentioning here
that for antiferromagnets within the sigma-model approach,
the dynamical part of the Lagrangian has a standard inertial
term

Ldyn,AFM 	 	 �l

�t

2

,

in contrast to A · ��m /�t� for ferromagnets.
It is convenient to represent the unit vector field m by two

independent angular variables 
 and �,

m1 = sin 
 cos �, m2 = sin 
 sin �, m3 = cos 
 . �5�

In terms of these variables, the Landau–Lifshitz equation
�Eq. �2�� takes the form

S�

a
sin 


�


�t
=

�W

��
, �6�

S�

a
sin 


��

�t
= −

�W

�

, �7�

where W�W
 ,�� is the energy functional written it terms
of the field variables 
 and �. The Hamiltonian �Eq. �1�� can
be rewritten as

W
,�� =� dx

a
� Ja2

2
�	 �


�x

 + sin2 
	 ��

�x

2�

+ sin2 
�K1 + �K2 − K1�sin2 ��� , �8�

where the nonzero difference �K2−K1� determines the aniso-
tropy in the basal plane.

The Landau–Lifshitz equations have an obvious integral
of motion, the energy W. In the continuum approximation,

translational invariance leads to the conservation of the lin-
ear momentum of the magnetization field P �momentum, for
short�. The expression for the momentum is determined3,6 by
the dynamical part of the Lagrangian

P =� dx	A ·
�m

�x

 . �9�

As noted above, the vector potential A is known up to a
gauge transformation, and the momentum P depends on the
gauge used for A. This is one of the problems for describing
the dynamics of solitons in ferromagnets. This problem does
not exist for antiferromagnets, where the momentum is pro-
portional to the integral �dx��l /�x���l /�t�. However, it turns
out that the relative momentum for any pair of kinks in a
ferromagnet can be uniquely determined. Thus, the kink mo-
mentum is accurate within the position of the origin in P
space, that is, the choice of a kink assigned with the value of
P=0.

B. Topological analysis of domain wall structure

For a kink in a ferromagnetic chain, the values of the
on-site variables S3,n have opposite values in front and be-
hind of the kink: S3,n→ �S at n→ ��. In other words, a
kink can be seen as a path connecting the poles of the sphere
m2=1, corresponding to the two easy directions of magneti-
zation space �see Fig. 2�. For definiteness, we assume that
m3=1 at x→−� and m3=−1 at x→ +� �see Fig. 2�. For
ferromagnets with nonzero anisotropy in the basal plane,
�W /���0, a domain wall can move with some velocity v
smaller than the limit value vc. Within the continuum ap-
proximation, such moving domain walls are described by a
simple traveling-wave one-soliton solution of the Landau–
Lifshitz equation �Eq. �6�� of the form 
=
��, �=���, with
=x−vt. However, it is hard to find an analytical solution of
a set of two second-order equations of this type, and we will
start with a qualitative analysis.

FIG. 2. �a� Trajectories on the sphere m2=1 �the direction of
motion is indicated by the arrows� corresponding to different kinks;
1, 2, and 3 indicate the anisotropy axes of the magnet. Two of the
most favorable kinks with chirality �= �1 are shown by B+ and
B−; unfavorable kinks with indefinite chirality are labeled by N1

and N2. The crossings between the trajectories and axes 1 or 2 are
shown by four gray ovals in �a�. The trajectories N1 and N2 divide
the sphere in two domains, associated with kinks of different
chiralities, as discussed in the text. �b� Spin distribution for favor-
able kinks with chirality �= �1.

CHIRALITY TUNNELING AND QUANTUM DYNAMICS FOR… PHYSICAL REVIEW B 77, 134425 �2008�

134425-3



Due to symmetry, there are two types of stationary do-
main walls, with 
=
�x� and �=const. For these domain
walls, the vector m turns either within the easy plane �3,1�,
for the first type of walls, or within the hard plane �3,2�, for
the second one. The trajectories describing these domain
walls are denoted by B+, B− and N1, N2, respectively, in Fig.
2. Their energies are E1 for B� and E2�E1 for N1,2. Other
domain walls having v�0 and energies E1�E�v��E2 are
described by paths located in between these chosen trajecto-
ries on the sphere.

The kink momentum is the total momentum of the mag-
netization field calculated along the corresponding solution
of the Landau–Lifshitz equation.3,6 For domain walls, it can
be written in the form of an integral around the contour of
the sphere Fig. 2, depicting a kink, P=�A�m�dm, where A is
the vector potential of the Dirac-monopole field �Eq. �4��. A
difference of the momentum values for two different kinks
can be described as an integral along a closed contour. It can
be written through a surface integral of the type of
�dS rotm A and it is equal to �S /a, multiplied by the area, on
the sphere m2=1, inside two trajectories, corresponding to
these pairs of kinks.29 It is clear that for a biaxial ferromag-
net, there are pairs of diametrically opposite trajectories �e.g.,
the trajectories B+ and B− in Fig. 2� corresponding to ener-
getically equivalent but physically different kinks. For these
pairs of kinks, the closed path borders half of a sphere, with
an area of 2�, and the momentum difference equals 2��S /a.
Hence, we can readily obtain the periodic dependence of the
kink energy on its momentum with the period P0,

P0 =
2��S

a
. �10�

For those kinks which are close to the most favorable kink
B+ �B− �, the value of the momentum P �or �P= P− P0� is
small; thus, the parabolic approximation can be used and the
energy can be written as E= P2 /2M �or E= ��P�2 /2M�,
where M is the effective mass of the kink. For the model �Eq.
�8��, the effective mass M takes the value of the well known
Döring effective mass, obtained as early as the 1930s, see,
e.g., Refs. 2 and 6. This effective mass turns to infinity when
�K2−K1�→0. This is another indication that in a pure
uniaxial model of a ferromagnet �K2=K1�, domain wall mo-
tion is impossible. However there is no contradiction be-
tween the finite value of P	� and the condition v=0: if P
=Mv, then the momentum can be finite when M→� and v
→0.

Coherent tunneling assumes the presence of at least two
different states having the same energy, for instance, the two
states of kinks in a biaxial ferromagnet with different values
of the topological charge. A topological classification30,31 of
kinks can be done in the same way for both ferromagnets and
antiferromagnets. First, the difference of values of the mag-
netization vector mx �or lx, for antiferromagnets� on the right
and on the left sides of the kink determine the topological
charge �0,

�0 �
1

2
�mz�+ �� − mz�− ��� , �11�

of the kink. Changing this topological charge requires over-
coming the potential barrier, proportional to the system size

�formally, infinite barrier� that cannot be realized by tunnel-
ing. Second, a topological charge of the type �1,

�1 �
1

�
�

−�

+�

dx	mx
�my

�x
− my

�mx

�x

 , �12�

is determined by mapping the coordinate space of the spin
chain �the line −��x��� onto the circle m1

2+m3
2=1 ,m2

=0�, situated in the easy plane of the ferromagnet. The ap-
pearance of two topological charges of different levels can be
formally described using the relative homotopy group, as
discussed in Ref. 31.

The �1 charge is described by the integral

� =
1

�
�

−�

� �e2	m �
�m

�x

�dx .

In other words, the chirality �= �1 determines the sense of
rotation �clockwise or counterclockwise� of m along the
chain. This standard definition of the chirality used in Refs.
25–27 is only valid for kinks located on the unit sphere near
the most energetically favorable configurations B+ and B−,
as shown in Fig. 2, that is, for kinks having small velocities
v. For this case, the effective mass approximation is valid,
and these two kinks are well separated. According to the
topological analysis, these kinks have different values of the
chirality �= �1; within a self-consistent Hamiltonian ap-
proach, they correspond to different values of the momen-
tum: P=0 and P= P0. However, for kinks moving with a
nonsmall velocity and with arbitrary values of the momen-
tum, the above definition of the chirality should be modified.

For treating the whole order parameter space �i.e., the
sphere m2=1�, kinks with �= �1 can be transferred to each
other through energetically unfavorable kinks of type N1 or
N2, schematically shown in Fig. 2. Here, the barrier is finite
�and equal to E2−E1, which is large when K2�K1� and the
process of kink chirality � tunneling is possible. The concept
of chirality, as a discrete number �= �1, is naturally con-
nected with the presence of a discrete degeneracy in the de-
pendence of the kink energy on its momentum. The discrete
parameter �= �1 determines one of two different, but ener-
getically equivalent, kink states existing in a biaxial ferro-
magnet. The values �=1 and �=−1 can be naturally attrib-
uted to kink states with trajectories in two equivalent
semispheres, m1�0 and m1�0, respectively. The chirality
value is not determined for the unfavorable static kinks only
�Néel walls� for which the trajectories N1 and N2 pass
through the hard axis. In this sense, chirality tunneling can
be seen as a tunneling effect in momentum space with a
nonsmall �of the order P0=2��S /a� change of the kink mo-
mentum.

C. Moving domain wall structure

To confirm the general features for moving domain walls
discussed above, we will discuss an exact solution of Eq. �6�
known for the model of biaxial ferromagnets with the energy
�Eq. �8��. It is easy to find the structure of domain walls with
zero velocity. There are two types of domain walls having
thickness x1,2=a�J /2K1,2 and energies E1,2=2S�2JK1,2 with
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E1�E2. These are the one-dimensional analogs of the usual
Bloch and Néel domain walls, see Refs. 2 and 6.

The structure of a domain wall moving with a nonsmall
velocity within the model �Eq. �8�� was obtained by Walker
at the end of the 1950s, see Refs. 2, 3, and 6. For this solu-
tion, the function 
=
��, =x−vt, and the value of �=�0
=const is independent of . The value of �0 is determined by
the domain wall velocity v as follows:

v�

a�JK
= q

� sin � cos �

�1 + � sin2 �
. �13�

Here and below, we use the notation �= �K2−K1� /K1 to
shorten the expressions. The relation �Eq. �13�� governs, in
particular, the maximal possible value of a domain wall ve-
locity, the so-called Walker velocity vW,

vW = �a/���JK��1 + � − 1� . �14�

It is interesting to note that vW is smaller than the minimal
phase velocity of spin waves,

vph = �a/���JK��1 + � + 1� .

The values of vW and vph coincide only in the limit �→�,
when the Landau–Lifshitz equation �Eq. �6�� can be mapped
onto the sine-Gordon equation. However, if � is small, then

vW � �vph/4 � vph.

The value of vW vanishes when �→0; that is, as was noted
above, the domain wall cannot move at all for pure uniaxial
ferromagnets.

Walker’s solution can be presented in the explicit analyti-
cal form

cos 
 = q tanh� 

x0�v��, sin 
 = ��cosh� 

x0�v���−1

,

�15�

where q= �1, �= �1,

x0�v� = a� J

2K1�1 + � sin2 ��
, �16�

and �=��v� is determined by Eq. �13�. The two topological
charges introduced above naturally appear here as the quan-
tities q and �; q= �1 determines the �0-topological charge
of the kink, and �= �1 governs the spin direction in the
kink center and it is naturally connected with the
�1-topological charge, the chirality �.

A straightforward calculation of the kink energy leads to
the formula

E = E1
�1 + � sin2 �, E1 = 2S2�2JK1, �17�

where �=��v� is determined by Eq. �13�. The E�v� depen-
dence consists of two branches. In three-dimensional ferro-
magnets, where two-dimensional plane domain walls are
present, the upper branch of the domain walls is unstable.
However, this instability is developed via nonuniform pertur-
bations in the domain wall plane, and such fluctuations do
not exist for domain walls in one-dimensional magnets. Be-
low, we will show that for the more natural domain wall

energy representation �namely, as a function of its momen-
tum�, the E�P� function is single valued.

For the Walker solution, the value of � is 
independent,2,3 and the paths on the sphere present at Fig. 2
are the halves of the big circles passing through the poles of
the sphere. Therefore, the domain wall momentum can be
written as

P = P0
�

�
, �18�

and the explicit form of the dependence of the domain wall
energy on its momentum can be rewritten as

E = E1�1 +
2T0

E0
sin2 �P

P0
,

2T0

E1
=

K2 − K1

K1
, �19�

where

E1 = 2S2�2JK1

is the minimum energy of the domain wall introduced above.
It is worth noting that Eq. �19� reproduces the dependence
v��� �Eq. �13�� within the Hamilton dynamics,

dX

dt
� v =

�H�X,P�
�P

.

This leads to unusual dynamical features, like the oscillatory
motion of a domain wall as a response to a dc driving force
�e.g., dc magnetic field parallel to the easy axis�. These pe-
culiarities are well known for the exact Walker solution and
have been experimentally established for moving domain
walls in magnetic bubble materials, see, e.g., Ref. 2. Here,
we were able to write down the explicit form of the function
E�P�, but the periodic dependence E�P� with the same value
of P0 is present for any continuum model of a ferromagnet
with biaxial anisotropy. Such periodic dependence E�P� is
also valid for biaxial discrete models; for details, see Ref. 32.

D. Kink coordinate and lattice pinning

As we will show, the quantum properties of kinks can be
described within a semiclassical analysis of the Hamilton
dynamics of collective variables: the kink coordinate X and
conjugated momentum P. This dynamics is determined by
the characteristic Hamilton function H�P ,X�. In a continuous
approximation, the definition of kink coordinate is obvious.
However, the Hamilton relation

dP

dt
= −

�H�P,X�
�X

shows that the kink momentum is conserved for any model
with the Hamiltonian independent of X. Therefore, any pro-
cesses of tunneling in momentum space �in particular, the
tunneling of the domain wall chirality� can only occur if the
Hamilton function H depends on the domain wall position X.
For our model, such dependence can only be caused by a
lattice pinning of the kink. Thus, for a consistent description
of quantum tunneling, lattice pinning must be considered.

A first step in this direction is to define the domain wall
coordinate X treated as a collective variable and conjugated
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to the kink momentum P. The kink coordinate X in the dis-
crete model can be naturally determined through the spin
operators,

X =
a

2S
�

n

�S3,n − S3,n
�0�� ,

where S3,n
�0� corresponds to a certain “reference” kink,33 which

coordinate is chosen as X=0. The total spin projection onto
axis 3 is conserved, S3

tot=�nS3=const; thus, for uniaxial fer-
romagnets with K2=K1, dX /dt=0 and a kink dynamics is
impossible. Another consequence appears when taking into
account the Hamilton relation dX /dt=�H�P ,X� /�P. For the
purely uniaxial case, H�P ,X� does not depend on P. All of
these general considerations here are characteristic of the ex-
act Walker solution.

A spin configuration corresponding to a kink with a speci-
fied value of the coordinate X can be obtained by minimizing
the Hamiltonian with respect to the variables 
n and �n, for a
fixed value of the total spin S3

�tot�. To do this, we use a pro-
cedure proposed and numerically realized for the analysis of
different dynamical solitons,34 which are described by a con-
ditional minimum of a discrete spin Hamiltonian. Using this
method, one can easily determine the structure of the kink
and obtain the dependence of the kink energy on its coordi-
nate X; this for finite spin chains is described by any classical
spin Hamiltonian.

Now, we consider model �1� with a purely single-ion an-
isotropy, for a finite chain of size Nc, with boundary condi-
tions cos 
n=1 and cos 
n=−1 at different ends of the chain.
The size of the chain Nc is chosen to be much larger than the
width of the kink. In particular, for a reasonable anisotropy
K�0.2J, the kinks occur as well-localized excitations. As a
result, the kink energy is independent of Nc for Nc�30. For
extremely high values of the anisotropy, K�Kc, with Kc
=0.667J, the domain wall becomes purely collinear,35 with
all spins up or down, S3= �S. For such collinear states, the
continuum description of the domain wall dynamics and its
topological analysis are obviously incorrect, and we should
restrict our consideration to moderate values of the aniso-
tropy: 0.2J�K�0.65J�Kc.

Considerable influence of the lattice pinning appear when
K�0.25J. A more favorable position of the kink is between
neighboring spins. Thus, the values S3,n at two neighboring
spins are equal in magnitude and opposite in sign: S3
= �S�0��1. Choosing the value of X=0 for one of such
states, we can determine the pinning potential having equiva-
lent minima at the points X=an, where n is an integer. The
states with kink on a lattice site with X=a�2n+1� /2 corre-
spond to maxima of the pinning potential, as shown in Fig. 3.
In general, it can be concluded that, for moderate values of
the anisotropy K�Kc, the pinning potential is not large com-
pared to the “static” energy of the kink. The dependence
U�X� is fairly well described by the simple harmonic relation

U�X� = U0 sin2	�X

a

 . �20�

On the other hand, higher Fourier components are also
present in the dependence U�X�, especially for higher aniso-
tropy. For example, for a more general form

U�x� = U0 sin2	�X

a

 + U1 sin2	2�X

a

 , �21�

the contribution of U1 can be noticeable. The values of U0
and U1 as functions of the reduced anisotropy K /J are pre-
sented in Fig. 4. In general, for higher values of the aniso-
tropy K, one can see a broadening of the curve U�X� near its
maximum and, correspondingly, a narrowing of the curve
near the minima. Note that when K�Kc, the function U�X�
has a cusp at X=0.

To conclude this section, we derive the periodic depen-
dence of the domain wall Hamiltonian on both collective
variables X and P. Namely, to describe the quantum dynam-
ics, we can use the Hamiltonian H�P ,X�=T�P�+U�X�,
where both functions T�P� and U�X� are periodic: U�X�
=U�X+a� and T�P�=T�P+ P0�.

III. QUANTUM TUNNELING EFFECTS IN KINK
DYNAMICS

To describe the quantum dynamics of domain walls, we
can proceed with the Hamiltonian H�P ,X�=T�P�+U�X�,

FIG. 3. Shape of the domain wall pinning potential U�X�, nor-
malized by its maximal value U�a /2�, for two values of the aniso-
tropy constant. Symbols denote the numerical data. The fit for the
model dependence �Eq. �21�� is shown by the full line.

FIG. 4. Coefficients U0 and U1 �in units of JS2� in Eq. �21� for
some values of anisotropy constant K1.
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where the “kinetic energy” T�P� is described by Eq. �19� and
the “potential energy” is caused by a periodic lattice pinning
potential U�X�=U�X+a�, see Eq. �20� or �21�. The most cru-
cial point is the presence of the double periodicity of
H�P ,X�, with respect to both X and P. For simplicity, below,
we use the simplest model holding this property,

H = T0 sin2	�P

P0

 + U0 sin2	�X

a

 , �22�

where only the lowest harmonics are considered. Here, the
energy of the kink is taken from its minimum classical value,
i.e., the energy of an “unmoving” kink with P=0 or P= P0,
situated at the minimum of a pinning potential X=0. At first
glance, this problem seems to be just a quantum problem
with one degree of freedom, and, in principle, it could be
analyzed by using usual methods in quantum mechanics.
However, the Schrödinger equation for the Hamiltonian �Eq.
�22�� contains an infinite number of derivatives, and the di-
rect application of standard numerical methods, or the
Wentzel–Kramers–Brillouin approximation, is not easily do-
able. Below, we propose several adequate approaches to ana-
lyze this problem.

For different ferromagnetic chains, any ratio of param-
eters T0 and U0 is, in principle, possible. For example, the
value of T0 is proportional to the difference �K2−K1� and it
vanishes in the purely uniaxial case for any value of K2
=K1�0, while the amplitude of the pinning potential U0 is
almost zero for K1�0.15J. It is natural to start with the
Bohr–Sommerfeld quantization for the domain wall motion,
which is based on the analysis of the classical dynamics.
This can be done in the same way as for the transverse-field
Ising model �see Ref. 33� and we do not discuss its details
here. The most important feature of a Hamiltonian of type
�22� is the presence of a lower and an upper bound for the
energy. Hence, two types of finite motion appear. The first
type corresponds to oscillations of the domain wall with ei-
ther P� P0 or �P− P0�� P0 near the minimum of the poten-
tial, with the energy near the minimum of the Hamiltonian,
E�T0, U0. The second type of finite motion corresponds to
oscillations near the potential maximum, with the momen-
tum near the values of P= � P0 /2, and the values of energy
are E�T0+U0.

For intermediate values of the energy, the motion is infi-
nite. For a small pinning potential, this motion is standard,
with infinite growth of the kink coordinate. The case U0
�T0 is less standard; it corresponds to an infinite-growing
momentum with finite oscillations of the coordinate near cer-
tain positions, which do not coincide with extrema of the
pinning potential. The latter case is nothing but Bloch oscil-
lations in the pinning potential U�X�. An exception is the
chosen point T0=U0, for which the classical motion is finite
for all values of the energy.

Both types of infinite motion describe the classical over-
barrier dynamics of the domain walls. Using a quantum-
mechanical language, such states of the nearly free particle
can be well described by perturbation theory over U0 or T0,
for the case U0�T0 or U0�T0, respectively. This analysis
will be done in Sec. III A.

Within the Bohr–Sommerfeld quantization condition, all
the states corresponding to finite motion �oscillations� of the
domain wall near any extrema of the Hamiltonian produce a
discrete spectrum of energy levels En with a level separation
of the order of �U0T0 /S. Both U0 and T0 are proportional to
S2; therefore, for the semiclassical situation of high spins S
�1, the separation of values of En	S can be smaller than U0
or T0. These states, with energy En, are well localized. For
them, the probability of tunneling is small, and for its esti-
mate, the semiclassical approximation is adequate. Such
analysis will be done in Sec. III B.

A. Perturbative analysis

For extremely large or small values of U0 /T0 �namely, for
U0 /T0�1 /S2 or T0 /U0�1 /S2�, the value of En+1−En
���n can be of the order of min�T0 ,U0�. In these cases, all
the states are delocalized, and our perturbation theory gives
the full description of the domain wall spectrum. Out of
these strong inequalities, a perturbative analysis can only be
applied to domain wall states with intermediate values of the
energy, which correspond to the classical infinite motion dis-
cussed above.

Let us now start with the case U0�T0, using perturbation
theory with respect to U�X�. In this case, in zeroth approxi-
mation, P=const. To proceed further, let us assume the chain
to have a large but finite size L=Na, N�1. Then, periodic
boundary conditions give the usual quasicontinuous spec-
trum of the momentum P= Pn= �2�� /a��n /N�, where n is an
integer, N /2�n�N /2, or −PB /2� P� PB /2, where PB
= �2�� /a� is the size of the usual �crystalline� Brillouin zone.
The vector of states �P� corresponds to a fixed value of mo-
mentum and, hence, the fixed value of chirality and the un-
certainty value of the kink coordinate. The quantum spec-
trum of the problem repeats the dependence of the
Hamiltonian �Eq. �22�� on P.

We now consider the term U�X� as a perturbation. Its role
will generally be the same as for the lattice potential U�X� in
the standard weak-binding approximation in solid state phys-
ics. At zeroth order approximation in the coordinate space,
the eigenfunctions are of the form ��0�=exp�iPX�, with the
energy E�0��P�=T�P�. The influence of the potential U�X�
with the period a leads to the formation of Bloch states
which are a superposition of the states ��n�=exp�iPX
+ inPBX�, and the momentum transforms to quasimomentum.
In the weak-binding approximation, the spectrum can be ob-
tained by a superposition of unperturbed dispersion curves
E�0�=T�P�, with argument shifting by nPB, where n is an
integer number. This spectrum is periodic with the period
equal to the size of the first Brillouin zone PB. The influence
of the perturbation is maximal if the values of the functions
�P+nPB� and �P+n�PB�, with the different n�n�, coincide
for some value of P.

In contrast with Bloch electrons with a parabolic disper-
sion law E�0,el�= P2 /2M, for kinks in ferromagnets, the un-
perturbed dispersion law is already described by a periodic
function. Hence, for the resulting dispersion law E�P�, the
periodic dependence �with the period matched with both
characteristic values P0=2�S� /a and PB=2�� /a� should
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appear. It is also important that kinks for the states �P� and
�P+ P0� have the same energy and velocity but differs by the
sign of the chirality �= �1. In pure classical language, these
states are described by different magnetization distributions,
their images corresponding to diametrically opposite paths
on the sphere in Fig. 2.

A simple analysis shows the fundamental difference be-
tween the character of the spectrum for integer and half-
integer values of the atomic spin S. For minimal integer S
=1, the periods P0 and PB coincide, see Fig. 5. The account-
ing of the potential U�X� of the form �22� leads to the over-
lapping of functions E�0��P� and E�0��P+ P0�. Taking, for
definiteness, a P situated in the first Brillouin zone, −P0 /2
� P� P0 /2, we can say that these unperturbed states have
different chiralities �= +1 and �=−1. The action of the po-
tential leads to their hybridization and formation of the states
�P� �= ��P�� �P+ P0�� /�2, having energies

E����P� = E�0��P� � �P�U�X��P + P0� ,

where

E�0��P� = T�P� + �U�X�� ,

��P�U�X��P + P0�� = U0/4

and

��U�X�� � �P�U�X��P�� = U0/2

are the off-diagonal matrix element and the mean value of
the potential U�X� for Eq. �22�, respectively.

The same expression can be found for any integer spins
S=k�1, i.e., the Fourier component of the potential with
P=kPB= P0 leads to a full hybridization of the chirality for
any P. As a result, states of type �+ �� �−� appear, where ���
correspond to chirality values �= �1. Such states are the
quantum superposition of the kinks describing diametrically
opposite trajectories on the sphere and energy E����P�
=E�0��P��U0 /4, where U0 is the corresponding matrix ele-
ment of the potential U�X�. For integer spins S�1, the value
P0=SPB is a common period. Neglecting the chirality tun-

neling, one can find the S usual energy bands �doubly degen-
erated over the chirality values� with the size of PB. The
chirality tunneling splits any of them into two subbands, cor-
responding to states ��+ �� �−�� with E����P�, and the total
number of bands equals 2S, as shown in Fig. 6.

For half-integer spins S=k+1 /2, where k is an integer
number, the situation is completely different. It is easy to
show that none of the Fourier components of the potential
with nPB=2nP0 / �2k+1� leads to such an overlapping of the
nonperturbed spectrum at any P, which take place for integer
S. For S=1 /2, any crossing is absent, as shown in Fig. 7 �a
crossing of nonperturbed spectra for spin S=1 /2 reported in
Ref. 25 is an artifact of the parabolic approximation for
E�0��P��. For higher half-integer spins S�1 /2, the only
crossings at some fixed values occur when P= Pn. Such
crossings can appear for branches E�0��P+nPB� correspond-
ing to the kinks with the same or different chiralities, as
shown in Fig. 8. For this last case, the effects of chiralities
hybridization can be present very near the crossing points,
�T�P�−T�Pn���U0, as shown in Fig. 8.

Let us consider the opposite limiting case U0�T0, when
the kinetic energy T�P� plays the role of a small perturbation
for the unperturbed Hamiltonian H0=U�X�. To zeroth order
approximation with respect to T0, the solution is now X
=const. To construct this perturbation theory, the momentum

FIG. 5. Dispersion relation of a kink in a ferromagnet with spin
S=1 subject to a weak pinning potential. The solid line and the
dashed line correspond to the states ��+ �− �−�� and ��+�− �−��, anti-
symmetric and symmetric over chirality, respectively. Here and
Figs. 6–8, the vertical dotted lines show the boundaries of the usual
Brillouin zone, −PB /2� P� PB /2.

FIG. 6. Same as in Fig. 5 for spin value S=2. The region near
the crossing points, schematically shown by shadowed ellipses on
the main figure, is magnified in the upward left inset.

FIG. 7. Dispersion relation of a kink in a ferromagnet with spin
S=1 /2, subject to a weak pinning potential. The solid line and
dashed line correspond to the states with chiralities �=−1 and �
=1, respectively. Rectangles denote the points where the value of
the chirality is not determined.
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representation should be used. In this case, taking into ac-
count the identity of the states with P and P+2P0, we should
apply the condition exp�i�P− P0�X�=exp�i�P+ P0�X�, which
leads to the discreteness of the values of the kink coordinate,
X=Xk=ak /2S. The difference between this boundary condi-
tion and the condition which was used for the case U0�T0
above leads to essentially different results.

For the case of strong pinning potential U0�T0, unper-
turbed states are described by the wave function in the mo-
mentum representation ��0�=exp�iXkP�, with definite coordi-
nate X=Xk and indefinite value of the momentum, which also
means an indefinite value of the chirality. Let us now con-
sider T�P� as a small perturbation. It is easy to see that the
nth Fourier component of T�P�, with exp�2i�nP / P0�, leads
to a nonzero matrix element of the quantum transition when
changing the kink coordinate, Xk→Xk+�Xn, �Xn=na /S �in
the simplest case with one harmonic only �Eq. �22��, the
transition with n�1 requires accounting the nth order in
perturbation theory�. If U�Xk�=U�Xk+�Xn�, i.e., when the
value of �Xn is multiple to the chain period a, the “resonant”
transition should be observed.

In summary, kinks in ferromagnetic chains with either in-
teger or half-integer spins behave differently. The tunneling
from a cell to the neighboring one is possible for an integer
spin, while for the half-integer spin, only the transitions with
changing X by 2a are permitted, i.e., “jumps” across one cell.
This feature was mentioned in Ref. 25 using a different rea-
soning.

B. Semiclassical dynamics

For large values of the spin, S�1, a semiclassical ap-
proach provides a much better approximation than the per-
turbative approach used above. For electronic states in a
large lattice potential, the semiclassical tunneling can be for-
mally described by the tight-binding approximation, which
leads to the formation of a band spectrum of the kink with
narrow allowed bands.

Considering possible tunneling effects for a kink, one im-
mediately encounters the question of underbarrier transition
in both coordinate space and momentum space. For domain
walls with the minimal energy, such transitions include the

tunneling between states corresponding to a two-dimensional
set of points in phase space of a system �P ,X�, such as X
�0, �a , . . . and P�0, � P0 , . . .. Within the semiclassical
approximation, these transitions can be investigated in the
framework of the instanton approach, see Refs. 36 and 38.
This approach is a version of the Feynman path integral
method suited to the description of the underbarrier transi-
tions. It involves using the Euclidean space-time that is
transforming to the imaginary time, t→ i� �so-called Wick
rotation�. Within this approach, the amplitude of the under-
barrier transition from a given quantum state �i� to
another one �f� is determined by the path integral
�DX exp�−AE�X� /��, where DX denotes integration over all
possible paths that satisfy the specified boundary conditions.
Here, the Euclidean action AE�X� is described in the form
AE=�LEd�, and LE= P�dX /d��−H�P ,X� is obtained by the
application of a Wick rotation to the usual mechanical La-
grangian. The instanton solution determines the trajectory for
which the tunneling amplitude is maximal, i.e., the instanton
trajectory minimizing AE with respect to X��� and P���, with
the conditions �i� at �→−� and �f� at �→ +�. The minimum
of the Euclidean action is realized on the separatrix solution
of the corresponding Euler–Lagrange problem for the Eu-
clidean action functional AE or, equivalently, on the solution
of the Hamilton equation with the substitution t→ i�. The
tunneling splitting of the levels � is determined by the for-
mula �=���0

�AE /� exp�−AE
0 /��, where �0 is the character-

istic frequency, ��1.
Let us apply this approach to the mechanical problem of

the kink dynamics described by the Hamiltonian �Eq. �22��.
It is easy to see that the Wick rotation t→ i�, simultaneously
with the simple substitution X→ i�, reduces the instanton
problem to the Hamilton problem for real canonical vari-
ables � and P and with the real Hamilton function HE,

HE = T0 sin2��P/P0� − U���, U��� = U0 sinh2���/a� .

�23�

The Hamilton equations for Eq. �23� have an obvious inte-
gral of motion HE=const; boundary conditions give HE=0.
Thus, for an instanton solution, we derive �T0 sin��P / P0�
= ��U���. A simple analysis shows that this problem has an
instanton solution with �����=0 �i.e., X����=0�, while
the values of momentum differ: P at �→−� and P+ P0 at
�→ +�. This instanton solution describes the tunneling of
the kink chirality.

Analysis of the second type of tunneling �tunneling of the
kink coordinate� can be done in a similar manner, by using a
Wick rotation, substituting P→ i�, and keeping the coordi-
nate X as a real variable. Then, again, the real Hamilton

function H̄E for two real variables X ,� appears,

H̄E = U0 sin2��X/a� − T0 sinh2���/P0� . �24�

It is easy to show that this problem has an instanton so-
lution with �����=0, X��→−��−X��→��=a. This in-
stanton solution describes the tunneling of the kink from one
lattice site to a neighboring one.

For the instanton solutions of both types H̄E, HE=const
=0, the Euclidean Lagrangian reduces to LE= P�dX /d��.

FIG. 8. Same as in Fig. 7 for the spin value S=3 /2. The gray
and the light circles schematically show the areas in the vicinity of
the crossing of unperturbed spectra with and without chirality hy-
bridization, respectively.
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Therefore, for both cases, �Eqs. �23� and �24��, the value of
the Euclidean action can be represented as simple integrals.
For example, for the tunneling of the chirality, AE

0

=�0
P0��P�dP, where

��P� = �a/��arcsinh���T0/U0� sin��P/P0�� ,

resulting in

AE
0 = 	2�S

�

aE	U0

T0

 , �25�

where aE�U0 /T0� is a universal function �see Fig. 9� that only
depends on the ratio U0 /T0. We can easily find the
asymptotic behavior of aE at z �1 and z �1: the functions
a�z�=�z and a�z�=ln z, where z=U0 /T0. These are shown in
Fig. 9.

For the analysis of the tunneling of the coordinate X it is
not even necessary to calculate the corresponding integral

ĀE
0 =�0

a��X�dX. The Euclidean action ĀE, describing the tun-
neling of the kink coordinate, is obtained from the previous
formula for the tunneling of the chirality AE in Eq. �25� by
the replacement U0 /T0→T0 /U0.

The quantity AE, as well as the tunneling splitting �0, is a
standard measure of the intensity of the quantum tunneling
processes but there is a physical difference among the tunnel
processes considered here. This is because all of the values
of the kink coordinate of the form X=an �the kink is found at
points of potential energy minima� correspond to different
states of the kink, while all the values of the momentum
differing by 2P0 correspond to the same state of the kink.
Therefore, the processes of tunneling either coordinate or
momentum lead to different physical consequences. Tunnel-
ing of the coordinate is responsible for the formation of an
energy band in which the number of states with different
values of the quasimomentum coincides with the number of
spins in the chain. The width of the corresponding energy
band is given in terms of the tunneling splitting �0, �E0
=2�0. Tunneling of the momentum leads to lifting off the

twofold degeneracy of the states of the kink and causes a

splitting of the level into two, with �E=2�̄0.

IV. CONCLUDING REMARKS AND RESULT DISCUSSION

In conclusion, using both semiclassical instanton and per-
turbative approaches, we study quantum tunneling effects in
P space and X space for domain walls in ferromagnetic
chains. We also investigated the quantum dynamics of do-
main walls �kink-type solitons� in spin chains. Explicit re-
sults have been obtained for the biaxial model with isotropic
interaction J and rhombic anisotropy with two constants K1
and K2. The combinations of the two spin interaction con-
stants, K1 /J and �K2−K1� /K1, define two parameters, U0 and
T0, for the effective Hamiltonian describing the quantum dy-
namics of a domain wall.

In both limits �small and large U0 /T0�, only one type of
transition becomes important, but for the case U0�T0, the
probability for both transitions are comparable. In this case
U0�T0, the function a�U0 /T0� is of order of unity, and for
S�1, both transition amplitudes are not small; i.e., the kinks
in ferromagnetic chains with spin S�1 are essentially quan-
tum objects. They are characterized by a quantum dispersion
relation �spectrum� of the kink E=E�P�, with the presence of
some discrete variable, chirality �= �1. The quantum prop-
erties of domain walls in a chain with either integer or half-
integer spin are essentially different. For a chain with integer
spin, there are S main energy bonds, each of these bonds
splits in two subbands, with total hybridization of chirality.
In contrast, for the case of half-integer spin chain, we arrive
at a pattern of 2S nonoverlapping energy bands, with chiral-
ity hybridization only at some particular points.

Having in mind the case of mesoscopic chainlike artificial
ferromagnetic structures, we discuss the behavior of domain
walls for large spins S�1. At first glance, for such systems,
the quantum effects should be suppressed by the large spin
values. However, as we have shown, tunneling effects can
occur, even for values like S�102–103, for essentially dif-
ferent values of the parameters U0 and T0. Here, the value of
the tunneling exponent can be acceptable �AE /���15–20 if
aE�1. We stress the agreement between the probability of
tunneling for one mesoscopic magnetic particle, see Refs. 37
and 38 and the probability of tunneling processes for the
kinks found here.

For domain wall tunneling, at least one of two quantum
tunneling transitions �either tunneling of coordinates or tun-
neling of chirality� are possible. It is useful to introduce the
following empiric rule. The probability of chirality tunnel-
ing, including flipping a large number of spins Nkink�1, has
the same order of magnitude as for coherent spin tunneling
of a single particle. The role of thermal fluctuations on both
the quantum tunneling and the transition to classical thermo-
activated hopping can be done in a similar manner as for one
particle �see, e.g., Ref. 39�.
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