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We derive a quantum field theory of Josephson plasma waves �JPWs� in layered superconductors, which
describes two types of interacting JPW bosonic quanta �one heavy and one lighter�. We propose a mechanism
of enhancement of macroscopic quantum tunneling �MQT� in stacks of intrinsic Josephson junctions. Due to
the long-range interaction between junctions in layered superconductors, the calculated MQT escape rate � has
a nonlinear dependence on the number of junctions in the stack. We develop a numerical procedure, based on
quantum field tunneling theory, to calculate � for the stack of Josephson junctions. We also propose a simple
analytical formula to estimate the MQT escape rate. Moreover, we demonstrate that the direct analogy between
fluxon tunneling and tunneling of a quantum particle fails even for very thin junction stacks �about 1 �m for
Bi2Sr2CaCu2O8+�� and a field-theoretical approach is necessary. The theory developed here allows to quanti-
tatively describe striking recent experiments in Bi2Sr2CaCu2O8+� stacks.
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I. INTRODUCTION

The recent surge of interest in stacks of intrinsic Joseph-
son junctions is partly motivated by the desire to develop
terahertz devices, including emitters,1,2 filters, detectors, and
nonlinear devices.3 Macroscopic quantum tunneling �MQT�
has been, until recently, considered to be negligible in high-
Tc superconductors due to the d-wave symmetry of the order
parameter. Recent unexpected experimental evidence4,5 of
MQT in layered superconductors could open a new avenue
for the potential application of stacks of Josephson junctions
in quantum electronics.6 This requires a quantum theory ca-
pable of quantitatively describing this recent stream of re-
markable experimental data �e.g., Refs. 4 and 5�. In contrast
to a single Josephson junction, stacks of intrinsic Josephson
junctions are strongly coupled along the direction perpen-
dicular to the layers. This is because the thickness of these
layers is of the order of a few nanometers, which is much
smaller than the magnetic penetration length. This results in
a profoundly nonlocal electrodynamics2 that strongly affects
quantum fluctuations in layered superconductors.

The two main results of this work are as follows: first, the
quantum electrodynamics of Josephson plasma waves
�JPWs�, and second, the quantitative description of macro-
scopic quantum tunneling in stacks of Josephson junctions.
Namely, using a general Lagrangian approach, we derive the
theory of quantum JPWs, which describes two interacting
quantum fields: a heavy JPW and a lighter one. We predict
resonances in the amplitudes of quantum processes associ-
ated with the creation of pairs of JPW quanta.

Using a general approach, we develop a quantitative
theory of MQT in stacks of Josephson junctions. Our study is
based on the analysis of coupled sine-Gordon equations and
field-theoretical approach to fluxon tunneling, which allows
us to adequately describe the long-range interactions in
Bi2Sr2CaCu2O8+� stacks, in contrast to the phenomenologi-

cal treatment7,8 of capacitively coupled Josephson junctions.
We calculate the MQT escape rate � numerically and, fol-
lowing our approach,9 suggest an approximate analytical for-
mula for �. The obtained value of � is strongly nonlinear
with respect to the number of superconducting layers N and
changes to ��N when N exceeds a certain critical value Nc.
Our numerical results are in good quantitative agreement
with recent exciting experiments5 and our analytical formu-
las provide a simple estimate of the MQT escape rate.

II. QUANTUM THEORY FOR LAYERED
SUPERCONDUCTORS

A. Lagrangian description for two interacting fields

The electrodynamics of stacks of Josephson junctions can
be described by the Lagrangian

L = �
n
� dx�1

2
�̇n

2 +
1

2�2 ṗn
2 −

1

2
��x�n�2 −

1

2
��ypn�2 −

1

2
pn

2

+ cos �n +
1

2
��xpn�y�n + �ypn�x�n�� , �1�

where

�n � �n+1 − �n −
2�sAy

�n�

	0

is the gauge-invariant interlayer phase difference and

pn �
s


ab
�x�n −

2��sAx
�n�

	0

is the normalized superconducting momentum in the nth
layer. Here, we introduce the phase �n of the order param-
eter, the interlayer distance s, the in-plane 
ab and out-of-
plane 
c penetration depths, the anisotropy parameter �
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=
c /
ab, flux quantum 	0, and vector potential A� . The in-
plane coordinate x is normalized by 
c; the time t is normal-
ized by 1 /�J, where the plasma frequency is �J; also,
�x=� /�x, �yfn=
ab�fn+1− fn� /s, �̇=�� /�t. Hereafter, time
derivative will be denoted by a dot above the symbol �i.e.,
�̇=�� /�t�. The z axis is pointed along the magnetic field.
Here, we ignore dissipation, which was shown4,10 to be neg-
ligible.

Varying the action S=�dtL produces the dynamical equa-
tions for the phase difference

�̈n − �x
2�n + sin �n + �x�ypn = 0,

1

�2 p̈n − �y
2pn + pn + �x�y�n = 0, �2�

which reduces to the usual coupled sine-Gordon equations11

for �2�1. Note that a Lagrangian approach for stacks of
Josephson junctions can be formulated only for two interact-
ing fields � and p. This is because the vector potential has
two components, Ax and Ay, in stacks of Josephson junctions,
in contrast to one-dimensional Josephson junctions where
one component of the vector potential is enough.

Linearizing Eq. �2� and substituting

p, � � exp�i�t + ikxx + ikyy� ,

we derive a biquadratic equation,

��2 − kx
2 − 1�	�2

�2 − ky
2 − 1
 − kx

2ky
2 = 0,

for the spectrum of the classical JPWs in the continuous limit
�i.e., kys1� and �2�1. Here, kx and ky are the wave vectors
�momenta in the quantum description; here, �=1� of the
JPWs. This equation determines two branches, �=�a�k�� and
�b�k��, of JPWs,

�a�k�� = 	1 +
kx

2

1 + ky
2
1/2

, �b�k�� = ��ky
2 + 1�1/2, �3�

up to terms of the order of 1 /�2. The a branch describes
Josephson plasmons propagating both along and perpendicu-
lar to the layers, while the b branch describes plasmons
propagating only perpendicular to the layers.

B. Quantum plasma waves

In order to quantize the JPWs, we use the Hamiltonian

H = �
n
� dx���n

�̇n + �pn
ṗn� − L ,

with the momenta ��n
and �pn

of the �n and pn fields, and
require the standard commutation relations

��n��x��,��n
�x�� = i��x − x���nn�,

�pn��x��,�pn
�x�� = i��x − x���nn�

�all other commutators are zero�, where � is either a delta
function or Kronecker symbol. Expanding cos �n=1−�n

2 /2
+�n

4 /24−¯, we can write

H = H0 + Han,

where we include terms up to �n
2 in H0 and the anharmonic

terms in Han. Diagonalizing H0, we obtain the Hamiltonian
for the Bosonic free fields a and b,

H0 = �
ky

� dkx

2�
��a�k��a+a + �b�k��b+b� .

The original fields �n, pn in Eq. �1� are related to the free
Bosonic fields a and b by

� 
a+ + a

�2�a�k�
− Z b+ + b

��2�b�k�
,

p  Z a+ + a
�2�a�k�

+ �
b+ + b

�2�b�k�
,

where Z=kxky / �ky
2+1�. Equation �3� shows that the “mass”

of the a quantum equals 1 and for the heavier b-quasiparticle
is � in our dimensionless units.

C. Analogy with quantum electrodynamics

The interaction between the a and b fields, including the
self-interaction, occurs due to the anharmonic terms in

Han  −
1

24�
n
� dx�n

4 + ¯ .

In the leading order with respect to the bosonic field interac-
tions, an a particle can create either a+a or a+b pairs. Using
Eq. �3�, one can conclude that the amplitudes of these pro-
cesses have energy thresholds

�a�k�1� = 3 or � + 2.

Note that it is similar to the 2mc2 rest energy threshold for
e−+e+ pair creation in usual quantum electrodynamics.
These can result in resonances in the amplitudes of quantum
processes �e.g., decay of the a quanta�.

III. ENHANCEMENT OF MACROSCOPIC QUANTUM
TUNNELING

Now, we apply this field theory to interpret very recent
experiments5 on MQT in Bi2Sr2CaCu2O8+�. We consider a
stack of N�1 Josephson junctions having the sizes D�Lz in
the plane of the junctions and Ly across them. To observe
MQT, an external current J, close to the critical value Jc, was
applied.5

A. Effective Lagrangian

In the continuous limit and when �2�1, Eq. �2� can be
rewritten as

	1 −
�2

�y2
� �2�

�t2 + sin �� −
�2�

�x2 = 0. �4�

Here, the coordinate y �transverse to the layers� is normal-
ized by 
ab. This stack bridges two bulk superconducting
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sheets. The current close to the critical value flows across the
stack and the external magnetic field is zero. We neglect the
disturbance that the tunneling fluxon produces in the bulk
superconductors. The latter assumption is usual for Joseph-
son system and gives a correct result in the limit of a single
junction. In this case, the boundary conditions to Eq. �4� are

� ��

�x
�

x=0,d
= �

jd

2
, � ��

�y
�

y=0,L
= 0, �5�

where j is the current density flowing through the junctions
normalized by the critical current density i0, L=Ns /
ab is the
dimensionless size of the system in the y direction, d
=D /
c, and D is the junction width in the x direction.

When tunneling occurs, the phase difference in a junction
changes from 0 to 2�, which can be interpreted as the tun-
neling of a fluxon through the contact. This process can be
safely described within a semiclassical approximation and
we use the approach developed in Refs. 5, 9, and 12–14 to
calculate the escape rate � of a fluxon through the potential
barrier.

The probability of quantum tunneling in the semiclassical
limit is expressed through the classical action of the system
in imaginary time. However, the simplified Eq. �4� has no
Lagrangian. This occurs because we neglect the second or-
der time derivative of the field p in Eq. �2� in the limit �2

→� and, as a result, obtain a relation between � and p
instead of the second dynamic equation.

In general, we have to use an action of the form in Eq. �1�
with two interacting bosonic fields � and p, which could
produce a rather cumbersome mathematical problem. In or-
der to avoid this difficulty, we follow the approach described
in Refs. 9 and 14. First, we seek a solution to Eq. �4� in
imaginary time t= i� in the form

���,x,y� = �0�x� + ���,x,y� ,

where �0�x� is a steady-state solution corresponding to an
energy minimum of the junction’s stack. It does not depend
on the y coordinate and satisfies the equation

�2�0

�x2 = sin �0. �6�

Below, we consider the limit of short junctions d1 �D

c�, which corresponds to the usual experimental
conditions.5 In this case, the solution of Eq. �6� with bound-
ary conditions �Eq. �5�� has the form

�0�x� = arcsin�j� +
j

2
	x −

d

2

2

+ O�x4� . �7�

Substituting the expansion �=�0+� into Eq. �4� and pro-
ceeding to the limit d0, we derive the following equation
for ��� ,x ,y� in imaginary time:

	1 −
�2

�y2
�−
�2�

��2 − j�1 − cos �� + �1 − j2 sin �� −
�2�

�x2 = 0.

�8�

We assume that the fluxon tunnels mainly through one of
the junctions and we can linearize Eq. �8� in all junctions

except this one. We denote the number or label for this junc-
tion as l. The linearized equation for � is

	1 −
�2

�y2
�−
�2�

��2 + �̄0�� −
�2�

�x2 = 0, �9�

where

�̄0 = �1 − j2.

This equation is valid in all junctions except for the lth junc-
tion, where the flux or tunnels located at the position

y0 = L1 =
ls


ab
.

The function ��� ,x ,y� satisfies the boundary conditions

d�/dx = 0 at x = 0,d

and

d�/dy = 0 at y = 0,L .

Note that the characteristic size of the tunneling fluxon is
�s
c �this will be shown below� and it can be compared to
the junction’s width D. So, when D��s, the x dependence
of ��� ,x ,y� is essential.

The solution to Eq. �9� with the specified above boundary
conditions at y=0,L and continuity condition at y=L1,
��� ,x ,L1+0�=��� ,x ,L1−0� can be written in the form of
the following expansion:

���,x,y� = �
n=0

� �
0

�

dpe−p� cos�knx�fn�p,y��n�p� , �10�

where kn=�n /d and functions

fn�p,y� = �
cosh��n�p�y�
cosh��n�p�L1�

, y � L1

cosh��n�p��L − y��
cosh��n�p��L − L1��

, y � L1,� �11�

where

�n
2 = 1 +

kn
2

�̄0 − p2 .

The functions �n�p� in Eq. �10� are derived from the equa-

tion for � in the lth junction, �̄�� ,x����� ,x ,L1�. The latter
can be derived from the relation between the phase differ-
ence and the magnetic field in the lth layer. Using the stan-
dard relation15

� ��

�x
�

y=L1

=
8�2
ab

2 
c

c	0
�Jx�y = L + 0� − Jx�y = L − 0�� ,

�12�

from Maxwell’s equation, and the formula for the critical
current i0=c	0 /8�2
c

2s, we obtain
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��

�x
=

c

4�i0�s�	� �H

�y
�

L1+0
− � �H

�y
�

L1−0

� . �13�

Here, Jx is the x component of the current density and we
neglect the x dependence of �0�x� in left-hand side of Eq.
�12�.

We present the z component of the magnetic field in the

form H=H0+ H̄, where

�H0

�x
= −

4�i0
c

c
sin �0

does not depend on y. According to Maxwell’s equation, the

field H̄ linearly depends on � at y�L1 and can be repre-
sented in the form

H̄��,x,y� = �
n=1

� �
0

�

dpe−p� sin�knx�fn�p,y�hn�p� , �14�

where hn�p� are functions which are independent of the co-
ordinates x and y. Substituting the expansion �Eq. �14�� into
Eq. �13�, we obtain the relation between the functions hn�p�
and �n�p�,

hn�p� = 	2�i0�s

c

 kn�n�p�

�n�p�
�n�p� , �15�

where

�n =
2 cosh��nL1�cosh��n�L − L1��

sinh��nL�
. �16�

The Maxwell equation in the contact at y=L1 is nonlinear

with respect to �̄,

−
�H

�x
=

4�i0
c

c
�sin��0 + �̄� −

�2�

��2 � .

The continuity condition of the y component of the current
requires the continuity of the derivative �H /�x at y=L1.
Then, substituting the expansion �Eq. �14�� into the latter
equation, we obtain the following system of equations for
�n�p�:

−
�2�̄

��2 + �̄0 sin �̄ − j�1 − cos �̄�

= −
s

2
ab
�
n=1

� �
0

�

dpe−p� cos�knx�
kn

2�n�p�
�n�p�

�n�p� , �17�

where

�̄��,x� = �
n=0

� �
0

�

dpe−p� cos�knx��n�p� . �18�

It is well known that the wave with the frequency above
plasma frequency,

�p�j� = �J�1 − j2�1/4,

can propagate in the Josephson junctions. Thus, the charac-
teristic time of MQT is certainly lower than 1 /�p. On the

other hand, the only time scale of the considered problem
�Eqs. �4� and �5�� is 1 /�p and we can consider the MQT as a
quasistatic process putting p=0 in �n�p� and �n�p� in Eqs.
�17�. In the case under consideration, d1, we have

�n =
kn

��̄0�1/2

for n�0. As a result, we reduce Eqs. �17� and �18� to

−
�2�̄

��2 + �̄0 sin �̄ − j�1 − cos �̄� = �
0

d

dx�K�x;x��
�2�̄��,x��

�x�2 ,

�19�

where the kernel K�x ;x�� is

K�x;x�� =
�s��̄0

D
�
n=1

�

cos�knx� cos�knx��
�N

l �an�
kn

�20�

and

�N
l �a� =

2 cosh�al�cosh�a�N − l��
sinh�aN�

, a =
��s

D��̄0

. �21�

If l ,N�1 and a�1, then �N
l �a��1, and the kernel can be

calculated explicitly,

K�x;x�� = −
�s��̄0

2�
c
ln�4 sin���x − x��

2d
�sin���x + x��

2d
�� .

�22�

In contrast to Eq. �4�, Eq. �19� has a Lagrangian, which
can be written in imaginary time t= i� as

Leff��� = �0�
0

d

dx�−
1

2
	 ��̄

��

2

− �̄0�1 − cos �̄� + j��̄ − sin �̄�

+
1

2
�̄�

0

d

dx�K�x;x��
�2�̄

�x�2� , �23�

where

�0 = i0Lz
c/�2e�J�

and Lz is the size of the junctions in the z direction. Indeed,
it is easy to check that �2K�x ;x�� /�x�2=�2K�x� ;x� /�x2, and

variation of Eq. �23� with respect to �̄ gives Eq. �19�. Note
that, in general, the effective Lagrangian depends on l and N
by means of the functions �N

l .

B. Field tunneling: Numerical approach

The tunneling escape rate �, that is, the tunneling prob-
ability per unit time, can be calculated in the semiclassical
approach for a system with a Lagrangian in the general
form.12 In the case of tunneling of a fluxon, � can be pre-
sented as5,9,16

SAVEL’EV et al. PHYSICAL REVIEW B 77, 014509 �2008�

014509-4



� = �p�j��
l=0

N �30BN
l

�
exp�− BN

l � , �24�

where we take into account that the fluxon can tunnel
through any junction 0� l�N of the stack and the tunneling
exponent BN

l can be expressed via the Lagrangian Leff in Eq.
�23� as

BN
l = − 2�

0

�

d�Leff��� . �25�

Since the current I in the stack is assumed to be close to
the critical value Ic�d�, we calculate B by means of an ex-
pansion similar to that developed in our previous paper Ref.
14 for the study of MQT in a single Josephson junction. We
expand the Lagrangian �Eq. �23�� and the equation of motion

�Eq. �19�� in series of �̄ and seek function �̄ of the form

�̄��,x� = �
n=0

�

cn����n�x� , �26�

where �n are orthogonal eigenfunctions of the operator

L̂ = �̄0 − �
0

d

dx�K�x;x��
�2

�x�2 . �27�

The tunneling exponent can be expanded as14

BN
l =

�0

6
�

0

�

d���
nmk

Unmk
�3� cncmck +

1

2 �
nmkl

Unmkl
�4� cncmckcl + ¯ � ,

�28�

where

Un¯k
�i� = �

0

d

dx� �i�cos �0�
��0

i �n ¯ �k�
�0=arcsin�j�

. �29�

The functions cn satisfy the system of equations

c̈n − �ncn = −
1

2�
mk

Unmk
�3� cmck −

1

6�
mkl

Unmkl
�4� cmckcl − ¯ ,

�30�

with the initial conditions

ċn�0� = 0, lim
�→�

cn��� = 0, �31�

where dot means imaginary time derivative and �n are ei-

genvalues of L̂.
It is clearly seen from the expansion �Eq. �20�� for

K�x ;x�� that the orthogonal eigenfunctions �n�x� of the op-

erator L̂ are the following:

�0�x� =�1

d
, �n�x� =�2

d
cos knx, n � 0, �32�

and the corresponding eigenvalues

�n = �̄0�1 +
an

2
�N

l �an��, a =
��s

D��̄0

. �33�

In the above equation we just reminded the definition of the
parameter a, which was first used in Eq. �21�. From Eq. �29�,
we derive

U0mk
�3� = j�mk/�d ,

Unmk
�3� = j

�n,m+k + �m,n+k + �k,n+m

�2d
, n,m,k � 0. �34�

Note that Eqs. �32� and �33� for �n and �n are derived in the
limit D /
c1 when the stationary solution �0�x�const.
The correction to this result can be found in perturbations on
D /
c.

The lowest eigenvalue

�0 = �1 − j2

is small when j is close to 1. Therefore, the functions cn���
should be small and we can neglect all terms in the right-
hand side of Eq. �30� except the first one. Let us introduce
new variables

�n��� =
jcn���
3�̄0

�d
, � = ��̄0� . �35�

Substituting Eqs. �34� and �35� in the system �Eq. �30��, we
derive

d2�0

d�2 − �0 = −
3

2 �
m=0

�

�n
2,

d2�n

d�2 − 
n�n = − 3	�n�0 +
1
�2

�
m=1

�

�m�n+m

+
1

2�2
�
m=1

n−1

�m�n−m
, n � 0, �36�

where


n =
�n

�̄0

.

Equation �28� for the tunneling exponent BN
l can be re-

written as

BN
l =

Jc

2e�J

24�1 − j2�5/4

5j2 F��
n�� , �37�

where

F��
n�� =
15

16
�

0

�

d�	�0
3 + 3�0�

n=1

�

�n
2 +

3
�2

�
n,m=1

�

�n�m�n+m
 .

�38�

Substituting Eq. �37� into Eq. �24�, we can calculate the es-
cape rate of the fluxon through a set of the junctions.

The tunneling exponent BN
l depends on l and N via the

functions �Eq. �21��. Below, we assume that N�1 and a
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�1. In this case, the functions �N
l �an��1 and BN

l �B for all
l with the exception of l=0 and l=N. Neglecting these two
contributions to tunneling, we derive

� � N�J�30�̄0B

�
exp�− B� . �39�

Under the conditions considered here, we get from Eq. �33�,


n = 1 +
an

2
.

Therefore, the function F��
n�� depends only on the single
parameter a, that is, F��
n��=F�a�.

Note that Eq. �39� for � is derived here in the limit N
�1. To find the dependence ��N�, we should solve numeri-
cally the problem for each contact 0� l�N and perform the
summation according to Eq. �24�. However, the result of
such a procedure is qualitatively the same, as shown in Fig.
1 in Ref. 9.

The analysis of the equation system �Eq. �36�� shows that
for any �, we have �0�����1�����2����¯. Therefore,
for a given accuracy, we can consider only the first n0 equa-
tions of the system �Eq. �36��, taking �n=0 for n�n0. This
closed system of equations is solved numerically. The num-
ber of equations that we should take into account depends on
of a: the smaller the a, the larger the n0. The analysis also
shows that there exists a critical value ac=2.5 or a critical
value of the junction’s width,

Dc =
2��s

5�1 − j2�1/4 . �40�

If D�Dc, all the solutions of Eqs. �36�, except �0���, are
explicitly equal to zero. In this case, F�1 and the tunneling
exponent in Eq. �37� coincides with calculated under the ap-
proximation of the fluxon tunneling by the tunneling of a
single quantum particle in the effective potential well.5,16 Us-
ing for an estimate �=300–500, s=1.5 nm �characteristic for
Bi2Sr2CaCu2O8+��, we find that Dc1 �m.

The function ��D� is shown in Fig. 1 by the red solid line.
This dependence is calculated by means of the numerical
procedure described above. In our calculations, we used the
parameters of the Bi2Sr2CaCu2O8+� sample US1 from Ref. 5.
The same figure shows the curve ��D� calculated using the
quantum particle approach �Eq. �39� with F=1 in Eq. �37�
for the tunneling exponent BN

l �. It follows from Fig. 1 that
the difference between the particle and field approaches be-
comes significant if D exceeds of about 1.3–1.4 �m.

The dependence of the escape rate � on the dimensionless
current j, calculated using Eq. �39� and the numerical proce-
dure described above, is shown in Fig. 2. The calculations
were performed for two Bi2Sr2CaCu2O8+� samples described
in Ref. 5. The only adjustable parameter is the product �s,
which is about 400–800 nm for Bi2Sr2CaCu2O8+�. We used
the value 525 nm �corresponding to �=350� for both
samples. It is seen from Fig. 2 that the agreement between
the calculated and measured value of � is quite good. Small

discrepancies can be attributed to either a violation of the
semiclassical approximation or to the two-dimensional na-
ture of the tunneling fluxon.

If D�Dc, �n����0 for n�0 and, for a given accuracy,
we should consider n0 number of equations in the system
�Eq. �36��. The tunneling of the fluxon in this case is similar

FIG. 1. �Color online� The escape rate � versus sample’s width
D: the red solid curve is numerically calculated using formula �39�
for the sample US1 from Ref. 5. The dashed blue line corresponds
to the particle tunneling approximation. The parameters �J, Jc, and
D are taken from the Table I in Ref. 5. The anisotropy coefficient �
and interlayer distance s were chosen as �=350 and s=1.5 nm. The
red point D2 �m indicates the experimental result �Ref. 5�.

FIG. 2. �Color online� The escape rate � versus dimensionless
current j=J /Jc: red points �on the left� are for the experiment on the
Bi2Sr2CaCu2O8+� sample US1 and blue points �on the right� are for
the sample US4 from Ref. 5; red and blue solid curves are numeri-
cally calculated using formula �39� for the samples US1 and US4,
respectively. The parameters �J, Jc, and D are taken from Table I in
Ref. 5; the anisotropy coefficient and interlayer distance were cho-
sen as �=350 and s=1.5 nm. Dashed red and dashed blue lines are
obtained using Eq. �39� and the analytical formula Eq. �49� with
C=0.45 to calculate B for the same samples. The value of gamma
for the blue curve is the same as used for numerical calculations,
while �=455 for the red curve.
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to the tunneling of a quantum particle in n0 dimensions,
where �n play the role of the particle coordinates in n0 di-
mensional space. The field

�̄��,x� =
3�̄0

�d

j
�

n

�n���̄0���n�x�

is strongly inhomogeneous. In Fig. 3, we show the spatial

profile �̄�� ,x� of the tunneling fluxon, calculated numerically
for different values of the imaginary time �, which changes

from −� to zero. The maximum value of �̄ increases mono-
tonically with �, while its characteristic size remains practi-
cally constant. This analysis shows that the characteristic
size of the fluxon is about aD��s, as it was mentioned
above.

C. Analytical approach

In this section, we obtain a simple analytical formula for
calculating the tunneling exponent BN

l in a stack of Joseph-
son junctions. For this purpose, we reduce the problem of
field tunneling to the tunneling of a quantum particle. How-
ever, in contrast to the usual approach, we take into account
the spatial variation of the gauge-invariant phase difference
� when deriving the effective potential U. In some aspects,
the proposed procedure is similar to the method used in Ref.
9. However, here, we use more accurate approximations,
which are based on the exact mathematical treatment of the
problem presented in the previous sections. We consider here
only the case D
c.

We now change from imaginary � to real time t in Eq.
�19�, for the classical field dynamics, and rewrite it in the
form

�2�̄

�t2 + �1 − j2�̄ − j
�̄2

2
= �

0

d

dx�K�x;x��
�2�̄�t,x��

�x�2 . �41�

According to the numerical result shown in Fig. 3, the

value �̄�t ,x� can be approximately presented as a product

�̄�t ,x� f�x�r�t�. Following this approach, we seek a real-

time solution of Eq. �41� in the form �̄�t ,x�= f�x�r�t�, where
df /dx=0 at x=0,d. We normalize the function f�x�,

�
0

d

dxf2�x� = 1. �42�

We substitute �̄= f�x�r�t� in Eq. �41�; then, we multiply both
sides of this equation by f and integrate along the junction.
As a result, we obtain the equation of motion for some hy-
pothetical particle with coordinate r�t�, which can be written
in the form

d2r

dt2 + �̄0r −
jr2

2
�

0

d

dxf3�x�

= − r�
0

d

dx�
0

d

dx�
df�x�

dx
P�x;x��

df�x��
dx�

, �43�

where the new kernel P�x ;x�� is expressed through the ker-
nel K�x ;x�� �Eq. �20��. Under the approximation considered
here �D
c and N�1, a�1�, we derive the explicit analyti-
cal formula for P�x ;x��,

P�x;x�� =
�s��̄0

2�
c
ln� sin���x + x��

2d
�

sin���x − x��
2d

�� . �44�

We approximate f�x� by a step function

f�x� =
1

�x0

��x0 − x� . �45�

Substituting this function in Eq. �43� and performing integra-
tion, we see that the term in the right-hand side of this equa-
tion has a logarithmic singularity since �f /�x=−��x
−x0� /�x0. To cut off this singularity, we take into account

that the characteristic scale of change of the phase �̄ in the
stack of Josephson junctions is �s.17 Thus, performing inte-
gration, we put �x−x��=C�s at x�→x, where C is a constant
of the order of unity. Therefore, we obtain the equation of
motion for the effective particle in the form d2r /dt2=
−�U�r� /�r, where the effective potential U�r� can be written
as

U�r� =
jr2

6�x0

�r0 − r� ,

r0 =
3�x0

j
��̄0 +

�s��̄0

2�
cx0
ln	 2D

C��s

� . �46�

Here, we neglect the small term in the kernel �ln�sin���x
+x�� /2d��. Consequently, P�x ;x�� P�x−x��, as was as-
sumed for the corresponding kernel in Ref. 9.

The tunneling exponent for the effective particle in the
potential U�r� in a semiclassical approximation reads12

FIG. 3. �Color online� The spatial profile of tunneling fluxon at
different values of the imaginary time �: For the curves from bot-
tom to top, �=��̃0�=−1.6, �=−1, and �=0; j=0.96, �s /D=0.22.
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B = 2�0�
0

r0 �2U�r�dr . �47�

Performing an integration, we obtain

BN
l =

24�0x0

5j2 ��̄0 +
�s��̄0

2�
cx0
ln	 2D

C��s

�5/2

. �48�

The optimal value for the tunneling of the fluxon is found
from the condition of minimum of B: dB /dx0=0, that opti-
mizes the shape or x-dependence of the tunneling flexor �see
also animations at http://dml.riken.go.jpMQT/mqt.swf. Thus,
finally, we derive

BN
l =�5

3

5Jc

e�J
	1 − j2

j2 
 �s

�D
ln	 2D

C��s

 . �49�

The result obtained is qualitatively similar to the formula for
B presented in Ref. 9. We should emphasize, however, that
this analytical expression is obtained in the limit N�1, while
the approximation for the escape probability derived in Ref.
9 allows to describe the dependence of � on the number of
the layers N. In the limit N�1, these approximations practi-
cally coincide for usual parameters of layered superconduct-
ors. The dependence of � on j, calculated by means of Eqs.
�39� and �49�, is shown by dashed lines in Fig. 2. Calculating
these curves, we use � and C as adjustable parameters. Note
that the analytical approach is appropriate to estimate the
value of ln �. However, the numerical results are much more
accurate.

IV. CONCLUSIONS

We developed a quantum field Lagrangian approach for
two different quantum effects in the layered superconductors.
First, we derive the theory of quantum JPWs, which predicts
the existence of two types of bosonic elementary excitations,
a heavy JPW and a lighter one. Second, we develop a quan-
titative theory of MQT in stacks of Josephson junctions,

which allows to quantitatively describe this effect and agrees
well with the experimental observations. We also derive a
simple analytical formula for estimation of the MQT escape
rate in stacks of Josephson junctions. The proposed numeri-
cal approach can also be used to describe quantum tunneling
in Josephson junction arrays,18 as well as in
electromechanical19 and magnetic20 systems, where the “par-
ticle approximation” can be invalid. We stress that the quan-
tum field theory approach predicts an enhancement of the
tunneling probability by taking into account the coordinate
dependence of the tunneling field. The optimal spatial con-
figuration of the field gives rise to the lowering of the effec-
tive potential barrier. In contrast to particle approximation,
quantum field theory approach allows an adequate under-
standing of the observed giant MQT effect in the layered
superconductors4,5 due to the nonlocal electrodynamics of
such a media.

A similar approach can also be used to estimate the cross-
over temperature from the thermal to the quantum
regime.21,22 Finally, computer animations illustrating some of
the effects studied here can be found in Ref. 23.
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