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Cooling a micromechanical beam by coupling it to a transmission line
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We study a method to cool down the vibration mode of a micromechanical beam using a capacitively
coupled superconducting transmission line. The Coulomb force between the transmission line and the beam is
determined by the driving microwave on the transmission line and the displacement of the beam. When the
frequency of the driving microwave is smaller than that of the transmission line resonator, the Coulomb force
can oppose the velocity of the beam. Thus, the beam can be cooled. This mechanism, which may enable us to
prepare the beam in its quantum ground state of vibration, is feasible under current experimental conditions.
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I. INTRODUCTION

Mechanical resonators!? have important applications in
high precision displacement detection,>> mass detection,®
quantum measurements,’ and studies of quantum behavior of
either mechanical motion®'3 or phonons.'*"!” Recently,
proposals'®20 have been made for implementing qubits by
using buckling nanoscale bars with quantized motion. Ca-
simir effects on nanoscale mechanical device were also
studied.?!* However, in previous studies (see, e.g., Refs.
18-20) of quantized mechanical resonators (and macroscopic
quantum phenomena® in mechanical resonators; see, e.g.,
Refs. 8-10), it is necessary to prepare the mechanical reso-
nators into their vibrational ground states. Therefore, one
needs to cool the mechanical resonators down to ultralow
temperatures to put them into their ground states. For ex-
ample, a temperature below 1 mK is necessary for cooling a
20 MHz mechanical resonator to its vibrational ground state.

To reach temperatures below 1 mK, which is beyond the
capability of present dilution refrigerators, alternative cool-
ing mechanisms are now being explored. Using optom-
echanical couplings, the cooling of mechanical resonators
was recently demonstrated experimentally.”=3! To observe
the quantized motion of a mechanical resonator, one should
be able to cool the mechanical resonator down to its ground
state of vibration and to detect the phonon number state.
Besides optomechanical cooling, electronic cooling3%33-33-38
was also studied. For instance, theoretical proposals for cool-
ing a mechanical resonator were considered by coupling it
either to a two-level system,?>3337 to an ion,3* or to an LC
circuit.>> An experimental demonstration of cooling a me-
chanical resonator by the quantum back action of a supercon-
ducting single-electron transistor was recently reported.’®
Most of these cooling experiments (e.g., Refs. 26-29) focus
on cooling mechanical resonators with a frequency lower
than 1 MHz, with a mechanical quality factor higher than
10*, It is difficult to experimentally cool mechanical resona-
tors to their quantum ground state of vibrations because of
the weak coupling between the mechanical resonators and
the cooling media for optomechanical systems (see, e.g., Ref.
39).
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Recently, the strong coupling between a one dimensional
(ID) transmission line resonator (TLR) and a solid state
qubit*>* was achieved,*? and the detection of photon num-
ber states was also demonstrated.*> Based on these experi-
mental developments, here we consider replacing the Fabry-
Pérot cavity used in previous cooling proposals®® by a 1D
TLR in order to cool a micron-scale bar.

The working mechanism of our proposal here is similar to
the cooling of a tiny mirror in a Fabry-Pérot cavity.?® This
cooling mechanism can be summarized as follows. A force
on the mirror is coupled to the light intensity inside the cav-
ity. This intensity does not change instantaneously with each
mirror displacement. The delayed response of the intensity to
a change in the mirror displacement leads to a force that can
either agree or oppose the motion of the mirror, depending
on whether the laser frequency is bigger or smaller than the
cavity resonant frequency.** By including this intensity-
dependent force, in addition to a thermal force on the mirror,
the mirror can be cooled.

In our proposal here, the TLR, whose frequency is deter-
mined by its overall capacitance and inductance, acts as a
cavity. The beam is placed near the middle of the TLR and
capacitively coupled to the TLR. When the mechanical beam
has a displacement, the overall capacitance of the TLR
changes, thereby the resonant frequency of the TLR also
changes. Now, let us consider the case where the TLR is
driven by a microwave with fixed frequency. Any displace-
ment of the beam will change, after a delay, the voltage
between the TLR and the beam (and also the force between
them). Recall that here we are considering two coupled os-
cillators: the TLR and the mechanical beam. The rf micro-
wave drive acts directly on the TLR and indirectly on the
mechanical beam. After the transients are gone, the driven
damped oscillator (here, the TLR) exhibits a steady-state re-
sponse which is delayed with respect to the drive. In other
words, the beam displacement changes the TLR’s oscillation
frequency w,. Since the frequency w,; of the drive is fixed,
this change in w, will affect the steady-state amplitude of the
TLR oscillator, which will be reached after some delay. The
displacement of the beam (i.e., the action on the TLR) causes
a delayed reaction (i.e., a delayed back action) force from the
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TLR to the beam. The delay is determined by the damping
rate of the TLR. When the frequency of the microwave w,; is
smaller than the resonant frequency w,, of the TLR, this
back-action force opposes the motion the beam, thereby
damping the Brownian motion of the beam.

This cooling mechanism studied here is also related to the
mechanism recently employed in Refs. 35 and 46. There,
cooling is produced by a capacitive force which is phase
shifted relative to the cantilever motion. In their setup, when
the cantilever oscillates, its motion modulates the capaci-
tance of an LC circuit, therefore modulating its resonant fre-
quency. This resonant frequency, and the potential across the
capacitance, is modulated relative to the fixed frequency of
the applied rf drive. The modulated force linked to this po-
tential shifts the resonant frequency of the cantilever.># Be-
cause of the finite response time of the LC circuit, there is a
phase lag in the force, relative to the motion. When the rf
frequency is smaller than the resonant frequency, the phase
lag produces a force that opposes the cantilever velocity,
producing damping. When this damping is realized without
introducing too much noise in the force, then the cantilever is
cooled.

Our analysis, presented below, shows that it is possible to
cool a 2 MHz beam, initially at ~50 mK, down to its quan-
tum vibrational ground state at around 0.07 mK. This is a
cooling factor of about 1/700. Our proposed device, which is
a combination of the devices in Refs. 36 and 42, should be
realizable in experiments. Moreover, because of its on-chip
structure, our device has some practical advantages to be
integrated in dilution refrigerators and be operated on, while
optomechanical systems need an additional optical system.

II. DEVICE

Our proposed device is illustrated in Fig. 1(a). A doubly
clamped microbeam is placed in the middle of a 1D super-
conducting TLR formed by thin coplanar striplines. The cen-
tral stripline has a length [ and with a capacitance C,/I and
an inductance L,//, per unit length. For not-very-high fre-
quencies, the equivalent circuit of the stripline is an infinite
series of inductors with each node capacitively connected to
the ground, as shown in Fig. 1(b). It can be described as a
series of resonators that accommodate different resonant
modes.*? Since the length of the microbeam is much smaller
than that of the 1D TLR, we consider the voltage in the
middle of the 1D TLR to be the voltage V,(¢) on the beam.
Here, we only consider the mode with the largest coupling,
i.e., the lowest mode*? coupled to the beam. The 1D TLR is
coupled to both two semi-infinite TLRs to the left and right,
via the capacitors Cy, and the beam via the capacitor C,.
Thus, the boundary conditions and the voltage of the 1D
TLR are modified by these additional capacitors. When
Cy,C,<<C,, the circuit can be approximated by a 1D TLR
with a modified frequency

1

= ’/_,
VL,C,

(1)

w,

with C;=C,+C,+2C. Actually, due to its coupling to the
environment, the 1D superconducting TLR acts as a cavity
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FIG. 1. (Color online) (a) Schematic layout for the proposed
device and (b) its equivalent circuit. A superconducting coplanar
stripline, forming a 1D TLR, provides a cavity. A doubly clamped
beam (central small dark red rectangle) is placed between two hori-
zontal superconducting lines. This red beam is capacitively coupled
to the central (hatched) superconducting line at a maximum of the
voltage standing wave in the 1D TLR. The capacitances C, allow
the input and output signals to be coupled to the central (hatched)
stripline. This allows us to measure the amplitude and phase of the
1D TLR and apply dc and rf pulses to the 1D TLR.

with finite quality factor Q,=w,/2vy, where 2y is the damp-
ing rate of the 1D TLR.

The fundamental vibration mode of the doubly clamped
beam can be approximated by a mechanical resonator with
frequency w,, and effective mass m. The beam is coupled to
a conductor (the 1D TLR) via a capacitor, and its equivalent
circuit is illustrated in Fig. 2. The beam is exposed to a
Coulomb force from the 1D TLR. Please note that for the
case we studied in this paper, the amplitudes of the oscillates
are small and thus the beam is essentially in the linear re-
gime. For a review of nonlinear oscillators, see, e.g., Ref. 45.

III. COULOMB FORCE ON THE BEAM

This force gives rise to a cooling mechanism which is
similar to the cavity cooling of the vibrating mirror in Ref.
26. As shown in Fig. 2(a), it is assumed that the beam vi-

(@) % (b)
—s|z|e— )/\ﬂ
m <
d,—> = =

FIG. 2. (Color online) (a) Schematics of the beam (mass and
spring) capacitively coupled to a conductor and (b) its equivalent
circuit. The charging energy of the beam is determined by the volt-
age V, and variable capacitor C;, between the beam and the 1D
transmission line.
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brates around its equilibrium position with an amplitude
z(t) =z, which is much smaller than the distance d,, between
its equilibrium position and the TLR, i.e., z<<d,. The aver-

aged Coulomb force on the beam can be written as®
Fc(Z) = LCbOVZ(Z), (2)
4(dy - 2)2 ¢

when w,> w,. Here, Cp, is the capacitance between the
beam and TLR for z=0. Assuming that an external driving
source V,;=V,cos(wyt) acts on the central TLR via the ca-
pacitor Cy, V2(z) will reach a steady amplitude after a time
delay 7;,~ 1/+. To first order in z, Eq. (2) can be rewritten as

Fo(z) =Fy+K'z, (3)

where the effective elastic constant K’ of the Coulomb force
on the beam by the TLR is

K’:KED(a){l—aZ%D(a)<a2—l+L2>:|. (4)
Co o,
The term F, which is independent of the displacement of the
beam, will change the equilibrium position of the beam. F|,
does not contribute to the cooling of the beam and can be
canceled by applying an appropriate dc voltage between the
TLR and the beam. Therefore, hereafter it will be omitted.
The term

CoVir
Kg=—7F 5

E 2 d% ( )
describes the coupling strength between the beam and the
TLR. Cy is the total capacitance of the TLR for z=0.

2!
D(a)=|(a’=1)*+ (6)
o
is a dimensionless parameter determined by the ratio
a= w—rf. (7)
o)

a

D(a) takes its maximum value on resonance w./ w,=1. The
typical behavior of K’, versus the detuning

A:wrf_wa()’ (8)

is plotted in Fig. 3. Here, w,q is the frequency of the TLR for
z=0. There is an optimal detuning point for the driving mi-
crowave where K’ takes its maximum value. As shown in
Fig. 3, the sign of the effective elastic constant K’ of the
Coulomb force is determined by the detuning between the
frequency of the driving microwave (w,) and that of the
TLR (w,y). When o<,y additional damping is induced
by the Coulomb force, cooling the beam because of its de-
layed response to the displacement of the beam.

IV. COOLING MECHANISM

We define the effective temperature 7 of the fundamen-
tal vibration mode of the beam according to the equipartition
law
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FIG. 3. (Color online) The effective elastic constant K’ (arbi-
trary units) versus the detuning A=w—w,q (scaled by y). When
w < w0, the beam can be cooled. Here, the region A>0 (A <0) is
shaded by the red (blue) color, representing the heating (cooling) of
the beam, respectively.

2
Tee= Keffi_>’ )
B
where kg is the Boltzmann constant and K ¢ a modified elas-
tic constant of the beam after considering the existence of the
TLR. In some papers (e.g., in Refs. 26 and 31), the effective
temperature is defined and/or estimated from the original
elastic constant K, of the beam, instead of the effective elas-
tic constant K¢ of the beam. For the case when the effective
elastic constant K’ of the force F is much smaller than the
original elastic constant K, of the beam, the definition in Eq.
(9) and the one in Refs. 26 and 31 give almost the same
result of the effective temperature. However, please note that
for a large effective elastic constant K’ of the force F, one
should not neglect the modification of the elastic constant of
the beam.

The Coulomb force from the TLR has two effects on the
mean kinetic energy of the beam. First, because of its de-
layed response to the displacement of the beam, the Cou-
lomb force introduces additional damping in the beam mo-
tion, thereby increases or reduces the mean kinetic energy of
the beam. Below, it is shown that the damping rate of the
beam increases when w;<w,y. Second, fluctuations in the
Coulomb force from the TLR also introduce additional noise
in the motion of the beam, thereby increasing the mean ki-
netic energy of the beam. The balance of these two compet-
ing effects gives the theoretical lower limit of the attainable
effective temperature by this cooling mechanism.

To evaluate the cooling effect of the Coulomb force from
TLR, we use the following equation of motion for the

beam:2°

&’ d "dF fz(¢'
—Z+mrd—j+KOZ=Fth+J C[Z( )]h

t—1t')dt',
"ar o dr e=r)

(10)

where I'=w,/Q,, describes the coupling strength between the
beam and its thermal environment. Here, O, is the quality
factor of the beam, K0=mwi the elastic constant of the beam,
and Fy, the thermal noise force on the beam, with a spectral
density?’

205302-3



XUE et al.

Sth=4kBT0mF. (11)

T, is the temperature of the environment. F(z) is the Cou-
lomb force on the beam, acting on the beam via a delay
function:

h(t)=1-e7", (12)

for t>0. Using the Laplace transform, we obtain the mean-
squared motion of the beam:

kgTow?, I [+ K, 2 -l
TR — 0

(13)

There are three measurable effects on the vibration mode w,
of the beam from F(z): a modified effective elastic constant
Keff’

K=K (1 ;5,) (14)
eff = 120 1+BZK() 5
a modified damping rate 'y,
B K')
=T\ 1+0,———1. 15
eff ( le + B K, (15)

with B=w,/7y, and additional noise in the motion of the
beam generated by the fluctuation of F(z).

For the case |K'|/K,<<1, neglecting fluctuations of F(z)
in Eq. (10), the steady value of the mean-squared motion of
the beam is given by

(@)~ kTy—. (16)
l_‘eff
which defines an effective temperature of the beam. For the
case when |K'| =K or |[K'|> K, the frequency of the beam
will be greatly shifted away from the original one, resulting
in weak cooling of the beam.?’

V. EFFECTS OF FLUCTUATIONS OF F(z)

In the above discussions, we did not consider the effect of
fluctuations of F(z) on the effective temperature. Equation
(15) shows that the damping rate of the beam is modified
because of the existence of the TLR. Thus, the effective tem-
perature is changed [see Eqgs. (9) and (16)]; however, accord-
ing to the fluctuation and dissipation theorem, dampings are
always accompanied with noises. We now study noises on
the beam introduced by the force F of the TLR. Actually,
there are several noise sources affecting F(z), such as fluc-
tuations in the driving microwave, back action due to mea-
surements on the TLR, and thermal noise in the TLR. Among
these noise sources, the thermal noise provides an intrinsic
limit of the fluctuations of F(z). Therefore, a lower limit
Stir of the spectral density of F(z) can be obtained by
considering the voltage fluctuation Sy, from the thermal noise
in the TLR, which is given by Sy=4kgT R, with R=2vL, the
effective resistance in the TLR. The voltage fluctuation Sy
gives rise to a fluctuation of the charge on the capacitor C,,
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giving rise to fluctuations of F(z) on the beam through the
capacitor Cp,. Since C,= C,, for small vibration amplitudes
of the beam, we find that the thermal noise in the TLR gives
a fluctuation of F(z) on the beam,

Stir = 2kpToD(@)RC K. (17)

Assuming an Ohmic friction for the beam, the tempera-
ture 7’ and the damping rate I’ of the beam and the spectral
density S of the noise on the beam have the following
relation:*®

S o I w coth (18)

2kgT'
For not-very-low temperature near the beam’s resonant fre-
quency, we find that an effective temperature of the beam
could be related to the spectral density S and the damping
rate of the beam: 7’ o< S/T"’. Therefore, after considering the
fluctuation and dissipation theorem, we further modify the
effective temperature of the beam to

I' \Stir+Sn
To=T)| — | ————, 19
eff O(Feff) Sa (19)

where we only take into account the thermal noise in the
TLR. Indeed, the attainable lowest effective temperature of
the beam would be higher than the above limit, since there
are also other fluctuations acting on the beam, from both the
driving microwave and the back action of the measurement
on the beam. These fluctuations would add more noises,
which depend on the special parameters of the circuit for the
driving microwave and the circuit for the measurement, e.g.,
the noise from amplifiers,*® in the numerator of Eq. (19). We
do not address them here.

VI. COOLING ABILITY

Now let us estimate the cooling effect T/ T}. Using ex-
perimentally feasible parameters,®** we take w,o=10 GHz,
')/:200 kHZ, d0=Ol Mm, Cb0:400 aF, CZO: 103 CbO’ and
Ky=10 N/m. When the driving power of the microwave is
set at V;=0.05 mV, the effective spring constant K’ of the
Coulomb force can be as large as 0.55 N/m for optimal de-
tuning of the driving microwave. It is possible to obtain
stronger coupling between the beam and the TLR by increas-
ing the driving power of the microwave, as long as the volt-
age V, between the beam and the TLR is kept below the
breakdown voltage. Using the parameters listed above and
assuming Q,=10, the cooling effect T,/ T, depends on the
oscillating frequency w,, of the beam and the detuning A, as
shown in Fig. 4. In Fig. 4, we assume |K'| <K, and then
take the effective spring constant K.~ K, in Eq. (14). Oth-
erwise, the optimal value of w,/7y to reach the lowest T
will be slightly drifting away from unity.>” The best cooling
effect on a 200 kHz beam is estimated to be T, ;/T(~=~3.6
X 107 for the parameters given above. Therefore, if this
beam is precooled by the dilution refrigerator to a tempera-
ture of 1 K, it can be further cooled down to 0.36 mK using
the TLR.

For a 2 MHz beam, we use a stronger microwave V;
=0.5 mV. The best cooling effect is about T./To~=~1.4
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FIG. 4. (Color online) Cooling effect T,/ T, versus the oscillat-
ing frequency of the beam w; and the detuning A=w;—w,q, both
rescaled by 7, for the typical parameters listed in the text. There is
a cooling window for w;, and A. The cooling effect is normalized to
unity. The vertical bar at the right refers to cooling effects (in blue)
and not heating (in red). The darker blue corresponds to a greater
cooling effect T,/T,. The beam is heated in the red region and
becomes unstable in the green region.

% 107 with y=2 MHz. If the beam is precooled by the di-
lution refrigerator to a temperature of 50 mK, it could be
further cooled down to 0.07 mK by the TLR. This implies
that the thermal phonons in the 2 MHz beam will be less
than 0.24, where a quantum description is expected.*>° It
should be noticed that when the beam reaches a quantum
regime, a quantum theory is expected to give the cooling
efficiency in the quantum regime.

Above, we do not consider matching the impedance of the
TLR to that of the conventional microwave components.*?
To obtain an optimal impedance, e.g., 50 ), of TLR, one
needs to carefully design the geometry of the TLR and the
beam. If one simply considers the TLR as a straight coplanar
transmission line, then C, might be ~1 pF for a 10 GHz
TLR. Thus, a larger C, is necessary for this larger C,, to
maintain the cooling effects described above.

VII. DISCUSSIONS

The fabrication of superconducting TLR now is good
enough to provide a 1D TLR with an electrical quality factor
as high as 10°. The reduced effective temperature T of the
beam can be inferred from the power spectrum of the 1D
TLR around the oscillating frequency w,, whose integral is
proportional to the effective temperature. Detection of micro-
wave photon was achieved in recent experiments, capable of
resolving a single microwave photon number.** Therefore, in
principle, the information of the beam could be inferred by
detecting the field in the TLR.

The working principle of our proposal is similar to that in
the optomechanical cooling by a Fabry-Pérot cavity.?® The
cooling or heating is determined by the detuning between the
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driving laser and cavity, which is determined by the detuning
between the driving microwave and the TLR in our case. In
both cases, a high mechanical quality factor is needed, since
it measures heating effects on the beam by its thermal envi-
ronments.

Our proposal is also similar to the one in Ref. 35, which
deals with a cantilever and a coupled LC circuit. Here, we
consider a doubly clamped beam coupled to a coplanar TLR.
Besides considering different physical systems, in Ref. 35,
they analyze only two special detunings between the fre-
quency of the driven microwave and the resonant frequency
of the LC circuit. Here, we present a more general result for
the effective elastic constant versus the detuning, valid for all
values of the detuning between the frequency of the driven
microwave and the resonant frequency of the TLR. We also
explain how the damping rate of the beam and the noise on
the beam are changed by the TLR. Our studies enable us to
optimize the setup of experimental parameters for achieving
a lower effective temperature of the beam, as shown in Fig.
4.

Since the best cooling is obtained when w,/y=1, the
cooling efficiency of optical-cavity cooling would be effi-
cient for beams with tens of megahertz, or even higher fre-
quency, considering current experimental parameters. For a
typical optical cavity, with a resonant frequency of
~10' Hz, the damping rate is about 10® Hz, for an optical
quality factor 10% making it favorable for cooling a
100 MHz beam. However, to cool a beam with an ~1 MHz
vibration frequency, the optimal damping rate of the optical
cavity would also be ~1 MHz. This requires an optical qual-
ity factor ~10® for a tiny mirror. A high mechanical quality
factor is also required at the same time, which is a great
challenge for the fabrication of the tiny mirror. However, in
our case, the damping rate of the TLR can be as small as
200 kHz. The damping rate of the TLR can be easily in-
creased to match the frequency of the beam by attaching an
additional circuit to the TLR, while it is very difficult to
decrease the damping rate of an optical cavity to match the
lower-frequency beam. Thus, a megahertz beam could be
cooled down to its quantum ground state and also reach the
regime y<<w,, where the cavity linewidth is much smaller
than the mechanical frequency and the corresponding cavity
detuning. Then, the photon sidebands could be resolved
when the beam is cooled down to the quantum regime.® A
recent interesting study of the lower limit for resonator-based
side-band cooling can be found in Ref. 51.
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