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Exploiting the intrinsic nonlinearity of superconducting Josephson junctions, we propose a scalable circuit
with superconducting qubits �SCQs� which is very similar to the successful one now being used for trapped
ions. The SCQs are coupled to the “vibrational” mode provided by a superconducting LC circuit or its
equivalent �e.g., a superconducting quantum interference device�. Both single-qubit rotations and qubit-
LC-circuit couplings and/or decouplings can be controlled by the frequencies of the time-dependent magnetic
fluxes. The circuit is scalable since the qubit-qubit interactions, mediated by the LC circuit, can be selectively
performed, and the information transfer can be realized in a controllable way.
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I. INTRODUCTION

Superconducting quantum circuits with Josephson junc-
tions are currently studied for their potential applications in
quantum information processing.1 Quantum coherent oscilla-
tions and conditional gate operations have been demon-
strated using two coupled superconducting charge qubits.2,3

For a circuit with two coupled flux qubits, spectroscopic
measurements show that it acts as a quantized four-level
system.4 Further, entanglement has been experimentally veri-
fied in coupled flux5 and phase6–8 qubits.

A major challenge for superconducting qubits �SCQs� is
how to design an experimentally realizable circuit where the
couplings for different qubits can be selectively switched on
and off, and then scaled up to many qubits. Although two-
qubit gates can be generated �see, e.g., Ref. 9� with
always-on interbit couplings, it is still very difficult to scale
up experimental circuits.2–8 Theoretically, the circuits �e.g.,
Refs. 10–18� can be scaled up via a common data bus �DB�.
The DB modes are virtually excited �e.g., Refs. 10 and 11� or
excited �e.g., Refs. 12–18�. In the former case,10,11 the effec-
tive qubit couplings can be switched on and off by changing
the magnetic flux through the circuit within nanoseconds,
which is a challenge for current experiments. In the latter
case,12–17 the qubit and the DB are coupled or decoupled
when they have the same �resonant� or different �nonreso-
nant� frequencies, realized via a sudden nonadiabatic change
of either the qubit or the DB eigenfrequency. This introduces
additional noise.

The superconducting Josephson junction is a key building
block of superconducting quantum circuits. Nonlinearity is
its intrinsic characteristic. This nonlinearity can be used to
adjust the interqubit couplings19–22 by changing the current
bias of the coupler, and thus, cancelling the direct mutual
inductance between the qubits. It can also be used to realize
the switchable coupling between two inductively coupled su-
perconducting flux qubits via a variable-frequency magnetic
flux.23 Also, recently, the level quantization of the LC circuit
has been experimentally demonstrated.24,25

Combining the variable-frequency-controlled coupling
approach23 and experimental achievements of the quantum
LC circuit,24,25 we now study a different approach to realize
scalable SCQs via a common DB, which is either a quantum
LC circuit or its equivalent, modeled by a harmonic
oscillator.24,25 The equivalent LC circuits can be either a cav-
ity field �e.g., Refs. 12–14� realized by, for instance, a one-
dimensional transmission line resonator16 or a superconduct-
ing loop with Josephson junctions �e.g., a dc-biased
superconducting quantum interference device �SQUID��.
More significantly, all SCQs can work at their optimal points
when the data bus is a superconducting loop with Josephson
junctions �this is not the case with standard LC DBs�. In our
approach here, the individual properties �e.g., eigenfrequen-
cies� of the DB and SCQs are always fixed, but the SCQ-DB
couplings can be conveniently controlled by changing the
frequencies of the applied time-dependent magnetic fluxes
�TDMFs�. This is promising, because it is often easier to
produce fast and precise frequency shifts of the radio-
frequency control signal in experiments, as opposed to
changing the amplitude of the dc signal.

We should point out that in our proposal, the quantum LC
circuit or its equivalent has to be excited when the informa-
tion is transferred from one qubit to another; therefore, it is
an active element, not a passive one which is just virtually
excited. Our proposal can be essentially reduced to the one
used for trapped ions.26 The SCQs are coupled to the “vibra-
tional” mode provided by a superconducting LC circuit or its
equivalent �e.g., a SQUID�. Both single-qubit rotations and
qubit-LC-circuit couplings and/or decouplings can be con-
trolled by the frequencies of the time-dependent magnetic
fluxes. It means that SQCs can be coupled and separately
addressed similar to trapped ions. This similarity is signifi-
cant because trapped ions26 are further ahead, along the
quantum computing roadmap. It is important to stress that
our theoretical model can well explain the blue and red side-
band excitations which have been experimentally observed
in superconducting qubit circuits.24,27
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II. MODEL

We study three-junction flux qubits �e.g., Refs. 28 and
29�. As shown in Fig. 1, we consider the simplest circuit
where two flux qubits are coupled to a DB: either an LC
circuit or a superconducting loop with junctions �e.g., a dc-
biased SQUID�. Without loss of generality and for simplicity,
the DB is here assumed to be an LC circuit with an induc-
tance L and a capacitance C. The mutual inductance between
the lth qubit and the LC circuit is M�l� �l=1 and 2�. The
applied magnetic flux ��l� through the lth qubit loop in Fig.
1�a� is assumed to include a static �or dc� magnetic flux �e

�l�

and also a TDMF,

�e
�l��t� = Al cos��c

�l�t� , �1�

which controls the qubit-DB couplings. Neglecting the mu-
tual inductance between the two qubits, the Hamiltonian can
be written as

H = �
l=1

2

Hl +
Q2

2C
+

�2

2L
+ �

l=1

2

IM�l�I�l�, �2�

with the current I and magnetic flux �= IL through the LC
circuit loop. Considering a three-junction qubit, the single-
qubit Hamiltonian Hl in Eq. �2� should be

Hl = �
i=1

3
�0

2�
��0CJi

�l�

4�
��̇i

�l��2 − I0i
�l� cos �i

�l�� , �3�

after neglecting the qubit self-inductance and constant terms
I0i

�l��0 /2��EJi
�l�. Each junction in the lth qubit has a capaci-

tance CJi
�l�, phase drop �i

�l�, and supercurrent Ii
�l�= I0i

�l� sin �i
�l�,

with critical current I0i
�l�. The loop current of the lth qubit is

I�l� = Cl�
i=1

3
I0i

�l�

CJi
�l� sin �i

�l�, �4�

where

1

Cl
=

1

CJ1
�l� +

1

CJ2
�l� +

1

CJ3
�l� , �5�

with the convention CJ3
�l�=�lCJ1

�l�=�lCJ2
�l�, and 0.5��l�1. The

LC circuit can be modeled by a harmonic oscillator de-
scribed by the creation operator

a† =
1

	2	�C
��C� − iQ� �6�

and its conjugate a, with frequency �=1/	LC. Considering
the TDMF, the phase constraint condition28 for the lth qubit
loop becomes

�
i=1

3

�i
�l� + 2�� f +

�e
�l��t�
�0

� = 0, �7�

with the reduced bias flux

f = ��e
�l� − M�l�I�/�0. �8�

Here, the bias f includes the flux M�l�I produced by the LC
circuit. Thus, in the qubit basis, Eq. �2� becomes

H =
	

2 �
l=1

2

�q
�l�
z

�l� + 	�a†a + �
l=1

2

Hint
�l�

+ �
l=1

2

��l
−
�l� + H.c.�cos��c

�l�t�

− �
l=1

2

�a† + a���l
−
�l� + H.c.�cos��c

�l�t� �9�

after neglecting the constant terms. Here, the Pauli operators
of the lth qubit are defined by 
+

�l�= 
el��gl
, 
−
�l�= 
gl��el
, and


z
�l�= 
el��el 
−
gl��gl
. The computational basis states of the

lth qubit are defined,28,29 for �e
�l��t�=0, by the two lowest

eigenstates, 
0�l= 
gl� and 
1�l= 
el�, of Hl with the two inde-
pendent variables �p

�l�= ��1
�l�+�2

�l�� /2 and �m
�l�= ��1

�l�−�2
�l�� /2.

The first two terms in Eq. �9� denote the free Hamilto-
nians of both qubits and the LC circuit; �q

�l� is the transition
frequency of the lth qubit. The always-on interaction Hamil-
tonian between the lth qubit and the DB in the third term of
Eq. �9� is

Hint
�l� = �a† + a��Gl
−

�l� + H.c.� , �10�

with the coupling constant

Gl = M�l�		�

2L
�el
I0

�l�
gl� . �11�

The fourth term in Eq. �9� represents the interaction between
the lth qubit and its TDMF with the interaction strength

�l = Al�el
I3
�l�
gl� . �12�

The fifth term of Eq. �9� is the controllable nonlinear inter-

C

L
Ι

ΦΦΦΦe
(1)

ΦΦΦΦ(1)(t)
I(1)

ΦΦΦΦe
(2)

ΦΦΦΦ(2)(t)
I(2)

M(1) M(2)

(a)

e e ΦΦΦΦe
(1)

I(1) ΦΦΦΦe
(2)

I(2)

M(1) M(2)

(b)

Ib
Φe Φe (t)

Ι

+ +

+

FIG. 1. �Color online� The lth flux qubit with three junctions is
coupled to an LC circuit in �a� or a dc-biased SQUID with biased
current Ib in �b� by the mutual inductance M�l� �l=1 and 2�. �a� An
externally applied magnetic flux through the lth qubit loop includes
a dc �e

�l� term and ac �e
�l��t� term controlling the coupling in �a�.

The currents through the first qubit, second qubit, and LC circuit in
�a� �or SQUID loop in �b�� are I�1�, I�2�, and I, respectively. �b�
However, when a dc-biased SQUID forms an equivalent LC circuit,
the SQUID-qubit couplings are controlled by a TDMF, �e�t�
=A cos��ct�, through the SQUID loop. The TDMF is added to the
nonlinear qubit in �a� and to the nonlinear SQUID loop in �b�. The
configuration in �b� is significantly better, because both qubits can
work at the optimal point f =1/2.

LIU et al. PHYSICAL REVIEW B 76, 144518 �2007�

144518-2



action among the lth qubit, the DB, and the TDMF, with the
coupling strength

�l =
4�2AlM

�l�Cl

CJ3
�l��0

2 		�

2L
�el
EJ3

�l� cos �3
�l�
gl� . �13�

This nonlinear interaction term between the lth qubit, the
DB, and the TDMF originates from the expansion of the loop
current I�l� of the lth qubit in Eq. �4� to first order on the
small reduced flux �e

�l��t� /�0 via the phase constrain condi-
tion in Eq. �7�. Above, the TDMF �e

�l��t� equals zero when
calculating the coupling strengths Gl, �l, and �l. That is, I0

�l�

and I3
�l� are supercurrents through the loop and the third junc-

tion, respectively, when �e
�l��t�=0.

III. SWITCHABLE INTERACTION BETWEEN QUBIT
AND DATA BUS

We find that the Hamiltonian �9� can be reduced to the
one used in trapped ions26 if the always-on interaction terms
Hint

�l� can be neglected. This approximation is valid8 during the
TDMF operations, in the large detuning regime between any
qubit �e.g., lth qubit� and the DB

l = �q
�l� − � � 
Gl
 , �14�

which can be achieved when the circuit is initially fabricated.
Thus, neglecting the always-on coupling Hint

�l� between the
data bus and the qubits, the Hamiltonian �9� is reduced to

H = 	�a†a +
	

2 �
l=1

2

�q
�l�
z

�l� + �
l=1

2

��l
−
�l� + H.c.�cos��c

�l�t�

− �
l=1

2

�a† + a���l
−
�l� + H.c.�cos��c

�l�t� , �15�

which now has the same form as the one used for quantum
computing with trapped ions in the standard Lamb-Dicke
limit �see, e.g., Ref. 26�.

Therefore, the essential difference between our Hamil-
tonian in Eq. �9� and the one used for experiments16,24,25 is
that �a� the nonlinear coupling between the data bus, qubits,
and the classical field in Eq. �9� is very important for the
superconducting case. Using this term, we can explain the
sideband transitions in the experiments;24,25 �b� the
always-on coupling Hint

�l� between the qubits and the data bus
should be negligibly small in our proposal. Our theoretical
model is in contrast with those in Refs. 24 and 25, where �a�
there is no nonlinear coupling between the data bus, qubits,
and the classical field; and �b� the always-on Hamiltonian
Hint

�l� could not be neglected. That is, in Refs. 24 and 25, the
Hamiltonian is just the usual Jaynes-Cummings model which
cannot be directly used to explain the sideband excitations,
especially for the experimental results in Refs. 24 and 27.

Analogous to the case of trapped ions, in our proposed
devices, three types of dynamical evolutions �carrier process,
red sideband excitation, and blue sideband excitation� can be
produced by the TDMF using the frequency-matching �reso-
nant� condition and neglecting all fast oscillating terms.

These three dynamical evolutions can be described as fol-
lows:

�i� If �c
�l�=�q

�l�, the qubit and the DB evolve independently
in the large detuning condition. The external flux �e

�l��t� is
only used to separately address the lth qubit rotations. These
rotations are governed by the Hamiltonian

Hc
�l� = �l
−

�l� + H.c. �16�

in the interaction picture and using the rotating-wave ap-
proximation �RWA� �also for the Hr

�l� and Hb
�l� shown below�.

This is the so-called carrier process in the trapped ions ap-
proach.

�ii� If the frequencies satisfy the condition �c
�l�=�q

�l�−�,
then the �e

�l��t� assists the lth qubit to couple resonantly with
the DB. This is the red sideband excitation, governed by the
Hamiltonian

Hr
�l� = �la

†
−
�l� + H.c. �17�

�iii� In the blue sideband excitation, the frequencies sat-
isfy the condition �c

�l�=�q
�l�+�, with the Hamiltonian

Hb
�l� = �la
−

�l� + H.c. �18�

Based on the above discussions, it can be easily found
that our derived Hamiltonian in Eq. �9�, reduced to Eq. �15�,
can naturally explain experimental results on the sideband
excitations. For example, in Ref. 27, the qubit and the DB
frequencies are 14 and 4.3 GHz, respectively; the frequency
�c for the red or blue sideband excitation is 9.7 or
18.32 GHz. However, the Jaynes-Cummings model cannot
be used to explain these experiments. The qubit-DB cou-
plings and/or decouplings can be controlled by appropriately
selecting the �c

�l� of �e
�l��t� to match and/or mismatch the

above frequency conditions of the sideband excitations.

IV. SINGLE- AND TWO-QUBIT GATES

For the lth qubit, the carrier process described by Hc
�l� can

be used to perform the single-qubit rotations

Uc
�l���l,�l� = exp�− i

�l

2
�e−i�l
−

�l� + ei�l
+
�l��� . �19�

Here, �l= 
�l
� /	 depends on the Rabi frequency 
�l
 /	 and
duration �; �l is related to the phase of the TDMF applied to
the lth qubit. For example, the phases �l=0 and �l=3� /2
correspond to the rotations Rx

�l���l� and Ry
�l���l�, about the x

and y axis, respectively. Thus, any single-qubit operation can
be realized by a series of Rx

�l���l� and Ry
�l���l� rotations with

well-chosen different angles �l.
Two-qubit gates can be obtained using two qubits inter-

acting sequentially with their DB as in Ref. 26. There, the
controlled phase-flip and the controlled-NOT �CNOT� gates
can be obtained in three and five steps, respectively. Here,
we only discuss the difference between our proposal and the
one used for trapped ions. In our proposed circuit, the ratio

Gl
 /l cannot be infinitely small. Then, the uncontrollable
qubit-DB interaction Hint

�l� needs to be considered by the ef-
fective Hamiltonian30
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He
�l� = 	


Gl
2

l
�
el��el
aa† − 
gl��gl
a†a� �20�

when the lth qubit is not addressed by the TDMF. After
including this effect, three pulses �successively applied to the
first, second, and first qubits� with durations �1, �2, and �3
�used to perform a controlled phase-flip gate in Ref. 26� will
result in a two-qubit gate Utwo. This can be expressed as

Utwo =
1 0 0 0

0 exp�− i�1� 0 0

0 0 exp�i�2� 0

0 0 0 − exp�− i�3�
� �21�

in the two-qubit basis �
g1�
g2� , 
g1�
e2� , 
e1�
g2� , 
e1�
e2�� with
the parameters

�1 =
2
G2
2

2
�1, �22�

�2 =

G2
2

2
�1 +


G1
2

1
�2, �23�

�3 =
3
G2
2

2
�1 +


G1
2

1
�2. �24�

The two-qubit gate Utwo in Eq. �21� is just a controlled
phase-flip gate when the large detuning condition 
Gl
 /l
�0 is satisfied. Moreover, any quantum operation can also
be realized by combining the two-qubit gate Utwo with other
single-qubit operations.

V. ENTANGLEMENT AND STATE TRANSFER

We now consider two different external fields satisfying
frequency-matching conditions, e.g., for the red sideband ex-
citation, which are simultaneously applied to the two qubits
in Fig. 1. Then, in the interaction picture and the RWA, the
interaction Hamiltonian in Eq. �9�, between the LC circuit
and the two qubits, becomes

H1 = �
l=1

2

��a†
−
�1� + H.c.� . �25�

For simplicity, the coupling strengths between the LC circuit
and different qubits are now assumed to be identical, e.g.,
�1=�2= 
�
e−i�. If the LC circuit is initially prepared in the
first excited state 
1�, then the wave function 
��t�� of the
whole system can be written as


��t�� = − iei� sin�	2�t��
e1�
g2�
0� + 
g1�
e2�
0��

+ cos�	2�t�
g1�
g2�
1� . �26�

When 	2�t /	=� /2, then the LC circuit is in the vacuum
state 
0� and a maximally entangled state between two qubits
can be generated as


�+�12 =
1
	2

�
e1�
g2� + 
g1�
e2�� . �27�

When adding one more qubit to Fig. 1�a� or 1�b�, an un-
known state 
��=�1
g1�+�2
e1� in the first qubit can be
transferred to the third one using the standard teleportation
procedure: �i� a maximally entangled state 
�+�23= �
e2�
g3�
+ 
g2�
e3�� /	2 between the second and third qubits is pre-
pared using the same method outlined above; �ii� a CNOT

gate UCNOT
�12� is implemented for the first and second qubits

�here, the second one is the target�; �iii� a Hadamard gate is
implemented on the first one; and �iv� a simultaneous mea-
surement, which can now be done experimentally,8 is per-
formed on the first and the second qubits. The four different
measured results �
e1 ,e2�, 
e1 ,g2�, 
g1 ,e2�, and 
g1 ,g2�� cor-
respond to four outputs �
�1�, 
�2�, 
�3�, and 
�3�� in the third
qubit. The unknown state in the first qubit can be transferred
to the third one when the measured result for the first and
second qubits is 
e1 ,e2�. However, appropriate gates �i.e.,

x

�3�, 
z
�3�, and 
z

�3�
x
�3�� need to be performed on the other

three outputs mentioned above to transfer 
�� to the third
qubit.

VI. EXPERIMENTALLY ACCESSIBLE PARAMETERS

We now analyze the coupling constants related to the lth
qubit: �i� the always-on qubit-DB coupling strength

Gl � �el
I0
�l�
gl� , �28�

and �ii� the TDMF-controlled qubit-DB coupling strength

�l � �el
cos�2�p + 2�f�
gl� . �29�

At the degeneracy point f =1/2, the qubit potential is
symmetric29 and its ground and excited states have opposite
parities; however, cos�2�p+2�f� and the qubit loop current
I0

�l� have even and odd parities, respectively. Therefore, �l
=0, but Gl�0 when f =1/2. Clearly, �l=0 can be avoided
by slightly shifting f away from the degeneracy point. The
experiments on sideband excitations, e.g., in Refs. 24 and 27
were performed with f �1/2. Moreover, the controlled
phase-flip gate,26 requiring a transition from the ground state
to the second excited state, also implies that the reduced
bias29 flux f �1/2.

Figure 2 shows the f-dependent coupling strengths Gl and
�l, rescaled by

Rl = �2�/�0�M�l�EJ3
�l�		�/2L . �30�

As in Ref. 24, the Josephson energies of the two bigger junc-
tions of the lth qubit are EJ1

�l�=EJ2
�l�=225 GHz and the ratio

between the small and big junction areas is �l=0.76. The
ratio between the Josephson energy EJ1

�l� and the charge en-
ergy Ec

�l� of the lth qubit is about 30.8. Using the qubit pa-
rameters listed above and also taking the amplitude Al
=�0 /30 of the TDMF applied to the lth qubit, Fig. 2 shows
that Gl and �l are comparable when f is away from 1/2; e.g.,
Gl�0.0579Rl and �l�0.0224Rl when f =0.49. The strength
�l can also be larger than the strength Gl in the range, e.g.,
0.47� f �0.477.

If the capacitance and inductance of the LC circuit is
taken24 as 12 pF and 250 pH, then the frequency � of the LC
circuit is about 2.9 GHz. When the mutual inductance M�l�
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between the lth qubit and the LC circuit is taken as 20 pH,
then Gl�37.6 MHz and �l�14.6 MHz when f =0.49. The
lth qubit frequency computed is about 18 GHz when f
=0.49. Therefore, the detuning between the lth qubit and the
LC circuit is l�15.1 GHz, and the ratio Gl /l�0.0015.
Indeed, the always-on coupling Gl is negligibly small when
the lth qubit works at f =0.49 for measuring the sideband
excitations. The phase corrections �i in Eq. �21� should be
very small with short operation times for those qubits when
no �e

�l��t� is applied.
For the LC circuit, if its capacitance C and inductance L

are assumed as �1 pF and �10 nH, respectively, then the
LC circuit plasma frequency can be �1.6 GHz. The linear
dimension for the LC circuit can be �1 cm. The estimated
distance for a negligible mutual inductance between two
nearest qubits is �200 �m, and thus, one DB can approxi-
mately interact with �40 qubits. Of course, the larger L of
the LC circuit could have a larger linear dimension �allow-
ing, e.g., L�100 nH�, and then more qubits, here about 400,
could interact with the LC circuit. In practice, the superposi-
tions of the ground and excited states for an LC circuit decay
on a time scale given by 1/RC, here R is the residual resis-
tance of the circuit and its radiation losses.

VII. DISCUSSIONS AND CONCLUSIONS

For flux qubits, the single-qubit states can be measured by
using, e.g., either a tank circuit weakly coupled to the qubit5

or a dc-SQUID.31 If only a single-qubit measurement can be
done at a time32 or simultaneous measurements can be done
�e.g., as for phase qubits33�, then any unknown quantum state

can be reconstructed32,33 and the information of the qubits
can be read out.

In our proposal, two crucial points are as follows: �1� the
qubit and the LC circuit data bus should initially have a large
detuning, such that their always-on coupling is negligibly
small when the TDMF-assisted qubit-DB coupling is imple-
mented; �2� the nonlinearity of the Josephson junctions �JJs�
is essential to achieve our goal, i.e., the nonlinear coupling
between these three: the qubit, DB, and TDMF. Based on
these two requirements, the circuit can be modified accord-
ing to different experimental setups, e.g., the LC circuit can
be replaced either by a superconducting loop with JJs �e.g., a
dc-biased SQUID as in Fig. 1�b�� or by a cavity field. Three-
junction flux qubits can also be replaced by other qubits,1

e.g., one- or four-junction flux qubits, phase qubits, or
charge-flux qubits. Although the self-inductances of the qu-
bits are neglected here, our method is still valid for the qubits
with nonzero self-inductances.34

Our numerical calculations show that the TDMF-
controlled coupling strength �l is not large enough to realize
very fast two-qubit operations when the DB is a simple LC
circuit. In principle, this problem could be solved by using a
superconducting loop with Josephson junctions �e.g., dc-
SQUID in Ref. 19� as a data bus instead of a simple LC
circuit. Thus, the TDMF can be applied to the DB loop and
the qubit can work at the optimal point; the DB-qubit
always-on coupling can be minimized to zero; and the
TDMF-controlled coupling strength can be large enough to
realize fast two-qubit operations. A more detailed study on
this issue will be presented elsewhere.

In conclusion, using the nonlinearity of the superconduct-
ing JJs, we theoretically explained35 the sideband excitations
for qubits coupled to an LC circuit and showed how to scale
these to many qubits. In contrast to previous
proposals,10,11,16,17 the properties �e.g., eigenfrequencies� of
the qubits and the DB are fixed when processing either the
resonant coupling or the nonresonant decoupling.35 Also, the
qubit-DB couplings and/or decouplings are controlled nei-
ther by changing the magnetic flux through the loop nor by
changing the eigenfrequencies of the qubits �or the DB�.35

They are only controlled via the frequency shifts of TDMFs,
which are much easier to achieve experimentally.
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