
Layered superconductors as nonlinear waveguides for terahertz waves

Sergey Savel’ev,1,2 V. A. Yampol’skii,1,3 A. L. Rakhmanov,1,2,4 and Franco Nori1,5

1Frontier Research System, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-0198, Japan
2Department of Physics, Loughborough University, Loughborough LE11 3TU, United Kingdom

3A. Ya. Usikov Institute for Radiophysics and Electronics, Ukrainian Academy of Sciences, 61085 Kharkov, Ukraine
4Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow, Russia

5Center for Theoretical Physics, CSCS, Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
�Received 16 October 2006; revised manuscript received 26 December 2006; published 2 May 2007�

We show that unusual nonlinear self-sustained waves, called nonlinear waveguide modes �NWGMs�, can
propagate along thin slabs of layered superconductors. We show that these waves are stable in the main
approximation for extremely anisotropic superconductors if the nonlinear wave amplitude is smaller than a
critical value. These modes have no analogs among linear Josephson plasma waves and do not exist in thick
samples. The magnetic field of the NWGM is distributed symmetrically with respect to the middle of the slab,
decays far from the sample, and can change its sign inside. The impedance ratio of the tangential electric- and
magnetic-field amplitudes for NWGMs can be of the order of unity, resulting in a nonmonotonic dispersion
relation, ��k�, strongly sensitive to the NWGM amplitudes. Thus, the “stopping light” phenomenon, now
controlled by the magnetic-field amplitude, can be observed. Resonance excitations of the NWGMs should
produce anomalies in the amplitude dependence of the reflectivity and transmissivity of the incident terahertz
waves, which could be useful for terahertz devices.
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I. INTRODUCTION

Progress in nanotechnology is stimulating intensive stud-
ies of electromagnetic waves �EMWs� propagating along ar-
tificially fabricated surfaces1–3 in different media, including
metals with modulated properties,3,4 arrays of coupled
waveguides,5 left-handed materials,6 and superconductors.7

The excitation of these waves produces a large variety of
resonance anomalies in reflectivity, transmissivity, and
absorptivity,8 offering a new generation of optical nanode-
vices. Renewed interest in nonlinear surface and waveguide
electromagnetic modes �see, e.g., Refs. 1 and 5� is now pro-
pelling a new surge of activity in this area.

In this broad context, a layered superconductor is a me-
dium that allows the propagation of both nonlinear9 and
surface7 waves �important for applications10� in the terahertz
frequency range. Surface waves and nonlinear effects are
both due to the gap structure �e.g., Ref. 11� of the Josephson
plasma excitation spectra experimentally observed via Jo-
sephson plasma resonance �e.g., Ref. 12�. The nonlinearity of
Josephson plasma waves �JPWs� becomes important even at
small magnetic-field amplitudes if EMW frequency � is
lower than the Josephson plasma frequency �J and 1
−�2 /�J

2�1. In close analogy to nonlinear optics,13 nonlinear
JPWs exhibit numerous remarkable features,9 including the
slowing down of light, self-focusing effects, and the pump-
ing of weaker waves by stronger ones. However, the nonlin-
earity of EMWs in layered superconductors is quite different
from optical nonlinearities. This leads one to expect very
different properties from known nonlinear EMWs.

Here we propose self-sustained JPWs propagating along a
thin slab �−d /2�z�d /2� of a layered superconductor �both
symmetric and antisymmetric with respect to the middle, z
=0, of the sample�. The geometry of the problem considered
here is shown in the inset to Fig. 1�b�. Weakly nonlinear

waves exist in slabs of arbitrary thickness d and coincide
with linear surface waves7 for d→�. For thin slabs �d
��ab, where �ab is the in-plane magnetic field penetration
depth�, essentially nonlinear waveguide modes �NWGMs�
are predicted here. Surprisingly, even though the magnetic
field H for NWGMs can be very small, the electric field E
remains strong. Besides, the magnetic field of the NWGM at
the sample surface can be much weaker than the one in the
middle of the slab. For this case, the wave amplitude signifi-
cantly affects the dispersion properties of the NWGMs. The
dispersion relation, ��k�, for this wave mode is nonmono-
tonic �here, k is the wave vector�. As a result, the stop-light
phenomenon, ���k ,H� /�k=0, controlled by the magnetic-
field amplitude H can be observed. We analyze the stability
of these waves for very anisotropic superconductors, with
anisotropy �ab /�c�1, where �c is the out-of-plane penetra-
tion depth. We show that the NWGMs are stable if the wave
amplitude is smaller than a critical value. The NWGMs pre-
dicted here can be experimentally observed via resonance
anomalies in the amplitude dependence of the reflectivity
and transmissivity of the incident terahertz waves.

II. MODEL

The Maxwell equations for EMWs in vacuum �z�d /2�
determine the distributions of the magnetic �directed along
the y axis� and electric fields,

H�x,z � d/2,t� and Ez�x,z � d/2,t�

	 exp�− qv�z − d/2��cos�kx − �t�; �1�

also,

Ex�x,z � d/2,t� 	 exp�− qv�z − d/2��sin�kx − �t� , �2�

with the spatial decrement qv=�k2−�2 /c2. The impedance
ratio,
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�Ex

H
�

z=d/2
= −�c2k2

�2 − 1, �3�

should match the one obtained for the superconducting slab
at the interface z=d /2. As for the electromagnetic field at z
�0, we only consider symmetric and antisymmetric solu-
tions with respect to the middle of the sample z=0.

Inside a layered superconductor, the magnetic and electric
fields are determined by the gauge-invariant interlayer phase
difference 
. We consider nonlinear JPWs with �
��1,
where the Josephson current Jc sin 
 can be expanded in se-
ries as

Jc sin 
 = Jc�
 −

3

6
+


5

120
+ . . . 	 .

In other words, we consider waves, excluding soliton or vor-
texlike solutions. In the continuum limit, the coupled sine-
Gordon equations14 for the gauge-invariant phase difference

 reduce to

�1 − �ab
2 �2

�z2	
 1

�J
2

�2


�t2 + 
 −

3

6
+


5

120
+ . . . � − �c

2�2


�x2 = 0.

�4�

Here we omit the relaxation terms related to the quasiparticle
currents. The spatial scales, �ab and �c, are the in-plane and
c-axis London penetration depths. As was shown in Ref. 9,
the nonlinearity plays a crucial role in wave propagation
when

�1 − �2� � 1, � =
�

�J
,

since 
3 is of the same order as �J
−2�2
 /�t2+
, while the

higher-order terms, 
5, can be considered as small correc-
tions. Below we focus on this frequency range.

III. ASYMPTOTIC EXPANSION

We seek a solution of Eq. �4� in the form


�x,z,t� � 
n

A2n+1�z�sin��2n + 1��kx − �t�� . �5�

It is convenient to introduce the dimensionless variables

a2n+1 =
A2n+1

�1 − �2�1/2 , � =
�ck

�1 − �2�1/2 ,  =
�z

�ab
.

Beyond the leading order, we derive the equations for the
first and third harmonics


1 − �2 d2

d2��a1 −
a1

3

8
+

1

8
a1

2a3 +
1 − �2

192
a1

5	 + �2a1 = 0,


1 − �2 d2

d2���1 − 9�2�a3 +
1 − �2

24
a1

3 −
1 − �2

4
a1

2a3	
+ 9�2�1 − �2�a3 = 0. �6�

It follows from these two equations that

a3 � �1 − �2�a1 � a1. �7�

All higher harmonics arise only for higher-order approxima-
tions. Similarly, we find that

a2n+1 � �1 − �2�na1. �8�

Higher harmonics determine an additional damping mecha-
nism related to the radiation friction of the NWGMs �see the
term 	a1

2a3 in the first equation of Eq. �6��, which we do not
study here.

Therefore, below we restrict our study only to the first
harmonic a1�a, which obeys the equation


1 − �2 d2

d2��a −
a3

8
	 + �2a = 0, �9�

which is correct with an accuracy of about �1−�2� /100.

IV. WAVEGUIDE MODE

For symmetric and antisymmetric solutions, we use the
boundary conditions a��0�=0 and a�0�=0, respectively, in

FIG. 1. �Color online� �a� Phase diagram a��a�. Moving along
trajectories between solid circles corresponds to the change of co-
ordinate z inside the sample �−d /2�z�d /2�. The dashed �blue�
and dotted �orange� trajectories mark the symmetric and antisym-
metric quasilinear self-sustained modes. The dash-dotted �black�
curve separates symmetric and antisymmetric solutions and corre-
sponds to the nonlinear surface wave. The solid trajectories describe
the symmetric strongly nonlinear waveguide modes. The solid tra-
jectories correspond to the NWGMs considered in Sec. IV C. �b�
The nonmonotonic dependence of the dimensionless magnetic-field
amplitude h on the gauge-invariant phase amplitude a according to
Eq. �10�. The arrows schematically show the change of h and a for
the strongly nonlinear waveguide modes inside the sample �−d /2
�z�d /2�. The inset shows the geometry of the problem.
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the middle of the sample. The electromagnetic fields are re-
lated to a�� as follows:

H�z� = − H0�1 − �2�h��/� ,

h�� = a�� − a3��/8,

Ex�z� = H0�ab��1 − �2�h���/���c,

Ez�z� = H0��1 − �2�1/2a��/�� . �10�

Here, h is a dimensionless magnetic field, prime denotes
d /d, the scale of the magnetic field is H0=�0 /2�s�c, �0 is
the flux quantum, s is the interlayer spacing, and � is the
interlayer dielectric constant. The matching of the impedance
�continuity of Ex�z� and H�z�� at the sample surface z=d /2
results in the dispersion relation of the NWGMs:

� k2c2

�J
2 − �2	1/2

=
�ab

���c

�2�fs��,�,H/H0� . �11�

The factor

fs = �h�

h
�

=�d/2�ab

�12�

provides the amplitude dependence of the spectrum of the
self-sustained waves. This factor has to be obtained by solv-
ing Eq. �9�. In Eq. �11�, we denote H=H�z=d /2�.

A. Phase trajectories of self-sustained modes

The decay of the wave in vacuum �kc���, which is the
necessary condition for waveguide modes, implies the in-
equality ��1 at small 1−�2. Since there is no  dependence
in the coefficients of Eq. �9�, we can use the standard substi-
tution a�= p�a� to obtain the first integral. In the limit ��1,
Eq. �9� yields

�a��2 = −
4

3
+

G

�8 − 3a2�2 . �13�

The phase diagram of Eq. �13�, i.e., the set of a��a� curves
for different constants G, is shown in Fig. 1�a�. Different
phase trajectories correspond to different types of self-
sustained waves in the superconducting slabs. Solid circles
mark the sample boundaries, open circles indicate the middle
of the slab, and arrows show the direction of motion along
the trajectories when  increases. In order to match the
vacuum-superconductor boundary conditions, the starting
and ending points of trajectories should be within the interval
from −�8 to �8. Trajectories confined between ±�8/3 are
weak-amplitude modes, called below as quasilinear modes.
For these modes, the effective magnetic field h increases
with a �Fig. 1�b�� according to Eq. �10�. The quasilinear
waves can be both symmetric and antisymmetric, and trans-
form to linear surface waves7 when approaching the point
�0,0� in Fig. 1�a�. The trajectories with �a���8/3 represent
symmetric strong-amplitude NWGMs with “reverse” depen-
dence h�a� �see Fig. 1�b��, i.e., h decreases when increasing

a. This is responsible for the unusual properties of high-
amplitude NWGMs: the electric-field amplitude Ez can in-
crease inside the sample, while the magnetic-field amplitude
H decreases. There are no strongly nonlinear self-consistent
antisymmetric NWGMs.

B. Quasilinear waves

The dashed �blue� and dotted �orange� trajectories in Fig.
1 describe the symmetric and antisymmetric waves having
the spectrum in Eq. �11�, with

fs = tanhm��d

�c
	�1 +

hs
2

32
− m

3hs
2

32 cosh2��d/�c�
	 , �14�

for m=1 and m=−1, respectively. Here we assume

hs = h� = �d/2�ab� � 1. �15�

For thick slabs, d→�, the trajectories for both symmetric
and antisymmetric waves tend to the dash-dotted trajectory
corresponding to the nonlinear surface wave. For h→0 and
d→�, the spectrum �14� coincides with the spectrum of lin-
ear surface waves obtained in Ref. 7 when ignoring the effect
of charge neutrality breaking.15 Note that the incorporation
of charge neutrality breaking has to be done with careful
accounting of the so-called additional boundary conditions16

which could strongly affect the wave spectrum. Here, we
neglect this effect, and assume it to be weak, in agreement
with experiments.17

For the parameters corresponding to the Bi2Sr2CaCu2O8+�

compounds, the spectrum of symmetric quasilinear waves is
located close to the “vacuum light line,” �=ck, and deviates
from this line only at very small values of 1−�2��ab

2 /��c
2.

Thus, these waves are unlikely to be excited in
Bi2Sr2CaCu2O8+� compounds. However, for artificial super-
conducting multilayers, or other compounds such as
YBa2Cu3O7−�, the conditions for symmetric quasilinear
wave excitations could be satisfied.

Concerning the antisymmetric quasilinear waves, their
spectrum shifts far from the vacuum light line for thin slabs,
d��c �see Fig. 2�. The electromagnetic field of these waves
has a very simple, almost linear distribution inside the
sample �inset in Fig. 2� and decays in vacuum over a short
enough �submillimeter� distance. Due to the latter, layered
Bi2Sr2CaCu2O8+� superconductors can act as a waveguide
for the antisymmetric terahertz modes. Also, nonlinear anti-
symmetric waves can produce Wood-type anomalies2 in both
amplitude and angular dependence of the reflectivity, trans-
missivity, and absorptivity coefficients. Similar properties are
also inherent for the symmetric strongly nonlinear waves
considered below.

C. Symmetric strong-amplitude NWGMs

The function fs in Eq. �11� describing the deviation of the
spectrum of the NWGMs from the vacuum light line has a
very complicated structure with asymptotics:

fs 	
�d

hs�ab
for

�2d2

�ab
2 � 1 − hs �16�

and
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fs 	
�2d2

hs�ab
2 for

�d

�ab
� 1. �17�

This allows one to construct a simple interpolation of the
dispersion relation

1 − �2 =
d2

3��ab
2 
� H

Ht
	2�1 −

�J
2

c2k2	 −
c2k2

4�J
2� , �18�

where the threshold amplitude

Ht �
0.8H0d2

�3/2�ab�c
�19�

defines the lowest value of the magnetic-field amplitude at
the sample surface: at lower fields, the predicted NWGMs do
not exist. The interpolation formula Eq. �18� is in perfect
agreement with numerical results �see Fig. 3� obtained by the
integration of Eq. �13�.

The spectrum of the strong-amplitude NWGMs is non-
monotonic �Fig. 3� and ��k� reaches the minimal value

�min = �1 −
d2H

3��ab
2 Ht

� H

Ht
− 1	�1/2

�20�

at

k =
�J

c
�2H

Ht
. �21�

Thus, the stop-light phenomenon, ���k ,H� /�k=0, occurs in
the terahertz superconducting waveguide. This stop-light ef-
fect can be easily controlled by the magnetic-field amplitude.

It is interesting to note that the spectrum of the NWGMs
is located between �ks ,�s� and �kf ,� f�. At these peculiar
points of the spectrum, the value of the dimensionless
magnetic-field amplitude h achieves its critical value

hcrit = h�a = �8/3� = �32/27 �22�

�see Fig. 1�b��. At the sample edges z=d /2, a� tends to in-
finity according to Eq. �13�, but h� is not singular.

For the strong-amplitude NWGMs, the magnetic-field
amplitude at the sample surface is less than inside the slab,
while the phase a�� and, thus, the electric field Ez do not
significantly change in the sample �see inset of Fig. 3�. Due
to this feature, e.g., H�0� /H�d /2��1, the spectrum of the
NWGMs is remarkably far from the �=ck line despite the
smallness of the parameter �ab /���c in Eq. �11�.

The numerical analysis of Eqs. �9� and �11� �or Eq. �18��
shows that strong-amplitude NWGMs exist for sample thick-
nesses d smaller than some critical value dc because of the
instability of NWGMs for thick samples �see the next sec-
tion�. This threshold thickness dc depends on the sample pa-
rameters �in particular, �=�c /�ab and �� as well as the
NWGM frequency and wave vector. However, dc is about
several �ab in any realistic case. For given parameters of the
incident EMW and material characteristics �e.g., � and ��,
the amplitude of the magnetic field and the gauge-invariant
phase oscillations increase in the middle of the sample when
the sample thickness d grows. When d�dc, the large-
amplitude NWGMs suddenly become unstable. However, the
large-amplitude NWGMs are stable with respect to small
perturbations when d is smaller than dc.

V. STABILITY OF STRONG-AMPLITUDE WAVEGUIDE
MODES

To study the stability of NWGMs with respect to small
perturbations, we seek a solution of Eq. �4� in the form

FIG. 2. �Color online� Dispersion relation, ��ck /�J�, for the
antisymmetric waveguide mode. Parameters are �c /�ab=200, �
=16, and d /�ab=0.1 and 0.3 for solid �red� and dashed �blue�
curves, respectively. The dotted �black� line corresponds to the
“vacuum light line.” Inset: schematics of the spatial distribution of
the dimensionless magnetic-field amplitude h�2z /d��a�2z /d� in-
side the sample.

FIG. 3. �Color online� Dispersion relation, ��ck /�J�, for the
strongly nonlinear waveguide mode: the solid squares present the
result of the numerical simulation using Eq. �13�; the dashed line is
obtained by interpolating between two asymptotics. The simulations
and interpolation perfectly coincide. Here we use the following set
of parameters: d /�ab=0.3, �c /�ab=200, �=16, and H /H0=1.5
�10−5. Inset: the spatial distribution of the dimensionless
magnetic-field amplitude h�2z /d� and the amplitude of the gauge-
invariant phase difference a�2z /d� inside the sample, for the same
set of parameters as in the main panel and for � and ck /�J marked
by the solid circle in the main panel. Open squares mark the starting
and ending points of the spectrum.
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 = a�1 − �2 sin��� − �t� + exp�iq� + ��Jt�

�����sin��� − �t� + ���cos��� − �t�� , �23�

where

� =
x�1 − �2

�c
. �24�

Here, the first term is the solution corresponding to the
strong-amplitude NWGM studied above. The other two
terms are small fluctuations that could result in a modulating
instability. A positive Re��� would produce a modulational
instability with wave vector q. The fluctuations can be sym-
metric,

��� = � cosh�p�, ��� = � cosh�p� , �25�

or antisymmetric,

��� = � sinh�p�, ��� = � sinh�p� , �26�

with respect to the middle of the sample, =0. Following the
approach presented in Sec. III, we now keep only the first
harmonics of the cubic term in the coupled sine-Gordon
equation �4�.

For simplicity, we neglect the coordinate dependence of
the nonlinear wave amplitude a��. Indeed, the NWGM am-
plitude is almost constant across the sample cross section, as
seen in the inset of Fig. 3. Substituting Eq. �23� into the
coupled sine-Gordon equation �4�, we obtain a set of linear
homogeneous algebraic equations for the constants � and �,
which are the same for both symmetric and antisymmetric
solutions,

���1 − �2p2��1 − 3a2/8 + �2/�1 − �2�� + q2 + �2�

+ 2���1 − �2p2���/�1 − �2� + iq�� = 0,

2���1 − �2p2���/�1 − �2� + iq�� − ���1 − �2p2�

��1 − a2/8 + �2/�1 − �2�� + q2 + �2� = 0. �27�

Nontrivial solutions for � and � exist if the determinant of
the system of Eqs. �27� is zero. This results in

4��1 − �2p2���/�1 − �2� + iq��2 + ��1 − �2p2�

��1 − a2/8 + �2/�1 − �2�� + q2 + �2�

���1 − �2p2��1 − 3a2/8 + �2/�1 − �2�� + q2 + �2� = 0.

�28�

The fluctuating field is the sum of two terms corresponding
to two solutions, p1 and p2, for p in Eq. �28�. We now ana-
lyze the symmetric fluctuations only,

��� = �1 cosh�p1� + �2 cosh�p2�, ��� = �1 cosh�p1�

+ �2 cosh�p2� . �29�

The analysis of the antisymmetric fluctuations �in the limit
�ab /�c→0� is similar and leads to the same results.

Matching the impedance at the sample boundary, we de-
rive the long equations �A13� and �A14� for the coefficients
� and � specified in the Appendix. However, these equations
contain a very small parameter �ab /�c�1, which is about
1 /500 for Bi2212. In the leading approximation with respect
to this parameter, Eqs. �A13� and �A14� are reduced to

U
1 −
3a2

8
−

2i��

1 − �2 +
�2

1 − �2� + iV
1 −
a2

8
−

2i��

1 − �2

+
�2

1 − �2� = 0,

U
1 −
3a2

8
+

2i��

1 − �2 +
�2

1 − �2� − iV
1 −
a2

8
+

2i��

1 − �2

+
�2

1 − �2� = 0, �30�

with

U = �1 cosh�p1d� + �2 cosh�p2d�, V = �1 cosh�p1d�

+ �2 cosh�p2d� .

Equating the determinant of this set of equations to zero, we
obtain the dispersion relation for the increment �,

�4 + �2
4�2 + �2 −
a2

2
	�1 − �2�� + 1 −

a2

2
+

3a4

64
= 0.

�31�

Since 1−�2�1 and �1−a2 /2+3a4 /64��0 for a2�8/3, we
conclude that the roots of this equation are purely imaginary
for NWGM amplitudes if a�ac�3.87. At higher ampli-
tudes, a�ac, the roots with nonzero real part appear and two
of them have positive real parts. The numerical solution of
Eqs. �9� and �11� shows that the wave amplitude a is signifi-
cantly higher than the critical value ac if the sample thick-
ness is close to its maximum value dc.

Near the critical amplitude ac, the instability increment �
can be written as

� = �a2 − ac
2

32
	1/2

± i�2. �32�

For the trivial solution of Eqs. �30�, we obtain

�1

�2
=

�1

�2
= −

cosh�p2d�
cosh�p1d�

. �33�

Using Eqs. �28� and �A1�, we derive a quadratic equation for
�

�2 + i�
��q2 + �2�

q�
+ �1 −

3a2

8
	�1 − �2� = 0. �34�
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Both roots of this equation are imaginary.
Thus, in the main approximation with respect to the small

parameter �ab /�c�1, the increments � are imaginary and
the NWGMs considered are stable at low amplitudes when
a�ac. Otherwise, a modulating instability can develop.

VI. ANOMALIES IN THE AMPLITUDE DEPENDENCE OF
THE REFLECTION COEFFICIENTS DUE TO THE

RESONANCE EXCITATION OF THE NONLINEAR
WAVEGUIDE MODES

In this section, we show that nonlinear waveguide modes
can be excited in a superconducting slab using two dielectric
prisms. As a result of the NWGM excitation, a resonance
increase of the electromagnetic absorptivity can be observed
if the ac amplitude, frequency, and wave vector satisfy the
dispersion relation, Eq. �18�. Let us now consider the p
�TM�-polarized plane monochromatic electromagnetic wave
incident from the dielectric prisms through the vacuum inter-
layers onto a plate of layered superconductor, from both of
its sides �see Fig. 4�. This experimental configuration corre-
sponds to the so-called prism method of excitation of surface
waves �also known as Otto configuration18,19� with attenu-
ated total wave reflection. Usually, the incident angle � is
varied in one-sided or unilateral experiments, and the reso-
nance suppression of the wave reflection is observed if the
wave vector kx= ���� /c�sin��� satisfies the dispersion rela-
tion for the surface wave in a conductor. Here � is the di-
electric constant of the prisms.

Two essential additional features of this proposed experi-
ment are important for our case. First, the superconducting
plate is excited on both sides, resulting in the magnetic field
of the incident waves symmetric with respect to the middle
of the superconducting plate. Second, the considered wave-
guide mode is nonlinear. This offers a possibility to observe
the anomalies in the reflection coefficient and absorptivity as

a function of the amplitude of the incident wave with given
frequency and incident angle. This allows one to distinguish
the predicted nonlinear waveguide modes from linear ones
�for which there is no amplitude anomaly�. Namely, if the
sum of the magnetic fields of the incident and reflected
waves at the sample surfaces takes the resonance value Hres,

Hres = Ht� sin2����
sin2���� − 1


3��ab
2 �1 − �2�

d2 +
sin2����

4
��1/2

�35�

and

sin2��� �
1

�
, �36�

a sharp decrease of the reflection coefficient and increase of
the electromagnetic absorption should be observed.

VII. CONCLUSIONS

The dependence of the dispersion relation on the wave
amplitude is the main feature that can be used to experimen-
tally distinguish the predicted NWGMs from ordinary
plasma waves. The excitation of NWGMs produces an in-
crease in the EMW absorption by the sample near the plasma
frequency if the amplitude of the incident wave H exceeds
the threshold value Ht �Eq. �19��. Using characteristic values
for BSCCO ��ab=200 nm, �=200, �=20, and s=15 nm� and
assuming that the sample thickness d is equal to �ab, we
obtain Ht�2�10−3 Oe, which corresponds to a power of the
incident �from the vacuum� EMWs of the order of
1 mW/cm2.

Thus, we predict the existence of both strongly nonlinear
symmetric and weakly nonlinear antisymmetric waveguide
modes, which propagate in a thin slab of layered supercon-
ductors and decay fast enough in the vacuum. The spectrum
of strongly nonlinear symmetric waveguide modes is non-
monotonic, resulting in a “stop-light” effect controlled by the
magnetic-field intensity. These nonlinear self-sustained
waveguide modes could be observed via amplitude and an-
gular anomalies in the reflectivity and absorptivity of inci-
dent terahertz electromagnetic waves. The predicted tera-
hertz modes could be potentially useful for the design of
terahertz waveguides, detectors, and filters.20
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APPENDIX: MATCHING IMPEDANCE FOR THE
FLUCTUATING FIELDS

Here we derive equations for the small perturbation am-
plitudes that could result in a modulation instability. Accord-
ing to Eqs. �27�, the values �1 and �2 are related to �1 and �2

as

�i = 2�i

�1 − �2pi
2���/�1 − �2� + iq�

�1 − �2pi
2��1 − a2/8 + �2/�1 − �2�� + q2 + �2 .

�A1�

Expressions for �1 and �2, as well as the dispersion equation
for the instability increment �, can be derived by matching
the tangential components of the electric and magnetic fields
at the sample boundary z=d /2 �=d=�d /2�ab�. These com-
ponents are expressed, via the phase difference 
, as

Ex =
�ab

c
�

�2H

��t
,

�H

��
=

H0

�1 − �2�
 −

3

6
−

1

�J
2

�2


�t2 	 .

�A2�

Using Eqs. �23� and �A2�, we derive the equations for the
magnetic and electric fields inside the sample

Hs = H1��exp�i�q + ��� + �t − i�Jt�

+ H2��exp�i�q − ��� + �t + i�Jt� , �A3�

Esx = Ex1��exp�i�q + ��� + �t − i�Jt�

+ Ex2��exp�i�q − ��� + �t + i�Jt� , �A4�

where the field amplitudes are

H1�� = −
H0

�1 − �2

2�q + �� �����1 −
3a2

8
+

�2

1 − �2 −
2i��

1 − �2	
+ i����1 −

a2

8
+

�2

1 − �2 −
2i��

1 − �2	� , �A5�

H2�� =
H0

�1 − �2

2�q − �� �����1 −
3a2

8
+

�2

1 − �2 +
2i��

1 − �2	
− i����1 −

a2

8
+

�2

1 − �2 +
2i��

1 − �2	� , �A6�

Ex1�� = −
H0�ab��1 − �2

2c�q + ��
���J − i��

�������1 −
3a2

8
+

�2

1 − �2 −
2i��

1 − �2	 + i����

��1 −
a2

8
+

�2

1 − �2 −
2i��

1 − �2	� , �A7�

Ex2�� = −
H0�ab��1 − �2

2c�q − ��
���J + i��

��− �����1 −
3a2

8
+

�2

1 − �2 +
2i��

1 − �2	 + i����

��1 −
a2

8
+

�2

1 − �2 +
2i��

1 − �2	� . �A8�

In vacuum at z�d /2, the fluctuations of the magnetic and
electric fields can be written as

Hv = Hv1 exp�i�q + ��� + �t − i�Jt�exp�iK1z�

+ Hv2 exp�i�q − ��� + �t + i�Jt�exp�iK2z� , �A9�

Exv = Exv1 exp�i�q + ��� + �t − i�Jt�exp�iK1z�

+ Exv2 exp�i�q − ��� + �t + i�Jt�exp�iK2z� .

�A10�

The Maxwell equations yield the connections between the
field amplitudes and the dispersion relation for the z compo-
nents of the wave vectors Ki in vacuum,

Exv1 = − Hv1
icK1

� − i�
, Exv2 = − Hv2

icK2

� + i�
, �A11�

K1 =��� + i��J�2

c2 − �q + ��21 − �2

�c
2 ,

K2 =��� − i��J�2

c2 − �q − ��21 − �2

�c
2 , Im Ki � 0.

�A12�

Substituting Eq. �29� into Eqs. �A5�–�A10� and matching
the electric and magnetic fields at the boundary, z=d /2,
separately for terms proportional to exp�i�q±���
+�t� i�Jt�, we find two linear equations for constants �i

and �i
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��ab

�c
��

�� − i����p1�1 sinh�p1d� + p2�2 sinh�p2d��

�
1 −
3a2

8
−

2i��

1 − �2 +
�2

1 − �2� + i�p1�1 sinh�p1d� + p2�2 sinh�p2d��
1 −
a2

8
−

2i��

1 − �2 +
�2

1 − �2��
= i���q + ��2�1 − �2�

�� + i��2 − 1���1 cosh�p1d� + �2 cosh�p2d��
1 −
3a2

8
−

2i��

1 − �2 +
�2

1 − �2� + i��1 cosh�p1d�

+ �2 cosh�p2d��
1 −
a2

8
−

2i��

1 − �2 +
�2

1 − �2�� , �A13�

��ab

�c
��

�� + i����p1�1 sinh�p1d� + p2�2 sinh�p2d��

�
1 −
3a2

8
+

2i��

1 − �2 +
�2

1 − �2� − i�p1�1 sinh�p1d� + p2�2 sinh�p2d��
1 −
a2

8
+

2i��

1 − �2 +
�2

1 − �2��
= i���q − ��2�1 − �2�

�� − i��2 − 1���1 cosh�p1d� + �2 cosh�p2d��
1 −
3a2

8
+

2i��

1 − �2 +
�2

1 − �2� + i��1 cosh�p1d�

+ �2 cosh�p2d��
1 −
a2

8
+

2i��

1 − �2 +
�2

1 − �2�� . �A14�

In the limit �ab /�c→0, we derive Eq. �30� presented in the text.

1 D. N. Christodoulides, F. Lederer, and Ya. Silberger, Nature
�London� 424, 817 �2003�.

2 B. Barnes and R. Sambles, Phys. World 19 �1�, 17 �2006�; Th.
Krauss, ibid. 19 �2�, 32 �2006�.

3 T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A.
Wolff, Nature �London� 391, 667 �1998�; R. Gordon, A. G.
Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Ka-
vanagh, Phys. Rev. Lett. 92, 037401 �2004�.

4 A. V. Kats, M. L. Nesterov, and A. Yu. Nikitin, Phys. Rev. B 72,
193405 �2005�; A. V. Kats and I. S. Spevak, ibid. 65, 195406
�2002�; A. V. Kats, S. Savel’ev, V. A. Yampol’skii, and F. Nori,
Phys. Rev. Lett. 98, 073901 �2007�.

5 S. Suntsov, K. G. Makris, D. N. Christodoulides, G. I. Stegeman,
A. Haché, R. Morandotti, H. Yang, G. Salamo, and M. Sorel,
Phys. Rev. Lett. 96, 063901 �2006�.

6 R. Ruppin, J. Phys.: Condens. Matter 13, 1811 �2001�; I. V.
Shadrivov, A. A. Sukhorukov, and Yu. S. Kivshar, Phys. Rev. E
67, 057602 �2003�.

7 S. Savel’ev, V. Yampol’skii, and F. Nori, Phys. Rev. Lett. 95,
187002 �2005�; Physica C 445-448, 183 �2006�.

8 A. Hessel and A. A. Oliner, Appl. Opt. 4, 1275 �1965�; H. Ra-
ether, Surface Plasmons �Springer, New York, 1988�; R. Petit,
Electromagnetic Theory of Gratings �Springer, Berlin, 1980�.

9 S. Savel’ev, A. Rakhmanov, V. Yampol’skii, and F. Nori, Nat.
Phys. 2, 521 �2006�.

10 See, e.g., the special issue in Philos. Trans. R. Soc. London, Ser.
A 362, �1815� �2004�.

11 T. M. Mishonov, Phys. Rev. B 44, 12033 �1991�; L. N. Bulae-
vskii, M. P. Maley, and M. Tachiki, Phys. Rev. Lett. 74, 801
�1995�.

12 Y. Matsuda, M. B. Gaifullin, K. Kumagai, K. Kadowaki, and T.
Mochiku, Phys. Rev. Lett. 75, 4512 �1995�.

13 D. L. Mills, Nonlinear Optics �Springer, Berlin, 1998�; N. Bloem-
bergen, Nonlinear Optics �World Scientific, Singapore, 1996�; Y.
R. Shen, The Principles of Nonlinear Optics �Wiley-
Interscience, Hoboken, NJ, 2003�.

14 S. Sakai, P. Bodin, and N. F. Pedersen, J. Appl. Phys. 73, 2411
�1993�; M. Tachiki and M. Machida, Physica C 341-348, 1493
�2000�; S. N. Artemenko and S. V. Remizov, ibid. 362, 200
�2001�.

15 M. Machida, T. Koyama, and M. Tachiki, Phys. Rev. Lett. 83,
4618 �1999�.

16 C. Helm, L. N. Bulaevskii, E. M. Chudnovsky, and M. P. Maley,
Phys. Rev. Lett. 89, 057003 �2002�; C. Helm and L. N. Bulae-
vskii, Phys. Rev. B 66, 094514 �2002�.

17 S. Rother, Y. Koval, P. Müller, R. Kleiner, D. A. Ryndyk, J.
Keller, and C. Helm, Phys. Rev. B 67, 024510 �2003�.

18 A. Otto, Z. Phys. 216, 398 �1968�.
19 A. Otto, in Polaritons, Proceedings of the First Taormina Confer-

ence on the Structure of Matter �Pergamon, New York, 1974�, p.
117.

20 S. Savel’ev, A. L. Rakhmanov, and F. Nori, Phys. Rev. Lett. 94,
157004 �2005�; Physica C 445-448, 180 �2006�; S. Savel’ev, V.
Yampol’skii, A. Rakhmanov, and F. Nori, Phys. Rev. B 72,
144515 �2005�; Physica C 437-438, 281 �2006�; 445-448, 175
�2006�; V. A. Yampol’skii, S. Savel’ev, O. V. Usatenko, S. S.
Mel’nik, F. V. Kusmartsev, A. A. Krokhin, and F. Nori, Phys.
Rev. B 75, 014527 �2007�; S. Savel’ev, A. L. Rakhmanov, and
F. Nori, Phys. Rev. Lett. 98, 077002 �2007�.

SAVEL’EV et al. PHYSICAL REVIEW B 75, 184503 �2007�

184503-8


