
Persistent single-photon production by tunable on-chip micromaser
with a superconducting quantum circuit

J. Q. You,1,2 Yu-xi Liu,2 C. P. Sun,2,3 and Franco Nori2,4

1Department of Physics and Surface Physics Laboratory (National Key Laboratory), Fudan University, Shanghai 200433, China
2Frontier Research System, The Institute of Physical and Chemical Research (RIKEN), Wako-shi 351-0198, Japan

3Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080, China
4Center for Theoretical Physics, Physics Department, Center for the Study of Complex Systems,

University of Michigan, Ann Arbor, Michigan 48109-1040, USA
�Received 4 January 2007; published 28 March 2007�

We propose a tunable on-chip micromaser using a superconducting quantum circuit �SQC�. By taking
advantage of externally controllable state transitions, a state population inversion can be achieved and pre-
served for the two working levels of the SQC and, when needed, the SQC can generate a single photon. We can
regularly repeat these processes in each cycle when the previously generated photon in the cavity is decaying,
so that a periodic sequence of single photons can be produced persistently. This provides a controllable way for
implementing a persistent single-photon source on a microelectronic chip.
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I. INTRODUCTION

Superconducting quantum circuits can behave like natural
atoms and are also promising candidates of qubits for scal-
able quantum computing.1 Moreover, these circuits also
show quantum optical effects and provide exciting opportu-
nities for demonstrating quantum effects at macroscopic
scales and for conducting atomic-physics experiments on a
microelectronic chip �see, e.g., Refs. 1–9�.

Because of its fundamental importance in quantum com-
munications, single-photon sources are crucial in both quan-
tum optics and quantum electronics.10 Single-photon sources
can be achieved using quantum-dot-based devices �see, e.g.,
Ref. 11�, but their frequencies are not in the microwave re-
gime required for superconducting qubits. Recently, there
have been efforts to generate single photons by coupling a
superconducting qubit to a superconducting resonator.5,6,12

However, because of damping inside the resonator, the gen-
erated single photon can only persist for a very short time.

Here we show how to persistently produce steady micro-
wave single photons by a tunable micromaser using a super-
conducting quantum circuit �SQC�. The physical mechanism
is as follows: The SQC acts like a controllable artificial atom
�AA� and is placed in a quantum electrodynamic cavity. By
taking advantage of the externally controllable state transi-
tions, one can pump the AA to produce state population in-
version for the two working levels. This population inversion
is preserved by turning off the transition to the ground state,
but when needed, this transition can be switched on to gen-
erate a photon. Within the photon lifetime of the cavity, one
can pump the superconducting AA to produce the state popu-
lation inversion again for the next cycle of operations and
then switch on the state transition when the photon generated
in the previous cycle is decaying. By periodically repeating
this cycle, one can generate single photons in a persistent
way.

Steady-state photons can also be generated by a microma-
ser with natural atoms �see, e.g., Refs. 13 and 14�. However,
in such a micromaser, there is a very small number of excited

atoms among all atoms passing through the cavity and these
excited atoms enter the cavity at random times. This will
produce large fluctuations for the photon field of the cavity.
For instance, an excited atom can enter the cavity long be-
fore or after the previously generated single photon decays.
To overcome this problem, a state population inversion is
prepared for the superconducting AA in each cycle and all
the cycles are repeated periodically. Also, the cavity can be
realized using an on-chip superconducting resonator so that
both the SQC and the resonator can be fabricated on a chip.
This might be helpful for transferring quantum information
between superconducting qubits in future applications.
Moreover, in contrast to the fixed difference between the two
working energy levels in a natural atom, the level difference
for the superconducting AA is tunable, providing flexibility
for producing a single-photon source over a wider frequency
region.

In Ref. 15, spontaneous and stimulated emission charac-
teristics were investigated for a Josephson-junction-cavity
system, but here we focus on the quantum electrodynamic
effects in the strong-coupling regime for a superconducting
AA in the on-chip cavity. Moreover, the circuit design in this
approach provides an enhanced level of control that is desir-
able for producing a single-photon source.

II. SUPERCONDUCTING ARTIFICIAL ATOM

We consider an AA based on the SQC for the flux qubit.16

Instead, here we study it as a qutrit involving the lowest
three energy levels of the device. Also, the fourth and other
higher levels are well separated and not populated. As shown
in Fig. 1�a�, in addition to two identical Josephson junctions,
a symmetric superconducting quantum interference device
�SQUID� is placed in the loop pierced by an external mag-
netic flux �e. This SQUID increases the external controlla-
bility of the quantum circuit by providing a tunable effective
coupling energy: �EJ with �=2� cos���s /�0�, where �0 is
the flux quantum.

The Hamiltonian of the system is
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H =
Pp

2

2Mp
+

Pq
2

2Mq
+ U��p,�q� , �1�

with

Pi = − i�
�

��i
, i = p,q ,

Mp = 2CJ��0/2��2,

Mq =
1

4
Mp�1 + 4�� . �2�

The potential U��p ,�q� is

U��p,�q� = 2EJ�1 − cos �p cos��f +
1

2
�q��

+ 2�EJ�1 − cos��fs�cos �q� , �3�

where �p= ��1+�2� /2 and �q= ��3+�4� /2. The reduced
fluxes fs and f are given by

fs =
�s

�0
, f =

�e

�0
+

fs

2
. �4�

The operator Pk and the phase � j obey �� j , Pk�= i�� jk, where
j ,k= p ,q.

To make a transition between two energy levels Ei and Ej
of the superconducting AA, a microwave field

�w�t� = �w
�0� cos�	ijt + 
� �5�

is applied through the larger superconducting loop of the
quantum circuit. For a weak microwave field, the time-
dependent perturbation Hamiltonian is

H��t� = − I�w�t� , �6�

and the transition matrix element between states 	Ei
 and 	Ej

is given by

tij = �Ei	I�w
�0�	Ej
 , �7�

where

I = − Ic cos �p sin��f +
1

2
�q� �8�

is the circulating supercurrent in the loop without the applied
microwave field, and the critical current of the junction is
defined as Ic=2�EJ /�0.

Figures 2�a�–2�c� display the dependence of the energy
levels on the reduced flux f for three different values of fs.
For a symmetric SQUID with �=0.5, these values of fs give
rise to an effective Josephson coupling energy �EJ with �
=1, 0.77, and 0.66, respectively. At fs=0, the third and fourth
energy levels become degenerate and other adjoining levels

FIG. 1. �Color online� �a� Schematic diagram of the supercon-
ducting artificial atom. A symmetric SQUID and two identical Jo-
sephson junctions with coupling energy EJ and capacitance CJ are
placed in a superconducting loop pierced by an externally applied
magnetic flux �green� �e. The two Josephson junctions in the sym-
metric SQUID have coupling energy �EJ and capacitance �CJ, and
the applied flux �yellow� threading through the SQUID loop is �s.
Here we choose �=0.5 and EJ /Ec=100, with Ec=e2 /2CJ being the
single-particle charging energy of the junction. �b� Transition dia-
gram of a tunable artificial atom �i.e., a qutrit� used for the micro-
maser. A microwave field pumps the qutrit to make the transition
	0
→ 	2
 �denoted as P� and another microwave field triggers the
transition 	2
→ 	1
 �denoted as T�. With a state population inversion
established for 	0
 and 	1
, the transition between 	0
 and 	1
 �de-
noted as M� is switched off to preserve the population inversion
and, when needed, switched on to couple the AA with the cavity
mode.

FIG. 2. �Color online� �a�–�c� Energy levels of the supercon-
ducting artificial atom versus the reduced magnetic flux f =�e /�0

+ fs /2 for fs ���s /�0�=0, 0.22, and 0.27, where only the lowest
four energy levels �Ei, i=0–3� are shown. �d�–�f� Moduli of the
transition matrix elements 	tij	 �in units of Ic�w

�0�� versus the reduced
flux f for fs=0, 0.22, and 0.27. Two vertical �red� dashed lines are
plotted at f =0.493 as a guide to the eyes.
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touch at the crossing points. When fs increases, this state
degeneracy is removed and gaps develop at the crossing
points, which are more pronounced for higher levels. In Figs.
2�d�–2�f�, we show the moduli of the transition matrix ele-
ments 	tij	 for the lowest three levels. At fs=0, the transition
matrix elements t01, t02, and t12 become zero in a wider re-
gion around f =0.5. This means that the corresponding state
transitions are forbidden. With fs increasing, these state tran-
sitions become allowed, but the modulus of each transition
matrix element increases in a different manner. In contrast,
	t01	 for the state transition between the two lowest levels E0
and E1 increases slowly. Below we will explore these prop-
erties to implement a micromaser using a quantum circuit on
a chip. Also, a superconducting ring containing only one
Josephson junction can be used to achieve a qutrit �see, e.g.,
Ref. 17�, but it requires a relatively large loop inductance,
which makes the qutrit more susceptible to the magnetic-
field noise.

III. FAST ADIABATIC QUANTUM-STATE CONTROL AND
STATE POPULATION INVERSION

The state evolution of the superconducting AA depends
on the external parameters. For two given quantum states 	Ei

and 	Ej
, to have the evolution adiabatic, the nonadiabatic
coupling �Ei	 d

dt 	Ej

 and the energy difference Ei−Ej should

satisfy the condition �see, e.g., Ref. 8�

��Ei	�d/dt�	Ej

Ei − Ej

 � 1. �9�

Here we change fs but keep the reduced flux f unchanged.
The adiabatic condition can be rewritten as

Kijdfs

dt
 � 1, �10�

where

Kij = ��Ei	��H/�fs�	Ej

�Ei − Ej�2  . �11�

Figure 3 shows the quantities K01 and K12 as a function of
the reduced flux f for different values of fs. For instance, in

the vicinity of f =0.493 �vertical dashed lines in Fig. 2�,
K01�0.2 for fs=0.27 �see Fig. 3�a��. We can have

K01�dfs

dt
� � 0.02 � 1

with dfs /dt=0.1 ns−1, corresponding to a speed of changing
�s, d�s /dt�0.1�0 per nanosecond When fs=0.22,

K01�dfs

dt
� � 0.02

for dfs /dt=2 ns−1, and d�s /dt can be much faster, to satisfy
the adiabatic condition by decreasing fs. Also, around f
=0.493, K12�0.4 for fs=0.27 �see Fig. 3�b��. When dfs /dt
=0.1 ns−1,

K12�dfs

dt
� � 0.04 � 1,

implying that the adiabatic condition is satisfied. For a
smaller fs, K12 decreases significantly and a much higher
d�s /dt can be used. This important property reveals that, at
f �0.493, one can adiabatically manipulate the quantum
states 	0
�	E0
 and 	1
�	E1
 of the superconducting AA by
quickly changing fs �e.g., d�s /dt�0.1�0 ns−1� in the region
0 fs�0.27.

Below we manipulate the superconducting AA around our
example case f =0.493 �the two vertical dashed lines in Fig.
2� by changing the flux �s threading through the SQUID
loop in three successive processes �see Fig. 1�b��:

�i� Pumping process. First, the quantum circuit works at
fs=0.22. We constantly pump the superconducting AA with
an appropriate microwave field to make the state transition
	0
→ 	2
�	E2
 for a period of time. Simultaneously, another
microwave field is also used to trigger the transition 	2

→ 	1
. For fs=0.22, 	t01	�0.01, 	t12	�0.07, and 	t02	�0.13.
Because 	t01	 is about 1 order of magnitude smaller than 	t12	
and 	t02	, a population inversion between the two lowest
states 	0
 and 	1
 can be readily achieved.

�ii� Preserving the population inversion. We decrease fs
to fs=0. Because 	t01	 now tends to zero, the transition 	1

→ 	0
 is forbidden. For typical values EJ /h=400 GHz and
�w

�0� /�0�1�10−4 �see Sec. V�, the state population inver-
sion can be preserved for a time �0.02 s, much longer than
the photon lifetime �p�8 �s of a cavity with quality factor
Q=106.

�iii� Switching-on process. We increase fs to fs=0.27 to
turn on the transition 	1
→ 	0
 with an appreciable probabil-
ity �i.e., 	t01	�0.13, which is 1 order of magnitude larger
than 	t01	�0.01 at fs=0.22�.

Here we emphasize that the two lowest energy levels are
in resonance with the cavity mode when fs=0.27. However,
during the pumping, fs=0.22. For this value of the reduced
flux through the SQUID, the energy-level difference between
the states 	0
 and 	1
 is appreciably different from that at fs
=0.27, so the two lowest levels at fs=0.22 are very off reso-
nant to the cavity mode. Also, the level difference between
	0
 and 	2
 and that between 	1
 and 	2
 are very off resonant

FIG. 3. �Color online� The quantities �a� K01 and �b� K12 for the
adiabatic condition versus the reduced flux f for fs=0.15, 0.22, and
0.27, respectively. Here we use EJ=400 GHz.
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to the cavity mode. Therefore, the qubit-cavity coupling is
very weak during the pumping process, where we choose
fs=0.22 �instead of fs=0.27, used for achieving strong qubit-
cavity coupling�.

IV. MICROMASER AND SINGLE-PHOTON SOURCE

A. Interaction Hamiltonian

Let us place the superconducting AA in a quantum cavity,
with the energy difference E1−E0 at f =0.493 and fs=0.27 in
resonance with the cavity mode. In the switching-on process,
the superconducting AA acts as a two-level system and in-
teracts with a single-mode quantized microwave field via
Rabi oscillations, i.e., a coherent exchange of energy be-
tween them.

In the subspace with basis states 	1
 and 	0
, the circulat-
ing current can be written as

I =
1

2
�A − B��z + �C�+ + H.c.� , �12�

where A= �1	I	1
, B= �0	I	0
, C= �1	I	0
, and �+= 	1
�0	 is the
raising operator for the states of the two-level system. The
quantized microwave field in a cavity can be written as

�w = �w
�0��a + a†� , �13�

where a �a†� is the annihilation �creation� operator of pho-
tons of the cavity mode. In the rotating-wave approximation,
�C�++H.c.��w becomes �t01�+a+H.c.�. Then, the interac-
tion Hamiltonian �6� can be written as

H� = −
1

2
�A − B��w

�0��z�a + a†� − �t01�+a + H.c.� . �14�

The first-term on the right-hand side of Eq. �14� only gives
an effective contribution to the energy difference E1−E0 in
the expression for the eigenvalues of the total Hamiltonian
and it does not affect the Rabi oscillations. For the single-
photon process we study, this contribution is a fixed value
added to the energy difference E1−E0 and it can be included
in the energy difference. Actually, this was explicitly shown
for a charge qubit coupled via its SQUID loop to the cavity
mode �see Ref. 3�. Therefore, one can only consider the
Jaynes-Cummings term for the interaction Hamiltonian:

H� = − �g��+a + H.c.� , �15�

where

g =
1

�
	t01	 . �16�

In Eq. �15�, we also ignore a phase factor that does not pro-
duce effects in our study.

Below we estimate the contribution of the first term on the
right-hand side of Eq. �14�. Usually, A�−B�0.5Ic; in par-
ticular, A=B=0 at the degeneracy point f =0.5. Thus, we
have

1

2
�A − B��w

�0� � 0.5Ic�w
�0� = �EJ��w

�0�

�0
� .

For a typical value of �w
�0� /�0�10−4 in our case �see Sec.

V�,

1

2
�A − B��w

�0� � 3 � 10−4EJ,

which is much smaller than the energy difference E1−E0
�0.05EJ for f =0.493 and fs=0.27. Thus, the first term on
the right-hand side of Eq. �14� can also be ignored here, even
if its contribution is not included in the energy difference.

B. Photon statistics

We assume that the interaction between the cavity and the
AA is in the strong-coupling regime, where the period 1/2g
of the single-photon Rabi oscillations is much shorter than
both the relaxation time of the two-level system and the av-
erage lifetime of the photon in the cavity. After an interaction
time �, the quantum circuit turns to the pumping and
population-inversion-preserving processes and it becomes
ready for the next cycle of the three successive processes
described above.

If the superconducting AA is switched on at the times ti to
interact with the photons in the cavity, the time evolution of
the density matrix � of the cavity mode is governed by the
map

��ti + �� = M�����ti� , �17�

where the gain operator M��� is defined as

M���� = Tra�exp�−
i

�
H���� � 	1
�1	exp� i

�
H���� ,

�18�

where Tra denotes the trace over the variables of the AA.
Here we regularly switch on the superconducting AA by pe-
riodically repeating the cycle of the three successive pro-
cesses described above.

With the cavity losses included, the dynamics of the den-
sity matrix � is described by14

d�

dt
= ra�M��� − 1�� −

1

2
ra�M − 1�2� + L� . �19�

In Eq. �19�, ra is the switching-on rate for the superconduct-
ing AA. The operator L describes the dissipation of the cav-
ity photon due to a thermal bath:

L� = −
1

2
��nth + 1��a†a� + �a†a − 2a�a†�

−
1

2
�nth�aa†� + �aa† − 2a†�a� , �20�

where nth is the average number of thermal photons in the
cavity and � is the photon damping rate.

At steady state, d� /dt=0, which leads to a recursion re-
lation for the steady photon number distribution pn= �n	�	n

of the cavity mode:
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pn+1 = � nth

nth + 1
+

NtS�n + 1��1 + 1
2S�n + 1��

�nth + 1��n + 1� �pn

−
NtS�n + 1�S�n�

2�nth + 1��n + 1�
pn−1, �21�

with initial condition

p1 = � nth

nth + 1
+

NtS�1��1 + 1
2S�1��

�nth + 1� �p0, �22�

where

S�n� = sin2�g��n�, n = 0,1,2, . . . . �23�

The quantity

Nt =
ra

�
�24�

represents the number of cycles for switching on the super-
conducting AA during the photon lifetime of the cavity, and
p0 is determined by

�
n=0

�

pn = 1.

Equation �21� is very different from the recursion relation for
the atomic micromaser �see Ref. 13�, where all the excited
atoms enter the cavity at random times:

�nth + 1�npn = �nthn + NtS�n��pn−1, �25�

where

Nt =
r̄a

�
, �26�

with r̄a being the average injection rate of the excited atoms.
In Fig. 4�a�, we present the steady-state photon statistics

for Nt=100. This statistics reveals an appreciable difference
between the micromaser with natural atoms and that with a

superconducting AA. Moreover, we show the steady-state
photon statistics for Nt=1 �see Fig. 4�b��. It is striking that
the single-photon state has a probability at least 1 order of
magnitude larger than multiphoton states. Figure 4�b� shows
that the photon statistics of the atomic micromaser looks
similar to that of the proposed micromaser, but the results of
the atomic micromaser are derived by approximating the in-
jection rate of the atoms with an average value r̄a. Indeed,
the injection rate of the atoms into the micromaser has a
distribution, instead of a fixed value. This is in sharp contrast
to an AA micromaser having a fixed rate ra of switching on
the AA.

For the atomic micromaser, the excited atoms actually
enter the cavity at random times and obey a Poissonian dis-
tribution. The number nex of the excited atoms has a larger
variance to the average number n̄ex: �nex

2 = n̄ex, so larger fluc-
tuations are expected for the photon field in the cavity. In
contrast, in the micromaser using a SQC, the AA can be
regularly switched on to interact with the photons in the
cavity and the photon-field fluctuations are greatly reduced
because �nex

2 �0. Therefore, one can use the SQC microma-
ser to implement a persistent single-photon source with low-
field fluctuations.

V. DISCUSSION

A. Experimentally accessible quantities

Let us consider a quasi-two-dimensional �2D� cavity, so
that both the SQC and the cavity can be fabricated on the
same chip. Moreover, the SQC is placed at an antinode of the
cavity mode and the magnetic flux threads perpendicularly
through the SQC loop. The quantized magnetic flux inside
the SQC loop can be written as14

�w = �w
�0��a + a†� , �27�

with

�w
�0� = � h�

�0c2Ah
�1/2

Sq, �28�

where �, A, h, and Sq are the cavity frequency, the area of the
quasi-2D cavity, the thickness of the cavity, and the area of
the SQC loop, respectively. At f =0.493 and fs=0.27, the
numerical results in Fig. 2�c� give E1−E0�0.05EJ. When
this level difference is in resonance with the cavity mode, the
frequency of the cavity mode is �= �E1−E0� /h�20 GHz for
a typical value of EJ /h=400 GHz; the wavelength is �
�1.5 cm. Here, as an example, we use A��1.5cm�2 and h
�1�m for the quasi-2D cavity. Moreover, as shown in Ref.
18, the energy spectrum is nearly unchanged up to �L
�L /LJ�0.1, where the Josephson inductance is defined by
LJ=�0 /2�Ic. This gives a loop inductance L�40 pH and
the diameter of the loop is about 32 �m. Then, we have

�w
�0�/�0 � 1.1 � 10−4.

Also, at f =0.493 and fs=0.27, the numerical results in Fig.
2�f� give 	t01 	 =0.13Ic�w

�0�. Using the values given above, we
obtain

FIG. 4. �Color online� Steady-state photon statistics for nth

=0.1, and �a� Nt=100, �int��g��Nt�=10�; �b� Nt=1, �int=1.4�.
These are results for a micromaser either using our quantum circuit
�black solid lines� or using natural atoms, e.g., rubidium �red dashed
lines�.
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g =
1

�
	t01	 � 218 MHz.

For Nt=1 and g��Nt=1.4� �cf. Fig. 4�b��, the corresponding
interaction time � for the AA to couple with the cavity mode
in each cycle of operations is ��20 ns. This value of � is
experimentally feasible because it is usually much shorter
than the relaxation time T1 of the flux qubit and also can
easily be much shorter than the photon lifetime �p of an
experimentally accessible high-Q superconducting cavity
�e.g., �p�8�s for Q=106�.

In Ref. 2, a relaxation time of about 1 �s was measured
for a flux qubit, away from the degeneracy point. For the
Josephson junctions in that qubit, the ratio of the small to
large junction is �=0.8, which is close to �=0.77 for Figs.
2�b� and 2�e� in this work. The longer relaxation time is due
to a smaller transition matrix element 	t01	. In Fig. 2�e�, 	t01	
is about 0.01, when operating the flux qubit away from the
degeneracy point �e.g., at f =0.493�; in Ref. 2, �=0.8 and
	t01	 should be even smaller.

In order to achieve a strong-coupling regime, we consider
the case in Figs. 2�c� and 2�f� where �=0.66 and 	t01	 be-
comes larger than 0.1 at f =0.493. Now, 	t01	 increases by
more than 1 order of magnitude. Thus, because the relaxation
time is proportional to 1/ 	t01	2, the relaxation time should be
shortened by 2 orders of magnitude, from about 1 �s to
about 10 ns. In this case, the strong coupling between the
flux qubit and cavity mode can be achieved, but the value of
the relaxation time is comparable to the interaction time of
20 ns used for emitting a photon in the cavity.

Therefore, in our approach, we can use a different way to
change the parameter � by replacing the smaller junction
with a tunable SQUID. Only when coupling the flux qubit
with the cavity mode, we shift � to �=0.66. When preparing
the states of the flux qubit via realizing and preserving the
state population inversion, we shift � to a smaller value,
where the relaxation time can be long enough, even �in prin-
ciple� arbitrarily long �in practice, it will not be infinitely
long, but far longer than currently reachable�. More impor-
tantly, we show that the process of changing � can be simul-
taneously adiabatic �so the state changes along the eigen-
state� and fast enough �compared to the interaction time�.
This reveals its enhanced level of control and experimental
feasibility.

B. Comparison with ordinary two-level system

In our proposal, the circuit design not only can either
enhance or reduce the relaxation time for the transition from
	1
 to 	0
, but can also switch on and off this transition by
changing the externally applied magnetic flux inside the
SQUID loop. In particular, a state population inversion can
be created via the third level and preserved for a long time.
Moreover, when needed for generating a single photon, the
SQC can be “turned on”, by changing an externally applied
magnetic flux, to strongly couple to the cavity mode. These
properties show that the circuit design provides an enhanced
level of control, as compared with ordinary two-level sys-
tems.

If one wants to just observe the fundamental vacuum Rabi
oscillations, it is suitable to manipulate only the two lowest
levels of the SQC. However, when applied to the micromaser
proposed here, it is very disadvantageous to only access the
two lowest levels since it is hard to maintain a state popula-
tion inversion with only these two levels.

If one uses the two lowest levels of the SQC in order to
strongly couple the SQC to the cavity mode, the resonance
point should be near the degeneracy point of the SQC, where
the transition between 	1
 and 	0
 is the strongest. As shown
in Ref. 19, one can first operate the SQC far from the reso-
nance point and prepare it in the excited state 	1
 by employ-
ing a � pulse. Then, the � pulse is followed by a shift pulse,
which brings the system into resonance with the cavity
mode. It is required that the process for shifting the qubit
from the operating point to the resonance point is adiabatic,
so as to still keep the qubit at the eigenstate 	1
 after this
shifting process. Therefore, due to the qubit-oscillation cou-
pling, the excitation can be transferred to the cavity, resulting
in a single photon. However, this does not occur ideally. As
shown in Fig. 3�a�, the quantity K01 increases drastically
when the reduced flux f approaches the degeneracy point f
=0.5. This means that the process for shifting the qubit from
the operating point to the resonance point should be very
slow �especially when approaching the resonance point� to
keep it adiabatic. If so, a problem arises because of the
strong relaxation from 	1
 to 	0
 around the resonance point,
greatly reducing the probability of the single photon in the
cavity.

Alternatively, one might consider using a nonadiabatic
process to fast shift the flux qubit from the operating point to
the resonance point. However, at the resonance point, the
qubit state is not anymore the target eigenstate 	1
, but in-
stead a superposition state of 	1
 and 	0
. This is problematic
also because it reduces the single-photon probability.

However, as we have already shown, no such problems
should occur in our proposal using three levels, because of
the greatly enhanced level of control available when using
three levels and controlling the 	0
↔ 	1
 transition strength
via the magnetic flux inside the SQUID loop.

C. Comparison with other theoretical works

A theoretical work in Ref. 20 considered a �-type three-
level system, where no transition occurs between the lowest
two levels, but transitions are allowed between the other lev-
els. Together with the lowest two levels, the third level is
used to indirectly achieve a one-qubit gate for the lowest two
levels �i.e., the qubit levels�. In that work, the circuit consid-
ered is a rf-SQUID consisting of a loop with one Josephson
junction. It is known that this can be used as a flux qubit, but
it requires a relatively large loop inductance to produce a
two-well potential. This makes the rf-SQUID more suscep-
tible to flux noise. Another theoretical work in Ref. 21 used
the idea in Ref. 20 to further show that a complete set of
one-qubit gates could be achieved.

However, in contrast to the �-type three-level system in
Ref. 20, the lowest three levels of the circuit design in our
approach can form a �-type three-level system when operat-
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ing away from the degeneracy point. Most importantly, the
transitions, particularly the transition between the lowest two
levels, can be tuned at will by simply changing the parameter
� via the magnetic flux inside the SQUID loop. Therefore,
this circuit can prepare and preserve the state population in-
version between the lowest two levels and can also trigger a
strong transition between these two levels. Moreover, these
processes provide an enhanced level of control and can be
manipulated both adiabatically and fast enough. These re-
markable properties do not exist in the system considered in
Refs. 20 and 21.

VI. CONCLUSION

We have proposed a tunable on-chip micromaser using a
SQC. The circuit design provides an enhanced level of con-
trol via adjusting the parameter � with the magnetic flux

inside the SQUID loop. By taking advantage of the exter-
nally controllable transitions between states, we can both
produce and preserve a state population inversion for the two
working levels of the SQC. When the previously generated
photon in the cavity is decaying, the SQC can generate a new
single photon. These processes can be regularly repeated to
produce single photons in a persistent manner. This approach
provides a controllable way for implementing a persistent
single-photon source on a microelectronic chip.
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