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A fundamental property of wave propagation is Anderson localization, which affects the transfer of infor-
mation, energy, mass, and charge in disordered media. This localization can manifest itself via, e.g., the
metal-insulator transition. We exactly map the behavior of a quantum particle moving in a potential with
correlated disorder to the sub-terahertz wave propagation in either Josephson chains or superconducting mul-
tilayers. When the Josephson junction parameters vary randomly, the sub-THz electromagnetic waves cannot
propagate through these Josephson structures due to localization. For parameter variations with long-range
correlations, we predict sharp transitions from transparent to reflective frequency regions for Josephson plasma
waves. With appropriate choices of the correlation function, frequency windows with targeted or designed
transparencies for THz or sub-THz electromagnetic waves could be achieved. This could be useful for tailoring
the electromagnetic wave spectrum of Josephson arrays within the THz frequency range, which is important
for applications in physics, astronomy, chemistry, biology, and medicine.
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I. INTRODUCTION

The growing number of studies of Josephson structures is
partly motivated by the sub-terahertz �up to several hundreds
GHz� frequency range of the electromagnetic waves �so-
called Josephson plasma waves� propagating in these sys-
tems. Controlling Josephson plasma waves �JPWs� in Jo-
sephson arrays could be potentially useful for applications in
physics, astronomy, chemistry, biology, and medicine, in-
cluding THz imaging, spectroscopy, tomography, medical di-
agnosis, health monitoring, environmental control, as well as
chemical and biological identification.1 These THz electro-
magnetic waves interact nonlinearly with the Josephson me-
dium itself and with magnetic flux quanta �Josephson vorti-
ces�, which, in turn, can be conveniently manipulated by
varying an in-plane magnetic field and/or an out-of-plane
electric current. Such an unprecedented level of controllabil-
ity has been used to propose a set of well-integrated THz
devices,2–6 including generators, tunable filters, detectors,
wave mixers, lenses, converters, and amplifiers.

Furthermore, recent achievements in nanotechnology al-
low the fabrication of parallel-coupled one-dimensional �1D�
Josephson junction chains7,8 �Fig. 1�a��, known as discrete
Josephson transmission lines, and artificial superconducting
multilayers9 �Fig. 1�b�� with prescribed properties. For in-
stance, one can controllably introduce some degree of disor-
der in these nanodevices. Since the theoretical models de-
scribing the Josephson arrays are well defined, it offers the
opportunity of theoretically exploring and experimentally
testing several fundamental concepts of low-dimensional
physics and employing these for further developing super-
conducting THz devices.

Transport properties of disordered media have been stud-

ied since the 1950s when Anderson localization,10,11 a funda-
mental concept for disordered systems, was proposed. For
example, a white-noise �uncorrelated� disordered 1D chain
exhibits insulating behavior at low temperatures due to mul-

FIG. 1. �Color online� Schematic diagram of the parallel-
coupled 1D Josephson junction array, known as discrete Josephson
transmission line �a�, and an artificial superconducting-
nonsuperconducting multilayer �b�. For both systems, disorder can
be introduced by varying the Josephson critical currents Jc

�n�=Jc�1
+�n�=Jc�1±��. These disordered Josephson transmission line �a�
and artificial multilayers �b� can be mapped to a binary �dichoto-
mic� chain with symbol “1” corresponding to +� and “0” referring
to −�.
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tiple random scattering, i.e., as a result of destructive inter-
ference, a quantum particle turns out to be localized inside a
finite length �calculated by Thouless12�. In contrast, particles
in a periodic �i.e., perfectly ordered� system can propagate
long distances, giving rise to metal-like conducting behavior
or peculiar properties of photonic crystals.13 Intermediate
systems, described, for instance, by correlated random poten-
tials �e.g., Refs. 14–16� or quasicrystalline structure �e.g.,
Refs. 17–19�, can demonstrate either localization or delocal-
ization, depending on their parameters. For instance, the de-
gree of disorder drastically influences the particle mobilities.
These phenomena involving disorder can be conveniently
described using 1D tight-binding models �see, e.g., Refs.
16–18, 20, and 21�.

For a long time, it was believed that localized and ex-
tended states in 1D potentials did not coexist and 1D systems
could not display complex dynamic features such as the
metal-insulator transition. An unexpected result was obtained
in Refs. 22–24 that correlations can produce delocalized
states in a random potential. Generalizing Thouless calcula-
tions, a relation between the pair correlation function and the
localization length was derived in Refs. 14, 25, and 26. This
relation shows that the correlation length can quickly change
from infinite to a finite value at certain values of the particle
energy, i.e., the localized and delocalized electron states do
coexist in 1D random long-range-correlated systems. This
means that the metal-insulator transition can be observed
when the particle energy changes. This phenomenon, known
as the mobility edge, is discussed, for instance, in Ref. 27.
These findings have revised a previously accepted belief that

any randomness �no matter how weak the randomness is� in
1D structures results in Anderson localization.11 In contrast,
long-range �i.e., power law decaying� correlations can pro-
vide a continuum of extended states in the energy spectrum,
and a metal-insulator transition.

Here we describe an analogy between the behavior of a
quantum particle and the sub-terahertz wave propagation in
1D Josephson arrays and superconducting multilayers. For
instance, it has already been shown4,28 that the frequency
intervals where the electromagnetic JPWs can propagate
form a band structure if a periodic superlattice of Josephson
vortices is induced by an in-plane magnetic field in super-
conducting multilayers or a long 1D Josephson junction.
This JPW photonic crystal,4 with gaps of forbidden fre-
quency ranges tuned by the in-plane magnetic field, is a
much more controllable analog of both the band structure in
1D conductors and standard photonic crystals.13 Here, we
use this analogy �see Table I� between JPWs and quantum
particles to show how to manipulate the THz and sub-THz
electromagnetic wave localization and the transparency of
Josephson chains and artificial superconducting multilayers
via a controllable change of their disorder. In particular, we
predict the frequency windows of transparency for samples
with long-range correlated disorder. The effective random
potential can be either continuously distributed or take a dis-
crete number of values. We show that even a dichotomic �or
binary� potential �i.e., discrete potential taking randomly
only two possible values� can be used to construct transmis-
sion lines with any desirable transparency window �acoustic
analogs of these have been studied in Ref. 16�. Moreover, for

TABLE I. Comparison between localization of quantum particles and Josephson plasma waves. Here “tunability” refers to the ability to
change the transport properties of a system by tuning an external parameter. This ability to tune and control transport could be useful for
applications.

Quantum particles Josephson plasma waves

Model Tight-binding model Linearized sine-Gordon model

Mapping Energy E
quasi-momentum k

Frequency �
Wave number q

Randomness via Random potential Randomness in the Josephson junctions

Transparency edge
via correlations

Yes Yes, by changing either the incident angle
�for superconductors� or the frequency
�for the Josephson transmission line�

How to observe E.g., metal-insulator transition,
transmission coefficient

Transmissivity changes: from transparent to
opaque for JPW

Comparison beyond undamped, linear response

Nonlinearity Can occur due to interparticle
interactions, but not easily controllable

Controllable nonlinearity due to the nonlinear J
versus � �J�sin ��

Damping Can occur, but not controllable Controllable by changing temperature

Tunability No Yes, by locally changing currents or fields
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superconducting multilayers, the transparency edge can also
be observed as a function of either the incident angle or
frequency of the sub-terahertz radiation, which could be use-
ful for tailoring the electromagnetic wave spectrum of the
array. The Josephson structures proposed here can be poten-
tially useful for THz and sub-THz filters which are sensitive
to either the frequency or the propagation direction of elec-
tromagnetic waves. The experimental realization of this pro-
posal would be another example of controlled Anderson lo-
calization, among few, including experiments with GaAs-
AlGaAs random superlattices29 and with microwave trans-
mission spectra through a single-mode waveguide with in-
serted correlated scatterers.30

II. JOSEPHSON JUNCTION CHAINS

A. Designing a potential for JPWs in a quasi-1D Josephson
array

We consider JPWs propagating along the discrete Joseph-
son transmission line schematically shown in Fig. 1�a�. The
gauge-invariant phase difference �n, determining the electric
and magnetic fields at the nth junction, obeys the discretized
version of the perturbed sine-Gordon equation �see, e.g., Ref.
31�:

1

�J
2

d2�n

dt2 +
1

�R

d�n

dt
+

Jc
�n�

Jc
sin �n =

1

a2 ��n+1 + �n−1 − 2�n� + jn.

�1�

Here, �J is the Josephson plasma frequency, a=d /�J is the
discreteness parameter, d is the spatial period of the array, �J
is the Josephson penetration depth, �R is the dissipation fre-
quency, Jc

�n� /Jc is the ratio of the critical current Jc
�n� in the

nth junction and the average critical current Jc, and jn
=Jn /Jc is the normalized external current flowing through the
nth junction. In the experiment,31 the discreteness parameter
can be chosen arbitrarily, e.g., it can take on any value be-
tween 0.1 and 10.

Let us first consider the case when all contacts are iden-
tical, Jc

�n� /Jc=1, while we can change the driving current jn
through the junctions. The solution of Eq. �1� for plasma
waves can be written in the form �n=�n

�0�+�n, with �n�1,
where

− jn =
1

a2 ��n+1
�0� + �n−1

�0� − 2�n
�0�� − sin �n

�0� �2�

and

1

�J
2

d2�n

dt2 +
1

�R

d�n

dt
+ �1 + �n��n =

1

a2 ��n+1 + �n−1 − 2�n�

�3�

with �n=cos �n
�0�−1 which can be seen as a tunable �by

changing jn� “potential” for JPW. In this sense, Eq. �2� can
be considered as a recipe to calculate the current distribution
which has to be used to obtain a desirable set of �n

�0� and,
thus, �n. Instead of currents jn, magnetic fields applied be-
tween adjacent Josephson junctions can also be used to pro-
duce a tunable potential for JPWs.

An alternative way to create a potential �n for JPWs
would be the fabrication of a discrete transmission line with
a desirable distribution of the parameters. For instance, the
critical current of the nth junction can vary, taking the values
Jc

�n�=Jc�1+�n� with the zero-averaged �n, i.e., ��n�=0. Con-
sidering JPWs with �n=�n�1, we recover Eq. �3�, but now
with a fixed potential.

In practice, one can never change the critical current
alone. For example, one can design the junction area to be
different from junction to junction. This will give an extra
fluctuating coefficient in front of the first term of Eq. �3�.
Taking into account this coefficient results in the renormal-
ization of the fluctuating parameter �n. The exact expression
for �n depends on the design of the experiment.

B. Mapping the Josephson chain onto a tight-binding model

In order to map the problem of propagating JPWs in a
transmission line �Fig. 1�a��, we need to neglect both energy
dissipation and nonlinearity. The dissipation term in Eq. �3�
can be safely omitted for low-enough temperatures, while the
nonlinearity becomes important6 only for high-enough am-
plitudes of the plasma waves. As a result, the equation de-
scribing the propagation of linear JPWs in this discrete sys-
tem can be rewritten as

�n+1 + �n−1 + Un�n = E�n �4�

with

Un = a2�n; E��� = 2 − a2��2

�J
2 − 1� . �5�

Below we assume Un�1, which can be easily satisfied by
an appropriate choice of �n and a.

Equation �4� is the same as in the tight-binding model
proposed by Anderson11 for the description of quantum par-
ticle motion in discrete 1D uncorrelated site potentials Un.
For Un=0 �i.e., at �n=0� the particle is delocalized,

�n = �0exp�iqn�, E = 2 cos q . �6�

This corresponds to the known result 31 that JPWs with the
wave number q and

�2

�J
2 = 1 +

4

a2 sin2�q/2� �7�

can propagate in the transmission line. For periodic Un �i.e.,
periodic �n�, the amplitude in Eq. �6� slightly oscillates,
�0�n�=�0+��n� ; 	��n� 	 ��0, with the period of the poten-
tial Un. For this case, the zone structure of E �photonic crys-
tal for the JPW spectrum �see, Ref. 4� or energy zone struc-
ture for quantum particles� occurs. For uncorrelated �white
noise� random potentials Un, the envelope curve �0�n� de-
cays exponentially due to localization. According to
Thouless,12 the localization length l0

quant for quantum par-
ticles obeys the relation,

l0
quant�E� = 8d sin2 q�E�/U0

2, �8�

where d is the spacing between the potential sites, U0
2

= �Un
2� is the variance of the random potential. For Josephson
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1D arrays, the localization length l0
JPW���= l0

quant�E���� can
be rewritten as

l0
JPW��� =

8da2

U0
2 ��2

�J
2 − 1�
1 −

a2

4
��2

�J
2 − 1�� . �9�

Using this result, we can conclude that the transparency
T��� of the transmission line is exponentially small, i.e.,

T��� � exp
−
L

l0
JPW���� , �10�

if the sample length L exceeds the localization length l0
JPW

�see, e.g., Ref. 32�. For frequencies close to �J, localization
occurs if the number N of junctions in the array exceeds
2/U0

2/3. Here we take into account that q�qmin=1/N. The
transmission line becomes completely nontransparent �for
any frequencies� if N�8/U0

2.

C. Transparency edge due to correlated disorder

Correlations in the random potential introduce some de-
gree of order and thus lead to an increase in the localization
length. According to Refs. 14, 15, 25, and 26, the localiza-
tion length lquant�E� for quantum particles is determined by
the Fourier transform of the normalized correlator

	�r� =
�UnUn+r�

U0
2 , �11�

where �¯� denotes the average over the chain:

lquant�E� � lquant�E,q�E�� =
l0
quant�E�

	̃�2q�
,

	̃�q� = 1 + 2
r=1




	�r�cos�qr� �12�

with q�E� defined by Eq. �6�. For the white-noise potential,
	�r�=�0,r, and Eq. �12� gives lquant�E�= l0

quant�E�, i.e., we ob-
tain the previous result Eq. �8�. In the case of short-range
correlations, the correlator 	�r� for several values of r is

different from zero and the Fourier component 	̃�q� can only

vanish at some discrete energies, where 	̃�q�=0. Thus, short-
range correlations of random potentials can result in ex-
tended states22 at several isolated energies.

If the correlations are long-range �e.g., 	�r� decays as a
power law�, a continuum of extended states can appear in the

energy spectrum,16,25,33 since 	̃�q� can vanish in an interval
of q. In other words, controllable long-range correlations fa-
cilitate the observation of the metal-insulator transition.30

Therefore, transparency windows can be observed in the
transmission line, if one fabricates either a transmission line
with a locally changeable external current and apply jn with
desirable correlations, or a junction array with fixed appro-
priate correlations of Jc

n.
There exist several methods of generating partially ran-

dom sequences with desirable correlation functions. For ex-
ample, a random set of scattering centers, with continuously

distributed parameters,30 was used to manipulate microwave
transmission spectra through a single-mode waveguide.
However, this requires a precise control of the system param-
eters. Recently, it was shown34 that random sequences with
any prescribed correlation function can be constructed using
additive many-step Markov chains with long-range memory
function.35 In this case, it is possible to use only two values
for the random variable, which is much easier to control
during the fabrication process. Thus, for example, we can
consider arrays of junctions where the Josephson current
takes only two values, Jc

�n�=Jc�1±��. Previous related work
on acoustic wave propagation in semiconductor multilayers
appears in Ref. 16.

Using our Eqs. �5�–�12�, we now calculate the frequency
dependence of the transmission coefficient

T/T0 = T/T�� = 0� = exp�− L/lJPW���� , �13�

normalized to the value of T at zero fluctuations. A correlated
random binary sequence �the concrete realization of binary
sequences in Ref. 36 which were used when plotting Figs.
2–4� of 105 symbols �either zero or one� was generated by
means of the method described in Ref. 34 and the Appendix.
The sizes of the samples �number of symbols� were chosen
to get significant filtering effect which gradually decays for
smaller samples.

The results of the calculations of T��� /T0 are presented
for transmission lines in Figs. 2�a� and 3�a�. The dashed blue
curves correspond to uncorrelated disorder, which strongly
suppresses the transmissivity for long-enough samples. The
solid red curves describe the transmissivity of the samples
with long-range correlated disorder having the correlation
function shown in Figs. 2�b�, 2�c�, 3�b�, and 3�c�. The corre-
lation function in Fig. 2 was chosen so that it suppresses the
transmission of THz waves at the middle �� /�J�2�1
+2/a2 of the spectrum located in

1 �
�

�J
��1 +

4

a2 , �14�

while the transmission of THz waves with frequencies near
the edge of the spectrum is suppressed for the correlations
used here to obtain Fig. 3. Thus, it is clearly seen that intro-
ducing correlations allows to obtain transparency windows
and frequency-selective filtering.

III. THE TRANSPARENCY EDGE IN SUPERCONDUCTING
MULTILAYERS

Now we consider superconducting multilayers �Fig. 1�b��
with fluctuating Josephson current, Jc

�n�=Jc�1+�n�, between
the nth and �n+1�th layers. This system is described by the
coupled sine-Gordon equations37

�1 −
�ab

2

s2 �n�� �2�n

�t2 + �J
2sin��n�� −

c2



�2�

�x2 = 0, �15�

where �ab is the in-plane London penetration depth, s is the
interlayer spacing,  is the interlayer dielectric constant, and
the operator �n is defined as �nf = fn+1−2fn+ fn−1. Lineariz-
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ing this equation �sin��n�→�n�, and considering a mono-
chromatic THz wave with frequency � and wave vector � /c
incident from the vacuum to the ab-plane of the sample, we
obtain

�n�x,t� = �̃nexp�i�t − i
� sin �

c
x� , �16�

where � is the incident angle of the THz waves �see Fig.
1�b��. Here we assume that the in-plane component of the
wave vector cannot change at the sample boundary. For �̃n
we derive Eq. �15� in the same form as Eq. �4� with

E = 2 −
s2

�ab
2 � �2sin2 �

��2 − �J
2�

− 1� , �17�

Un =
s2

�ab
2

�2sin2 �

��2 − �J
2�2 · �n. �18�

In order to obtain the expression �18� for random potentials,
we use the relation

��J
�n��2 =

8�esJc
�n�

��
= �J

2�1 + �n� �19�

with �J
2=8�esJc / ��.

Thus, we show that the coupled sine-Gordon model can
be also mapped to the tight-binding model �4�. For samples
with correlated disorder, one can observe the transmissivity
window with respect to either the incident angle � or fre-
quency � offering the possibility of filtering sub-THz and
THz radiation with respect to frequency and/or direction of
the wave propagation determined by the angle �. For in-
stance, one can consider the incident angle � as a control
parameter for the frequency windows in T���, i.e., for the
transparency edge in superconducting multilayers. For a lay-
ered sample with correlated disorder having the correlation

FIG. 2. �Color online� Controlling transparency windows in
frequency-selective THz filters �Fig. 1�a��. �a� The dimensionless
transmission coefficient T /T0=T /T��=0�=T��� /T�� , �=0� versus
dimensionless frequency � /�J for different lengths N=L /d of Jo-
sephson chains �Fig. 1�a��. Blue dashed lines correspond to T��� for
uncorrelated disorder, while the red solid curves correspond to T���
with disorder having correlation functions which are shown in pan-
els �b� and �c�. Spatial correlations associated with dimensionless
	�r� �normalized by a�, shown in panel �b�, produce correlations in

the frequency domain: shown in the Fourier transform 	̃�E� with
dimensionless E �see panel �c��. The parameters used here are: a
=0.5; dispersion �U0

2=10−2. It is clearly seen that varying the cor-
relation function 	 controls the transparency windows in T���.

FIG. 3. �Color online� Controlling the transparency windows in
frequency-selective THz filters �Fig. 1�a��: Same as in Fig. 2, but
with dimensionless correlation functions 	 shown in �b� and �c�.
Comparing Figs. 2 and 3, it is clearly seen that varying the corre-
lation function 	 controls the transparency windows in T���. Notice

the sharp change in the correlation function 	̃�E� in both, Figs. 2�c�
and 3�c�.
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function shown in Fig. 4�b�, the transparency versus the in-
cident angle is shown in Fig. 4�a�. The filtering of THz ra-
diation with respect to the incident angle is clearly seen.

IV. CONCLUSIONS

We show that wave localization occurs for JPWs propa-
gating in either disordered 1D Josephson arrays �1D Joseph-
son transmission lines� or artificial supercoducting multilay-
ers. For samples with correlated disorder, transparency
windows can be observed when varying the frequency or the
angle of the incident electromagnetic waves. This transpar-
ency edge can be changed at will by an appropriate choice of
the correlation function, which could be useful for THz de-
vices, including frequency-selective or direction-selective
filters. Also, the possibility to control the nonlinearity and
dissipation in Josephson chains and arrays opens an avenue

for experimental studies of these effects on localization. For
example, it would be of interest to construct a transmission
line with a quasiperiodic sequence of junctions where a sin-
gular continuous spectrum of states is realized. In this case,
the power-law decrease of the transmission coefficient with
an increase of the sample length should be observed.16,38

Moreover, experimental and theoretical studies of JPW
propagation in 2D Josephson arrays could be a useful tool to
study wave localization in 2D structures.
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APPENDIX: GENERATION OF THE CORRELATED
RANDOM BINARY SEQUENCE

Here we present a short description of the method34 to
generate binary sequences of zeros and ones with desirable
correlation properties. Consider a homogeneous binary se-
quence, �i= ±�, of symbols for −N� i�N. To construct an
N-step Markov chain we have to introduce the conditional
probability P��i 	�i−N ,�i−N+1 , . . . ,�i−1� for the ith symbol �i

to take the value �i= +� if the N symbols before the ith one
have taken values �i−N ,�i−N+1 , . . . ,�i−1 �i.e., if the ith symbol
occurring after the N-length-word TN,i, where TN,i stands for
the sequence of symbols �i−N ,�i−N+1 , . . . ,�i−1� �another study
of N-step Markov chains was done in Ref. 16�. The additive
Markov chain is characterized by the conditional probability
function of the form

P��i = �	TN,i� =
1

2
+ 

r=1

N

F�r��i−r, �A1�

where the function F�r� is the memory function. The memory
function describes how strong a previous symbol �i−r affects
the generated one, �i. There is a relation, see Ref. 34, be-
tween the memory function F�r� and the correlation function
	�r� of the Markov chain,

	�r� = 2� 
r�=1

N

F�r��	�r − r��, r � 1. �A2�

This equation allows to obtain the memory function F�r�
and to generate a realization of Markov chain for any chosen
�prescribed� correlation function 	�r�. First, we choose a ran-
dom set of initial symbols �1 ,�2 , . . . ,�N with probability 1 /2
to take one of two values, �i= ±�. Using these symbols and

FIG. 4. �Color online� Controlling transparency windows in
angle-selective THz filters. �a� The dimensionless transmission co-
efficient T /T��=0� versus the incident angle � of THz radiation
�see Fig. 1�b�� for different thickness N=L /d of artificial multilay-
ers �Fig. 1�b��. Blue dashed lines correspond to T��� for uncorre-
lated disorder in the Josephson critical currents between layers,
while the red solid curves correspond to T��� with correlated disor-
der. Correlations are described by the dimensionless angular-

correlation function 	̃��� shown in panel �b�. The parameters used
here are �ab /�c=200, �=10−3, ��2−�J

2� /�J
2=10−3, and =10.
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the memory function F�r�, we calculate the conditional prob-
ability function, Eq. �20�. When generating the �N+1�th
symbol, we assume the probability p= P��N+1=� 	TN,N+1� of
�N+1 to take the value +�. Namely, we generate a random
number x homogeneously distributed within the interval
�0,1�. If x� �0, p�, we assign the symbol �N+1= +�; else
�N+1=−�. At the next�N+ i� steps we employ the same pro-

cedure using the word �i ,�i+1 , . . . ,�i+N−1 as an input when
calculating the conditional probability function. After the
chain is constructed, the initial nonstationary part of the
chain �of length �N� should be removed. Examples of such
sequences are shown in Ref. 36. The symbols “zero” corre-
spond to junctions with Jc

�n�=Jc�1−��, while the symbols
“one” correspond to junctions with Jc

�n�=Jc�1+��.
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