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The Josephson vortex �JV� lattice generated by the in-plane magnetic field Hab is a periodic array that
scatters Josephson plasma waves �JPWs� in layered superconductors. This produces a photonic band gap
structure, i.e. terahertz �THz� photonic crystal, with easily tunable forbidden zones, or gaps, controlled either
by the in-plane magnetic field or the transverse transport current J� flowing across the superconducting layers.
A giant magneto-optical effect, that is a strong dependence of the reflection and transmission coefficients on the
applied in-plane magnetic field Hab, is predicted. A relatively small change of Hab can switch the sample from
fully transparent to fully reflective within given frequency windows. Thus, the material can change from a THz
glass to a mirror by merely changing either Hab or J�. The described effects might be useful for development
switchable “glass/mirrors” THz filters tuned by either Hab or J�.
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I. INTRODUCTION

Layered superconducting structures, including strongly
anisotropic �Bi-, Tl-, and Hg-based� high-Tc superconductors
�HTS� as well as artificial multilayered heterostructures �e.g.,
Nb-Al-AlOx-Nb�, exhibit very intriguing physical properties.
These layered media can be described as stacks of Josephson
junctions �SJJ� and consist of superconducting and insulating
layers which are parallel to the crystallographic ab plane.
The Josephson vortices �JVs� penetrate the sample and form
a triangular lattice when the external magnetic field Hab is
applied parallel to the ab plane. In contrast to Abrikosov or
pancake vortices, the interaction between JV and crystal de-
fects is weak and the JV lattice forms a near-perfect array of
isosceles triangles at low enough temperatures.

It was found1–4 that the Josephson plasma frequency, �J,
of HTS layered systems is in the THz range, which is still
very difficult to reach for both optic and electronic devices.
This is of particular interest for applications5 and is motivat-
ing an increase in studies of high-frequency properties of
layered systems. The main focus so far has been on radiation
produced by moving either a single JV,1,6–9 or the entire JV
lattice,3,4 as well as studies of Josephson plasma waves in
parallel magnetic fields Hab �Refs. 10–12�. For instance, it
was predicted that a single Josephson vortex moving through
an in-plane-modulated SJJ could emit radiation within cer-
tain frequency windows,13 which might be potentially useful
for future frequency-selective THz emitters.

The scattering and filtering �i.e., frequency-selection� of
THz and sub-THz electromagnetic waves �EMWs� using a
lattice of vortices inside a layered superconductor were stud-
ied in Ref. 14. The vortices were assumed to have very small
oscillations under the action of the EMWs. By studying the
influence of an almost-fixed JV lattice on the propagation of
THz EMWs, it was found that the interaction of the propa-
gating wave and the JV lattice results in forbidden gaps in
the frequency spectrum �i.e., THz photonic crystals� conve-

niently tunable by the applied magnetic field Hab. Moreover,
by changing Hab one can easily change, by an order of mag-
nitude, the transmission, T, and reflection, R=1−T, coeffi-
cients of the EMWs. Thus, layered superconducting samples
could operate as a THz-frequency filter easily tuned by the
applied magnetic field Hab. Recently, in Ref. 15, band-gap
structures for a single long Josephson junction were also
studied. Note that the reflection and transmission coefficients
were not considered in Ref. 15.

This work considers Josephson plasma waves �JPWs�
scattering on either fixed or moving JVs. In Sec. II we ana-
lyze a significantly improved model describing the interac-
tion of EMWs and the JV lattice in SJJ. In Sec. III we inves-
tigate the band-gap structure �photonic crystal� and its
evolution when changing the applied magnetic field Hab and
the EMW wave vector. In Sec. IV we analyze the propaga-
tion of EMWs in the SJJ with a JV lattice. We calculate the
dependence of the reflection, R�Hab ,��, and transmission,
T�Hab ,��, coefficients on the magnetic field Hab and EMW
frequency � for waves incident on the sample edge from the
vacuum. We stress that the in-plane magnetic field Hab dras-
tically affects R and T, even in the absence of band-gap
structure. Thus, we predict a giant magneto-optical16 effect:
changing an applied in-plane magnetic field switches the
sample from fully transparent �THz glass� to fully reflective
�THz mirrors�. In Sec. V we study the effect of the JV lattice
motion on the band-gap structure and EMW reflection. We
prove that the frequency spectrum of the photonic crystal
exhibits a Doppler effect and depends significantly on the
velocity of the JVs. Thus, in Sec. V we describe how to use
the current J�, flowing perpendicular to the layers and driv-
ing the JV lattice, to control THz radiation. In Sec. VI we
discuss the possibility of experimentally observing the ef-
fects described here. A general comparison between usual
optical photonic crystals and JV photonic crystals is pre-
sented in Table I.

This work significantly extends results briefly summa-
rized in Ref. 14. Namely, here we present a complete deri-
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vation of the model describing JV lattices as scatterers of
JPWs. This more detailed study uncovers a stronger �by
about a factor of 2� magneto-optical effect than was reported
earlier.14 Moreover, here we present a theory describing the
scattering of JPW’s on driven/moving JV lattices and predict
a Doppler-like effect for the band-gap structure and reflec-
tion and transmission coefficients.

II. BASIC MODEL

A. Electromagnetic waves in modulated Josephson media

We consider SJJ with layers in the xz coordinate plane
�Fig. 1�a��, which coincides with the crystallographic ab
plane of the sample in the case of HTS, and the y axis across
the layers �along the c axis for HTS�. The in-plane magnetic
field Hab is applied along the z axis and, thus, the JVs are
parallel to the z direction. The JVs form a triangular lattice
with distance dx between vortices within a layer �i.e., along
the x direction� and dy in the y direction. Due to the high
anisotropy of the superconducting medium, the distance dx is
much larger than dy, and dx /dy =�. Here � is the anisotropy
coefficient of the sample. The usual value of � for Bi2212
single crystals is about 300–600. As a result, the JV lattice
consists of dense vortex rows along the y axis, separated by
strips, as schematically shown in Fig. 1�b�. We emphasize
that the JV lattice at low temperatures is close to an ideal
isosceles-triangular array, because interactions of JVs with

TABLE I. Comparison between standard photonic crystals and tunable THz photonic crystals using Josephson vortices.

Standard photonic crystals
Josephson-vortex �JV�
photonic crystals

Materials Various �e.g., semiconductors,
polymers, insulators�

Layered superconductors �SCs�

Frequency range Typically optical; Not in THz Sub-THz and THz

Scatterers Typically holes in materials Josephson vortices in SCs

Scatterers made by An often very complicated and
cumbersome fabrication process

Applying Hab

Near-perfect periodicity Difficult to realize Automatically provided

Easily tunable? No Tunable via applied magnetic field
or current

Moveable scatterers? No Yes, producing a Doppler effect

Gap size Can be large Typically small

Operating temperature Typically room temperature T�90 K

Intrinsic nonlinearity Usually not Yes, due to nonlinear current-phase
relation

Higher harmonic genera-
tion

Usually not Yes, due to nonlinearity

Wave localization Requires introducing defects Can be produced by nonlinearities

Magneto-optical effect? No Yes

FIG. 1. �Color online� �a� 3D geometry of a layered supercon-
ductor with the chosen coordinate system, �b� 2D schematics of the
JV lattice with the notation described in the text.
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defects are weak due to the absence of the normal-metal
core. Note also that the JV lattice can be easily pinned by
pancake vortices generated by a weak out-of-plane magnetic
field �see, e.g., Ref. 17�, which allows an alternative way for
tuning JV arrays.

We consider JPW’s propagating along the superconduct-
ing layers with the magnetic field along the direction of the
JV’s,

H�x,y,t� = ẑH0�x�exp�iqy − i�t� , �1�

where ẑ is the unit vector along the z axis, q the wave vector
perpendicular to superconducting layers, and � the fre-
quency of the EMWs.

The total tunneling current between the �n+1�th and nth
superconducting layers is the sum of the pair current and the
quasiparticle current caused by the electric field Ez

�n�. Its den-
sity obeys the usual Josephson relation18

J�n� = Jc sin���n�� + ��Ey
�n�, �2�

where ��n� is the gauge-invariant interlayer phase difference
of the superconducting order parameter in the SJJ, �� is the
quasiparticle conductivity in the c-direction, i.e., the direc-
tion orthogonal to the CuO2 layers. The set of coupled sine-
Gordon equations for ��n� that corresponds to Eq. �2� can be
expressed as19

�1 −
�ab

2

s2 �n
2�� �2��n�

�t2 + �r
���n�

�t
+ �J

2 sin ��n�� −
c2

�

�2��n�

�x2 = 0.

�3�

Here �ab is the London penetration depth across the layers,
and s is the interlayer distance �10–20 Å for HTS�, the op-
erator �n

2 is defined as �n
2 fn= fn+1+ fn−1−2fn,

�J =�8�esJc

	�
�4�

is the Josephson plasma frequency, and Jc is the critical cur-
rent density across the SJJ. The damping frequency, �r, can
be estimated as �r=4��� /�, where � is the dielectric con-
stant. The transverse conductivity �� is partly controlled by
the sample temperature, and the damping can be easily de-
creased to negligibly small values, �r /�J
1. In general, the
conductivity along the superconducting layers, ��, should be
also included in �r.

20,21 However, for frequencies of the or-
der of �J, this contribution can be estimated as22 �� /�2��

	10−3, and safely omitted. When deriving Eq. �3�, the
charge neutrality of the system is assumed, which is valid if
we are not interested in a frequency range very close to �J
and wave vectors 
q
 close to � /s.19,23,24 Note also that the
�r-relaxation term in Eq. �3� is small and can be usually
neglected. The influence of the dissipation term on the reflec-
tivity and transmissivity is described in Sec. IV B.

We consider the amplitude of the wave H0�x� to be small
compared to the externally applied in-plane field Hab �re-
sponsible for generating the JV lattice� and the solution to
Eq. �3� can be obtained perturbatively as

��n��x,t� = �0
�n��x,t� + �1�x,y,t� , �5�

where �0
�n��x , t� corresponds to the steady JV lattice and

small term �1�x ,y , t� describes the propagating EMW.
Namely, 
�1�x ,y , t�

 
�0

�n��x , t�
. Hereafter we assume that
�1 changes slowly on scales about the distance s between
layers, i.e., the discrete phase difference �1

�n��x , t�=�1�x ,y
=ns , t� can be replaced by a continuous function �1�x ,y , t� of
y.

The relations between the electric and magnetic fields am-
plitudes in the EMWs, Eq. �1�, and the perturbation of the
gauge-invariant phase difference, Eq. �5�, are determined by
the Maxwell equations and the Josephson relation �2�. Using
these equations and the charge neutrality condition we can
find the following two equations:19

�E0y
�n�

�x
− iqE0x

�n� = −
i�

c
H0

�n�, �6�

E0y
�n� =

�0

2�cs

��1

�t
, �7�

where E0x
�n� and E0y

�n� are the corresponding components of the
electric field amplitude for the JPWs, and �0 is the flux
quantum.

The isolated JV is described by a soliton-like solution of
Eq. �3�. In layered superconductors, the corresponding equa-
tion for the soliton is essentially nonlocal.8,25 The form of the
soliton could not be found explicitly �e.g., Ref. 25�. In the
junction, where the center of a JV is located, the phase can
be approximated as25

�0 = � + 2 tan−1�x/l0� , �8�

where l0=�s. The phase difference of a soliton decays fast
away from the junction having a JV. For moderate magnetic
fields, the steady-state solution �0 of Eq. �3� can be approxi-
mated as a sum,

�0
�n��x� = �

m

�0�x − xmn� , �9�

of isolated solitons. Here xmn is the position of the mth JV in
the nth layer. Such an approach is evidently valid if dx� l0.
Using the relation Hab=2�0 /dxdy we find the applicability
condition of Eq. �9� in the form

Hab 
 H1 =
2�0

�s2 , �10�

or Hab
3 T, if we take the estimate �=600 and s=15 Å.
Substituting �1�x ,y , t�=�x�exp�iqy− i�t� into Eq. �3�,

we derive, in the linear approximation:

�1 +
4�ab

2

s2 sin2�qs

2
��− �2 − i�r���x�eiqy + �J

2�x�

��1 −
�ab

2

s2 �n
2��eiqy cos �0

�n�� −
c2eiqy

�

d2�x�
dx2 = 0.

�11�
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B. Limit of long wavelength perpendicular layers

Following Ref. 14, we can reduce the equation set �11� to
an ordinary differential equation with respect to �x�. Such
an approach is valid if the wavelength across the SJJ �along
the y direction� is large enough, i.e., the wave vector q is not
large. Indeed, from a physical point of view, the JV lattice is
equivalent to a periodic array of scattering centers across the
SJJ �i.e., along the y axis� since dy 
dx. The JPW wavelength
with 
q
dy 
1 cannot probe the periodic structure of these
scatterers in the y direction, but only their average height and
thickness. In other words, the wavelength 2� / 
q
 should be
larger than the period of the JV’s structure in the y direction
or in dimensionless form


q
s � 2��hab, hab =
Hab

H1
. �12�

For HTS like Bi2212, the value of the characteristic field
H1=2�0 /�s2 is of the order of 3–6 T.

Mathematically, the procedure of averaging Eq. �11� can
be performed as in usual electrodynamics of continuous
media.26 In Eq. �11� we should average the term with the
operator �n

2 which acts on the product of the fast-varying
“microscopic” value cos �0

�n� and the slowly varying wave
eiqy �here, “fast/slowly” refers on the variation along the y
axis�. Using a straightforward transformation we find
�n

2�fngn�=gn�n
2fn+�n

f fn�n
f gn+�n

bfn�n
bgn+ fn�n

2gn, where the cor-
responding forward and backward derivatives are �n

f fn= fn
− fn−1 and �n

bfn= fn− fn+1. Applying the last rule to
�n

2�eiqy cos �0
�n�� we find, under the condition �12�, the follow-

ing result:

�n
2�eiqy cos �0

�n�� = − �qs�2eiqy cos �0
�n� + eiqy � �F.D.� ,

�13�

where the symbol �F.D.� denotes a sum of terms containing
“full differentials,” �n, of the fast-varying function cos �0

�n�.
The average of the first term in the right-hand side of Eq.
�13� includes the average value of cos �0

�n�,

�cos �0
�n�� =

1

2N
�

l=n−N

n+N

cos �0
�l�, �14�

while the average of the sign-alternating fast-varying func-
tions �F.D.� is zero. Thus,

��n
2�eiqy cos �0

�n��� 	 − �qs�2eiqy�cos �0
�n�� , �15�

where �…� means average along the y direction.
In the long wavelength limit we have sin2�qs /2�

= �qs /2�2, and the averaged Eq. �11� can be written in the
form14

�1 + �ab
2 q2���J

2�cos �0
�n�� − �2 − i��r� −

c2

�

d2

dx2 = 0.

�16�

We introduce the dimensionless variables

� =
x

�s
, �̃ =

�

�J
, �̃J��� = �cos �0

�n�� ,

�̃r =
�r

�J
, �0

2�q� = � s

�ab
�2

�1 + q2�ab
2 � . �17�

Now, using the relations �c=c /���J and �c /�ab=�, we can
rewrite Eq. �16� in a dimensionless form

���� − �0
2�q���̃J

2��� − �̃2 − i�̃�̃r���� = 0, �18�

where the prime denotes the differentiation with respect to �.
The function �̃J

2��� has a field-tunable period

dx/�s = 1/�hab. �19�

The physical meaning of the function �̃J��� is the modula-
tion of the Josephson frequency, since the effective critical
current of the layered medium becomes modulated due to the
current suppression near the JV cores.

C. Stepwise approximation for Josephson vortex cores

Equation �18� is an ordinary linear differential equation
with periodic coefficients. It can be studied numerically. Al-
ternatively, this equation can be considered as a Schrödinger
equation with a periodic “potential” �̃J

2���. Then, well-
known analytical methods can be used to find the “zone” or
gap structure of the system, as well as the reflection and
transition coefficients. In particular, Eq. �18� could be ap-
proximately solved by the WKB method. However, we can
use the method proposed in Ref. 14, which seems to us to be
more appropriate for the qualitative analysis of the scattering
of JPWs by JVs. Namely, we approximate �̃J

2��� by a step-
wise function.

To find an appropriate approximation for �̃J
2���, we now

briefly describe the structure of an isolated JV. In the junc-
tion where a JV is located, i.e., inside and around a JV, we
derive

cos �0
�0��x� = −

l0
2 − x2

l0
2 + x2 , �20�

from Eq. �8�. The profile of cos �0
�0��x� is shown in Fig. 2 by

a red continuous line. The approximate stepwise potential
well W�x� with the size 2l0 for this profile is shown by the
dashed blue line. The height of the stepwise function is cho-
sen from the condition �−�

� W�x�dx=�−�
� cos �0

�0��x�dx. Thus,
we obtain W�x�=1−�F�x�, where F�x�=1, if 
x
� l0, and
F�x�=0, otherwise.

It follows from Eq. �3� that the soliton solution decays
rapidly away from the contact having a JV. Then, we can
neglect � compared with ��ab

2 /s2��n
2� in this equation. Thus,

we derive

�n
2 sin �0

�n� 	 − �2s2�2�0
�n�

�x2 . �21�

Solving this equation we find

sin �0
�±1� = sin �0

�0�� x2

x2 + l0
2� �22�

for the phase difference in the junctions next to the “0”th
contact. Thus, the value of cos �0 decreases considerably
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even in the layers nearest to the contact with a soliton, the
green dotted line in Fig. 2. Thus, we assume that the effec-
tive thickness of the JV is s. As a result, we find the approxi-
mate expression for the function �̃J

2��� in the form27

�̃J
2��� = 1 − �hab

1/2�
m

F�� −
m

�hab
� , �23�

where F���=1, if 
�
�1, and F=0, if 
�
�1, and we use the
relation 2�0 / �dxdy�=Hab.

The second order differential equation �18� requires the
continuity of the functions ��� and ���� in the sample, for
the continuity of the corresponding components of the elec-
tromagnetic field.

III. BAND-GAP STRUCTURE

Forbidden zones in the ��k� dependence, or so-called
“photonic crystal,”28–32 can occur when EMWs propagate
through a periodically modulated structure. For layered su-
perconductors, the JV lattice can serve as such a periodical
scattering structure.14 The period of the JV lattice can be
easily tuned by the applied magnetic field Hab, which is con-
venient for experimental realizations of JPW photonic crys-
tals and also of significance for possible applications as tun-
able THz filters.

In this section we neglect, for simplicity, the relaxation
term in Eq. �18� since �r is much lower than �J. The validity
of this approximation can be derived directly from Eq. �18�.
We find from this equation that �in dimensional units� the
characteristic decay length of the EMW’s is about

lr =
�2�s�J

�0�q����r

. �24�

Taking for estimates the standard parameters for Bi2212, �
=500, s=1.5 nm, �r /�J=10−6, we find that lr	2.5 mm even

for the largest value of qs=0.3� we treated. The obtained
length lr is of the order of the usual sizes for Bi2212 single
crystals and much larger than the scale of the JV structure in
any reasonable magnetic field. This justifies our approxima-
tion.

The spatial period of the JVs structure is dx in the x di-
rection, or 1 /�hab in dimensionless units. Following the
usual band-theory approach for electrons in crystal lattices,
we seek the solution of Eq. �18� in the form of a Bloch wave
���=u�� ,k�exp�ik��, where u�� ,k� is a periodic function
of � with the period of the JV lattice and the dimensionless
wave vector k is in the first Brillouin zone, −��hab�k
���hab.

Consider the jth elementary cell, � j ���� j +1/�hab,
shown in Fig. 1�b�. The solution ��� of the linear Eq. �18�
�either within the JV core, � j ���� j +1, or outside the
core, � j +1���� j +1/�hab�, is a sum of exponential terms

 j = C1j
l ei�l� + C2j

l e−i�l�, �25�

where C1j
l and C2j

l are constants, l=1 corresponds to the
space between JVs, and l=2 corresponds the space inside JV
cores,

�1 = �0
��̃2 − 1, �2 = �0��̃2 + ��hab − 1�1/2. �26�

Using the continuity of  and � at the cores’ boundary and
the periodicity of the Bloch functions and its derivatives, we
obtain a set of homogeneous linear equations for C1j

l and C2j
l

C1j
1 + C2j

1 = C1j
2 + C2j

2 , �1C1j
1 − �1C2j

1 = �2C1j
2 − �2C2j

2 ,

eikb�C1j
1 e−i�1b + C2j

1 ei�1b� = e−ik�C1j
2 ei�2 + C2j

2 e−i�2� ,

eikb���1 − k�C1j
1 e−i�1b − ��1 + k�C2j

1 ei�1b� = e−ik���2 − k�C1j
2 ei�2

− ��2 + k�C2j
2 e−i�2� ,

where b=1/�hab−1 and −��k�b+1��−�. The nontrivial
solution of these equations exists only if their determinant is
zero. Then, after straightforward algebra, we obtain the dis-
persion equation for the frequency �̃�k� in the form

cos��1b�cos��2� −
�1

2 + �2
2

2�1�2
sin��1b�sin��2� = cos�k�b + 1�� .

�27�

We can find the spectrum �̃�k� by solving Eq. �27�. This
spectrum is shown in Fig. 3 for different values of the wave
vectors q and applied magnetic fields. In the presence of an
applied magnetic field, two particular features of the spec-
trum �̃�k� should be emphasized. First, the propagation of
EMWs in the system is possible at frequencies lower than
�J, due to the periodic suppression of the critical current in
the cores of the JVs. Second, the gap in the spectrum, or
forbidden frequency band, is maximum when �y �s and for
intermediate fields hab. The dependence of the band-gap
structure for growing q and Hab can be easily understood as
follows. The number of JVs increases when increasing the
applied in-plane magnetic field, while the effective interac-
tion between the EMWs and the JVs increases for the grow-

FIG. 2. �Color online� Spatial distributions, near the vortex core,
of the cosine of the phase differences: the red continuous line de-
notes cos �0

�0��x�, the dotted green line corresponds to cos �0
�±1��x�,

and the blue dashed line shows the approximant W�x�. �0
�0��x� refers

to the phase difference in the junction having a JV, while �0
�±1��x�

corresponds to the neighboring junctions.
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ing q and Hab, consistent with Eqs. �27� and �26�. According
to the well-known criterium for the existence of photonic
crystals,29–32 the band-gap structure in the EMW spectrum
occurs if the concentration of periodic inhomogeneities is
high enough and the optical properties of these inhomogene-
ities differ considerably from that of the ambient matter. It
could be concluded that there should exist an optimum value
of the applied field hab for the observation of photonic crys-
tals in layered superconductors. At this field, the part of the
space occupied by the vortex cores should be about half of
the total volume. However, when hab is of the order of unity
our analytical approach is not applicable and further numeri-
cal studies would be useful. Note also that �� decreases fast
when the number of the frequency zone increases, as shown
in Fig. 3.

The spectrum shown in Fig. 3 could be directly measured
in experiments studying nonlinear effects22 in plasma wave

propagation. Indeed, higher-harmonic generation should be
sensitive if their frequencies occur within a frequency gap.
Other nonlinear effects, including self-induced transparency
or light slowing down, can be strongly enhanced due to the
photonic crystal spectrum of the JPWs.

IV. PLASMA WAVE REFLECTIVITY TUNED BY THE
IN-PLANE MAGNETIC FIELD

The possibility of producing a THz photonic crystal in the
SJJ, due to presence of JVs, indicates that the JV lattice can
significantly affect the reflectivity and transparency of lay-
ered superconductors. Here we calculate the transmission
and reflection coefficients for two cases:

�i� EMWs propagating inside the sample as shown in Fig.
4�a�; such a wave can be emitted by some internal source,
e.g., by a moving JV.

�ii� EMW’s incident on the sample from the vacuum and
propagating through the SJJ, as shown in Fig. 4�b�.

As a result of our calculation �see subsections below�, we
derive the strong dependence of the reflection and transmis-
sion coefficients, shown in Fig. 5 and 6, on the applied in-
plane magnetic field Hab. A relatively small change �about
10–100 Oe� in Hab can switch the sample from fully trans-
parent �THz glass� to fully reflected �THz mirror� regimes

FIG. 3. �Color online� Band-gap structure of an EMW propagat-
ing in a layered superconductor with a JV lattice: Frequency �̃ of
the EMW versus k�hab�−1/2 at hab=0.2 �a� and at a lower field hab

=0.05 �b� for different wavelengths �y =1/q: qs=0.3� �red solid
line� and qs=0.1� �blue dashed line� and qs=0.05� �black dotted
curve�. The frequency gap �forbidden frequency range� between the
first and the second zone is indicated by ��̃	0.2. This gap ��̃
diminishes for smaller q �q=y-axis wave vector�. Here, we use s
=15 Å, �ab=2000 Å, �=600 and �̃r=0.

FIG. 4. �Color online� Schematic diagram of the EMW’s inter-
acting with a JV lattice. �a� Internal reflection of the EMW emitted,
e.g., by a JV. �b� The EMW is incident from outside the sample.
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within a given frequency window. Therefore, the optical
characteristics of layered superconductors can be conve-
niently tuned by the in-plane magnetic field. Thus, we pre-
dict a giant magneto-optical effect.

A. Electromagnetic waves propagating inside the sample

In this case, EMWs are not scattered by sample bound-
aries and we calculate the reflectivity �or transparency� for
JPWs passing through the JV lattice, which includes N rows
of JVs. The length of the considered array of JV scatterers is

l = �sN/�hab. �28�

The wave vector q of the EMWs described in Eq. �1� can
have any value allowed by the dispersion law in the SJJ.
However, we should restrict our consideration to 
qs

�
when using the continum approximation. The relation be-
tween the amplitudes of the EMWs and the gauge-invariant
phase difference is linear.18 Thus, here we can calculate the
transparency and reflection coefficients for the wave . In
contrast to the previous section, we now seek nonperiodic
solutions of Eq. �18�.

Solution �25�,  j =e� ·� j
l with e� = �1,1�, of Eq. �18� for the

jth cell of the magnetic structure can be expressed in a vector
form as

FIG. 5. �Color online� Internal reflection: EMWs emitted �by a
moving JV� inside a sample �Fig. 4�a�� reflect back with intensity
R= 
r
2 and transmit forward with intensity T= 
�
2=1−R. The re-
flection coefficient R versus the EMW frequency �̃ for �a� a sample
with length l=100�s at qs=0 for hab=10−4 �blue dashed line� and
25 times larger field hab=2.5�10−3 �red solid line�; notice that here
the wavelength �y→� along the y axis and, thus, the reflectivity
monotonically decreases with frequency; �b� l=100�s at hab=4
�10−2 for qs=0.1� �red solid line� and shorter qs=0.3� �blue
dashed line�; here notice that the case qs=0.1� case has a larger
number of minima in R���; �c� hab=2.5�10−3 and qs=0.05� for a
sample with length l=100�s �blue open circles� and l=600�s �red
solid squares�; here the length of the sample is changed. For our
calculations, we use s=15 Å, �ab=2000 Å, �=600 and �̃r=10−6.

FIG. 6. �Color online� Reflection of electromagnetic waves from
the sample, or THz tunable filter shown in Fig. 4�b�. The reflection
coefficient R versus �̃ for an EMW propagating from the vacuum at
q=0, �a� for l=100�s, �̃r=10−6 and different in-plane magnetic
fields hab=10−4 �green circles�, hab=2.5�10−3 �blue dashed line�,
hab=10−2 �top red solid line�; �b� for l=1000�s, �̃r=10−6, and hab

=0 �green circles�, hab=10−4 �blue dashed line�, hab=2.5·10−3 �top
red solid line�; and �c� for l=1000�s and hab=0 and varying the
damping �̃r with �̃r=10−6 �top red solid line�, �̃r=10−2 �blue
dashed line�, �̃r=10−1 �green circles�. Other parameters are the
same as in Fig. 5. The deep minima for the solid line in �b� are due
to the reflection at the sample boundaries.
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� j
l = �C 1j

l exp�i�l��; C 2j
l exp�− i�l��� , �29�

where �l is determined from Eq. �26�. However, in this sec-
tion we take into account the relaxation term in Eq. �18�. So,
we replace �l in Eq. �26� by

�1 = �0��̃2 − 1 + i�̃�̃r�1/2,

�2 = �0��̃2 + ��hab − 1 + i�̃�̃r�1/2. �30�

The continuity of  and � results in a set of linear equations

relating � �
j−1 and � �

j . This can be written in matrix form as

Â1� 1
j−1 = Â2� 2

j, B̂2� 2
j = B̂1� 1

j �31�

where

Â� = � 1 1

i�� − i��
�, B̂� = � ei��b e−i��b

i��ei��b − i��e−i��b � .

The solution of these equations can be written in a symbolic

form � �
j = L̂� �

j−1, where L̂= B̂1
−1B̂2Â2

−1Â1. Then, we use a lin-
ear nondegenerate transformation

Ĝ = � 1 �1

�2 1
�

that diagonalizes L̂. Here

�1,2 = ±
M2 − M1 + ��M2 − M1�2 + 4L1L2

2L1,2
,

M1,2 = �cos �2�b − 1� ± i
�1

2 + �2
2

2�1�2
sin �2�b − 1�e�i�b−1��1,

L1,2 = ± i
�1

2 − �2
2

2�1�2
sin �2�b − 1�e±i�b−1��1. �32�

By applying N times such a procedure, we find the linear
transformation

� �
N = Ĝ−1�ĜL̂Ĝ−1�NĜ� �

0 �33�

that propagates the solution from the 0th to Nth elementary
cell.

Next, we calculate the reflection and transmission coeffi-
cients. We denote the amplitude of the incident wave C10

1 as
1, the amplitude of the reflected wave C10

2 as r, and the
amplitude of the transmitted wave C1N

1 as � �Fig. 4�a��. Using
Eq. �33� we obtain two linear equations for two independent
variables, r and �, since C1N

2 =0. As result, we find

� =
M1

N − �1�2M2
N + r�1�M2

N − M1
N�

1 − �1�2
, �34�

r = �2
M2

N − M1
N

M1
N − �2�1M2

N . �35�

The frequency dependence of the reflection coefficient
R= 
r
2 is shown in Fig. 5 for different magnetic fields
Hab �in �a��, y-axis wave vectors q �in �b��, and sample

lengths l �in �c��. The reflection R strongly depends on the
frequency �. The average transparency �transmission T� of
the crystal increases when increasing the frequency �̃. The
dependence R��� has characteristic interference minima aris-
ing due to the interference of the transmitted and reflected
waves.26 The reflection R �or transmission T� of the EMWs
strongly depends on the in-plane magnetic field, as shown in
Fig. 5. Thus, we predict a giant magneto-optical effect. The
average transmission T reduces fast when increasing Hab due
to an increase in the number of scatterers in the sample. For
the same reason, the positions, number, and the sharpness of
the interference peaks in R��� also changes with Hab. Fi-
nally, R becomes flatter and approaches one for large enough
Hab. It follows from the results presented in Fig. 5�b�, that
waves with higher q pass through the system easier than
waves with lower q. This feature is also intuitively clear
since, with growing q, the wavelength in the y direction be-
comes closer to the characteristic interlayer distance. Waves
with higher q are more sensitive to the magnetic field varia-
tions, as shown in Fig. 5�a� and 5�b�, since the value of �0 in
Eq. �27� increases when growing q and the interaction of
EMWs with JVs becomes stronger. Close to the forbidden
frequency zones, the dependence of R and T versus � at
q�0 has several characteristic deep and narrow peaks. At
q=0 the corresponding functions are monotonous.

The average transparency of the sample also increases
when diminishing the sample thickness, as shown in Fig.
5�c�, since the growth of l gives rise to an increase in the
number and sharpness of the interference peaks in R���. We
should emphasize that varying the applied magnetic field Hab
tunes the reflection, all the way from 0 to 1, at a given fre-
quency. In a long sample this tuning remains significant even
at small q, due to the cumulative effect of a large number of
weak scatterers.

B. Electromagnetic waves incident from the vacuum

Here, we consider a wave incident from the vacuum to a
sample edge, as shown in Fig. 4�b�. The wave incident to the
sample surface parallel to the ab planes can be studied by
using the same method.

In the case under study, the wave vector q is the same in
the vacuum and in the sample since the normal component of
the electric induction, �Ex, is continuous at the sample edge.
As a result, the value of the parameter qs should be small for
THz-range radiation. Naturally, the dispersion relation for
the wave �1� in vacuum reads k2+q2=�2 /c2. For � /2�
=1 THz the corresponding wavelength is 0.3 mm, while s is
in the nanometer range. For s=2 nm we find the estimate
qs�4.19�10−5. Thus, we assume below that q=0, resulting
in the magnetic field and the y component of the electric field
of JPWs to be related to the gauge-invariant phase by simple
equations18,19

H =
�0

2�s

��

�x
, Ey =

�0

2�sc

��

�t
. �36�

We present the EMW in vacuum in the form H=H0
�eik0x−i�t+reik0x+i�t� at the left of the sample and
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H=H0�eik0x−i�t at the right of it. Imposing the continuity of
both H and Ey at the sample surface we find

1 + r = −
i��1

4�hac
�C10

1 e−i�1b − C10
2 ei�1b� ,

1 − r = −
i���s

4�chac
�C10

1 e−i�1b + C10
2 ei�1b� ,

� = −
i��1

4�hac
�C1N

1 − C1N
2 � ,

� = −
i���s

4�chac
�C1N

1 + C1N
2 � . �37�

Now, using Eq. �33�, we find the expression for the ampli-
tude r of the reflected wave

r =
1 + Z��̃�D��̃�exp�− 2i�1b�
Z��̃� + D��̃�exp�− 2i�1b�

,

D =
�1�Z + �2�M2

N − �1 + �1Z�M1
N

�Z + �2�M2
N − �2�1 + �1Z�M1

N , �38�

where

g =
s

���ab

, Z =
�1 − i�̃g

�1 + i�̃g
. �39�

The reflection coefficient is R= 
r
2, while the transmission
coefficient is T= 
�
2=1−R. The distance between the sample
edge and the nearest JV row is b. Note that the “effective
impedance” Z describes EMW scattering at the sample
boundaries. Also, Eq. �34� for internally propagating waves
with q=0, can be reproduced by setting Z=0 in Eq. �38�. In
the absence of an applied magnetic field, i.e., no vortices
N=0 in the sample, it can be readily seen from Eqs. �38� and
�39� that the reflection coefficient becomes zero under usual
interference conditions �1l=�m, where m is an integer.

The calculated frequency dependence of the reflection co-
efficient is shown in Fig. 6 for q=0 at different magnetic
fields and different sample lengths. The average transparency
increases when increasing the frequency and with the de-
crease of the number of scattering layers, due to a decrease
of either the magnetic field Hab or the sample length. As in
the case Hab=0, the oscillations in the transition and reflec-
tion coefficients occur due to the interference of the scattered
and transmitted waves on JVs and sample boundaries. These
transmission and reflection coefficients can be easily tuned
by the in-plane magnetic field Hab. For standard parameters
for Bi2212 single crystals, varying the applied magnetic field
within a range of 100 Oe can drastically change the trans-
parency of a sample of length of about 1 mm in the x direc-
tion.

Next, we examine how dissipation, which was omitted in
Ref. 14, affects reflectivity. The effect of dissipation is illus-
trated in Fig. 6�c�. When increasing �̃r, the curves R��� be-
come smoother: the minima of the reflection coefficient
moves up while the maxima goes down. However, a consid-

erable effect of the dissipation is obtained only at high values
of �̃r in the range of 0.01 and higher.

V. EFFECT OF THE JOSEPHSON VORTEX
LATTICE MOTION

In contrast to the usual fixed periodic arrays of scatterers
in optics, the JV vortex structure can be easily driven, e.g.,
by applying a transport current in the direction perpendicular
to the superconducting layers. The amplitude and the fre-
quency of the current could serve as an additional control
“knob” allowing a more versatile tuning of the EMW propa-
gation in layered superconducting structures. Moreover, the
effect of the motion of periodic structures on the spectrum of
the photonic crystal has not been discussed so far for any
kind of photonic crystals.

We assume below that a constant uniform current J�

flows in the y direction and, as a result, the JVs move with a
constant velocity v in the x direction. We also assume that
the vortex velocity is smaller than the critical value vc
=�s�J, since the moving JV becomes unstable8 when v ex-
ceeds vc. In this limit, we neglect effects of order v /c, where
c is the speed of light. For simplicity, in this section we only
consider the case ���J and �r=0.

For a moving JV lattice, we now seek a solution for the
gauge-invariant phase difference of EMW’s in the form

�1�x,y,t� = �x − vt�exp�iqy − i��t� . �40�

The value �� now corresponds to the frequency of the waves
in the coordinate system moving with velocity v with the
respect to the superconducting medium. Equation �18�, for 
in the long-wavelength limit, now reads

���� − 2i�v
2�q��̃�V���� − �v

2�q���̃J
2��� − �̃�2���� = 0,

�41�

where ��˜ =�� /�J, � denotes the second derivative differen-
tiation with respect to ���−Vt�J,

�v
2�q� =

�0
2�q�

1 − �0
2�q�V

, V =
v
vc

=
v�J

�s
. �42�

In analogy to Eq. �29�, the solution of Eq. �41� for each jth
cell of the periodic JV structure can be expressed as

� j
l = �C1j

l exp�ip1l��; C2j
l exp�− ip2l��� , �43�

where

p1l,2l = kv ± �lv, �lv
2 = �l

2 + kv
2, kv = �̃��v

2V . �44�

It is seen from Eqs. �41�–�44� that the most pronounced
effect of the JV lattice motion, with v
vc, should be ex-
pected at large transverse wave vectors q, when q2�ab

2 �1,
and the value �0

2�q�V is not too small compared to unity.

A. Band-gap structure for a moving Josephson vortex lattice:
Doppler effect in tunable photonic crystals

Following the approach described in Sec. III, we use
Bloch’s theorem to find the band-gap structure and present
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��� in the form of a Bloch wave ���=u�� ,k�exp�ik��,
where u��� is a periodic function with the period 1/�hab
=1+b and k is in the first Brillouin zone, −��hab�k
���hab. Using the continuity of  and � and the periodic-
ity of u���, we find the equation for �̃��k� analogous to Eq.
�27�

cos��1vb�cos��2v� −
�1v

2 + �2v
2

2�1v�2v
sin��1vb�sin��2v�

= cos��k − kv��b + 1�� , �45�

where �lv��̃�� and kv��̃�� are functions of the frequency �̃�
in the moving coordinate system. In analogy to the Doppler
effect, in order to find the function k��̃� in the fixed coordi-
nate system, we should use a transformation of the frequency

�̃ = �̃� + �kv��̃�� + �1v��̃���V . �46�

Note that the frequencies in the superconducting medium
located between vortices �l=1� and inside the JVs cores �l
=2� are different in the fixed coordinate system. We choose
�1v in Eq. �46� since we are interested in the dependence of
�̃�k� for the medium itself �between vortices�.

The results of the solution of Eqs. �45� and �46� are shown
in Fig. 7 for different values of V
1. The curves �̃�k� be-
come deformed and are asymmetrical with respect to the sign
of the velocity v. Indeed for v�0, the spectrum is shifted
either to the left or to the right, depending on the sign of v
due to the Doppler effect. The influence of the lattice motion
is most pronounced in the vicinity of the frequency gap. The
effect of the motion of the JVs on the spectrum disappears at
small q, when �0

2�q�V
1.

B. Reflection of electromagnetic waves by
a moving Josephson vortex lattice

First we discuss the reflection of EMWs propagating in-
side the sample. In this case EMWs do not scatter by fixed
sample boundaries, and the solution �43� allows us to di-
rectly find the reflection and transmission coefficients. Using
the approach described in Sec. IV, we find that the frequency
dependence of the reflection coefficient R= 
r
2 is described
by Eqs. �34� and �32�, where we should replace �l��̃� by

�lv���˜ �. The frequency of the incident wave is defined by Eq.
�46�, while the frequency of the reflected wave is shifted by

��̃=2�1v���˜ �V, which is the analog of the Doppler effect.
For example, if qs=0.3/� and v=0.1vc, the value of the
frequency shift is about 20% of �J.

The reflection coefficient R as a function of the incident
wave frequency �̃ is shown in Fig. 8 for different values of V
and q. It is clearly seen from this figure that the effect of the
JV lattice motion is of importance only for EMWs having
high enough q. The JV lattice motion changes the positions
of the transparency windows and increases the average trans-
parency. The strength of this effect is independent of the
direction of motion, i.e., of the direction of the driving cur-
rent.

FIG. 7. �Color online� Band-gap structure for the moving JV
lattice. The dependence of �̃ versus k /�hab at hab=0.2 and
qs=0.3�: V=0 �red dashed line�, V=0.2 �blue solid line�. Other
parameters are the same as in Fig. 3.

FIG. 8. �Color online� Reflection coefficient R��� for EMWs
propagating inside the sample with JV lattices moving with �nor-
malized� velocity V. The sample length is l=100�s and hab=6.25
�10−2. �a� qs=0.3�, V=0 �blue dashed line�, and 
V 
 =0.2 �solid
red line�; �b� qs=0.05�, V=0 �solid red line�, 
V 
 =0.2 �green open
circles�. Other parameters are the same as in Fig. 5.
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In the case of EMWs propagating from the vacuum,
EMWs scattering at the fixed sample boundaries results in
the excitation of waves with frequencies different than the
one described in Eq. �43�, i.e., waves with different time
dependence. This problem can be solved by the method de-
scribed in Sec. IV only in the limiting case of a large number
of JVs in the sample, i.e., N�1. However, as mentioned in
Sec. IV, EMWs having q�ab�1 and THz-range frequency
cannot propagate in the vacuum. Thus, the effect of the JV
lattice motion is negligible in this case. For example, the
frequency shift �� for such waves is of the order of
�J�s /�ab�2�v /vc�.

VI. CONCLUSIONS

Electromagnetic waves in layered superconductors can
propagate if their frequency exceeds the Josephson plasma
frequency that usually lies in the THz or sub-THz frequency
range. Josephson vortex lattices are easily tunable periodic
arrays that scatter EMWs. Here we demonstrate that the scat-
tering of EMWs by a JV array produces a tunable band gap
structure or THz photonic crystal. The variation of the in-
plane magnetic field easily tunes the parameters of the pho-
tonic crystal, in particular the value and the position of the
forbidden gaps. Another possibility, also unusual for standard
photonic crystals, is to influence the photonic crystal param-
eters by moving the JV periodic array driven by the transport
current in the direction across the superconducting layers.

The scattering of EMWs by a periodic array results in the
strong dependence of its reflection and transmission coeffi-
cients on both the applied in-plane magnetic fields and trans-
port currents. A relatively small change �about 10–100 Oe�
in the applied in-plane magnetic field can switch the sample
from fully transparent to fully reflected regimes within given
frequency windows. As a result, the optical characteristics of
the layered sample can be conveniently tuned by the in-plane
magnetic field. This phenomenon could be referred to as a
giant magneto-optical effect, in analogy to the traditional
magneto-optical effect16 found in magnetic media. If the
transverse wave vector of EMWs is large enough, q2�ab

2 �1,
an analogous effect could be achieved by applying a trans-
verse current, in analogy to the Doppler effect in standard
wave physics.

The effects described here could be used in developing
THz filters and “glass/mirrors” switches. The advantage of
these devices is their tunability by magnetic or electric fields.
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