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In superconducting circuits with interbit untunable �e.g., capacitive� couplings, ideal local quantum opera-
tions cannot be exactly performed on individual Josephson qubits. Here we propose an effective dynamical
decoupling approach to overcome the “fixed-interaction” difficulty for effectively implementing elemental
logical gates for quantum computation. The proposed single-qubit operations and local measurements should
allow testing Bell’s inequality with a pair of capacitively coupled Josephson qubits. This provides a powerful
approach, besides spectral-analysis �Nature 421, 823 �2003�; Science 300, 1548 �2003��, to verify the exis-
tence of macroscopic quantum entanglement between two fixed-coupling Josephson qubits.
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I. INTRODUCTION

Nonlocality �i.e., entanglement� is one of the most pro-
found features of quantum theory and plays an important role
in quantum information processing, including quantum com-
putation and quantum communication.1 Mathematically, an
entangled pure state of a composite system is defined as a
state that cannot be factorized into a direct tensor product of
the states associated with individual subsystems. The pres-
ence of multipartite entanglement is necessary for imple-
menting quantum algorithms that are exponentially faster
than classical ones.1 Also, entanglement may offer some in-
formation transfer modes, e.g., teleportation and quantum
cryptography.1 Therefore, generating and verifying entangle-
ment between qubits are of great practical importance.2

The existence of entanglement can be verified by using
various experimental methods, e.g., quantum tomographic
techniques, Bell-state analysis, quantum jump measure-
ments, etc. �see, e.g., Refs. 3 and 4�. Also, spectral analysis
has been used to probe the existence of two-qubit entangle-
ment in coupled Josephson qubits.5,6 However, the degree of
entanglement between the two always-present interacting qu-
bits changes rapidly7 and, at certain times, two-qubit states
can be almost separable. Thus, verifying the instantaneously
generated entangled state in coupled systems,8 and using it to
realize quantum information processing, e.g., teleportation
and quantum memory, are very important challenges.

Historically, Bell’s inequality always served as one of the
most important witnesses of entanglement: Its violation im-
plies that entanglement must be shared by the separate parts.
Numerous experimental tests of Bell’s inequality have been
made with entangled photons separated far apart �e.g., up to
500 m� �Ref. 9� and entangled closely spaced trapped ions
�e.g., separated a few micrometers apart�.10 A Bell-like in-
equality has also been tested via single-neutron interferom-
etry by measuring the correlations between two entangled
degrees of freedom �comprising spatial and spin compo-
nents� of single neutrons.11 The results from these experi-

ments strongly violate the tested Bell’s inequalities, and thus
agree with quantum mechanical predictions. Very recently,
preliminary proposals have been explored for testing Bell’s
inequalities with switchable Josephson qubits.12

Almost all proposals for manipulating quantum informa-
tion rely on the execution of both single-qubit and two-qubit
gates. In some cases �e.g., trapped ions, QED cavities, and
quantum dots13�, single-qubit operations are easy to realize
by applying certain controllable local fields. However, the
interbit couplings are fixed and uncontrollable in current ex-
perimental Josephson circuits4–6 and NMR systems.14 Nev-
ertheless, qubits in NMR are individually addressable, be-
cause the coupling constants Jij between the ith and jth
qubits are sufficiently weak �i.e., much smaller than the dif-
ferences ��ij = ��i−� j� between the eigenfrequencies of the
qubits, e.g., Jij /��ij �10−4 �Ref. 14��. However, the usual
capacitive coupling in Josephson circuits4,5 is relatively
strong, thus making it difficult to perform local single-qubit
operations on individual qubits. The method15 of physically
arranging qubits �i.e., using two or three physical qubits to
encode a logical qubit� cannot be directly used in the present
two-qubit system.

Here we develop an approach to overcome the serious
“fixed-interaction” difficulty and effectively implement de-
sired single-qubit operations on selected qubits. This dy-
namical decoupling method can be used to generate long-
lived entangled states in coupled Josephson qubits. The long-
lived entanglement obtained here, assisted by the proposed
local single-qubit operations, should allow us to test Bell’s
inequality with a pair of capacitively coupled Josephson qu-
bits. Its violation would provide another robust physical evi-
dence of statistically nonlocal correlations at the macro-
scopic scale.

II. DYNAMICAL DECOUPLING

We consider the nanocircuit sketched in Fig. 1. This is
similar to that in Ref. 5, just replacing the left Josephson
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junction there by a superconducting quantum interference
device �SQUID� loop with controllable Josephson energy.
The two Cooper-pair boxes are coupled via the capacitance
Cm. The qubits work in the charge regime, with kBT�EJ

�j�

�EC
�j��� �j=1,2�, where both quasiparticle tunneling and

excitations are effectively suppressed and the number nj
�with nj =0,1,2,…� of Cooper pairs in the boxes is a good
quantum number. Here, kB, T, �, EC

�j�, and EJ
�j� are the Boltz-

mann constant, temperature, superconducting gap, the charg-
ing, and Josephson energies of the jth qubit, respectively.
Following Refs. 4 and 5, the system is assumed to work near
the coresonant point and its quantum dynamics can be re-
stricted to the subspace spanned by the four lowest charge
states: �00�, �10�, �01�, and �11�. Thus, the Hamiltonian of this
circuit is

Ĥ =
1

2 �
j=1,2

�EC
�j��z

�j� − EJ
�j��x

�j�� + E12�z
�1��z

�2�. �1�

Here, E12=Em /4 is effective interbit coupling with Em

=4e2Cm /C�. The effective charge energy EC
�j� is EC

�j�

=ECj
�−1/2+ngj

�+Em�−1/4+ngk
/2� �j ,k=1,2� with ngj

= �Cgj
Vgj

+Cpj
Vp� / �2e� and ECj

=4e2C�k
/C�. The effective

Josephson energy of the SQUID is EJ
�j�=2�J

�j� cos��	 j /	0�
with Josephson energy �J

�j� of the single junction. Above,
C�=C�1

C�2
−Cm

2 , and C�j
is the sum of all capacitances con-

nected to the jth box. The pesudospin operators are defined
as �z

�j�= �0 j��0 j�− �1 j��1 j� and �x
�j�= �0 j��1 j�+ �1 j��0 j�.

First, let us consider the circuit working at the coreso-
nance point �i.e., ng1

=ng2
=0.5, yielding EC

�1�=EC
�2�=0�, and

the applied fluxes are set as 	 j =0, 	k=	0 /2 , k� j �yield-
ing EJ

�j�=2�J
�j� , EJ

�k�=0�. In this case, the circuit has the
Hamiltonian

Ĥ1 = − �J
�j��x

�j� + E12�z
�1��z

�2�. �2�

The corresponding time-evolution operator reads

Û1�t� = exp	−
it



Ĥ1
 = exp� it



�J

�j��x
�j��Ûint�t� , �3�

where the operator Ûint�t� is determined by

i

�Ûint�t�

�t
= Ĥint�t�Ûint�t� , �4�

with

Ĥint�t� = E12exp�−
it



�J

�j��x
�j���z

�1��z
�2�exp� it



�J

�j��x
�j�� .

Considering � j =E12/ �2�J
�j���1 �e.g., � j �1/4 in the circuit5�,

one can make the following perturbation expansion:

Ûint�t� = 1 + 	−
i





t

dt�Ĥint�t��

+ 	−
i




2
t 
t�

dt�dt�Ĥint�t��Ĥint�t�� + ¯

= 1 − 	 it




 E12

2

2�J
�j��x

�j�
� I�k� + Ô�� j

2� . �5�

Neglecting the higher-order terms of � j, since it is small, the
Hamiltonian of the system can be effectively rewritten as

Ĥeff
�j� = − ��J

�j� +
E12

2

2�J
�j���x

�j�
� Î�k�. �6�

Above, the first-order expansion term Ûint
�1��t�= �−i /


��tdt�Ĥint�t�� practically does not contribute to the time
evolution, due to its small probability �proportional to � j

2�.
Under this approximation, the fixed interaction between the
qubits has been effectively eliminated, except resulting in a
shift of the relatively strong Josephson energy. Thus, the sys-
tem effectively undergoes an evolution

R̂x
�j��� j� = exp�i� j�x

�j��, � j =
�J

�j�t



�1 + 2� j

2� , �7�

which reduces to the single-qubit �x
�j�-rotation �i.e., qubit

flip� on the jth qubit, if the duration is set by cos � j =0.
The robustness of this dynamical decoupling can be veri-

fied by testing the difference of the corresponding physical
effects, e.g., the transition probabilities P between two se-
lected states, due to the present approximate time-evolution

Ûappr�t� = Rx
�j��� j� � I�k� �8�

and the exact one

Ûex�t� = exp�− itĤ1/
� = A�t��x
�j�

� Î�k� + B�t���0 j0k��0 j0k�

+ �1 j1k��1 j1k�� + B*�t���1 j0k��1 j0k� + �0 j1k��0 j1k�� ,

�9�

respectively. Here,

A�t� = i
 j�t�, B�t� = �1 − 
 j
2�t��1/2exp�− i� j�t�� , �10�

with

FIG. 1. �Color online� Two capacitively coupled charge qubits.
The quantum states of two Cooper-pair boxes �i.e., qubits� are ma-
nipulated by controlling the applied gate voltages Vg1

, Vg2
, and ex-

ternal magnetic fluxes 	1 , 	2 �penetrating the SQUID loops�. P1

and P2 �dashed line parts� read out the final qubit states.
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 j�t� = � j
−1sin��J

�j�� jt/
� ,

� j = �1 + �E12/�J
�j��2�1/2,

� j�t� = arctan�2� j� j
−1tan��J

�j�� jt/
�� .

Figure 2 shows that the probabilities for the transition

�1 j0k�↔ �0 j0k� due to the evolutions Ûappr�t� �solid lines� and

Ûex�t� �dotted lines� possess the same oscillating period.
Also, the difference between the probabilities decreases
when deceasing the coupling strength � j: The largest differ-
ences are less than 0.06 and 0.04 for coupling strengths � j
=1/8 and � j =1/10, respectively.

Similarly, if the system works far from the coresonance
point �e.g., ngj

�0.25�,4 then both EJ
�j� and the fixed coupling

E12 are the small perturbative quantities, compared to the
charging energy EC

�j�. Thus, the Hamiltonian �1� can be effec-
tively approximated by

Ĥ2 = �
j=1,2

Ej�z
�j� + E12�z

�1�
� �z

�2�, �11�

with Ej =EC
�j��1+� j

2 / �1−�12
2 ��, and � j =EJ

�j� / �2EC
�j�� , �12=E12/

EC
�j�. The evolution corresponding to this effective Hamil-

tonian results in a two-qubit operation

Rz
�12���� = exp�− i�12�z

�1��z
�2�� � �

j=1,2
exp�− i� j�z

�j�� ,

�12�

where �= �� j ,�12� and � j =Ejt /
 , �12=E12t /
. For the sim-
plest case where EJ

�j�=0 and thus � j =0, we have Ej =EC
�j�. By

using a refocusing technique, like in NMR,14 we can effec-
tively realize another important single-qubit operation

Rz
�j��� j� = �Rz

�12�����x
�k��2 = exp�− i� j�z

�j�� , �13�

with � j =2� j. The inverse of this operation, i.e., the gate
Rz

�j��−� j�=exp�i� j�z
�j�� can be obtained by changing the

signs of Ej via controlling the applied gate voltage.
The single-qubit gates Rx

�j��� j� and Rz
�j��� j� do not com-

mute, and thus constitute a universal single-qubit gate set,
which can assist the realization of two-qubit gates to imple-
ment any unitary operation on this circuit. For example, a
Hadamard-like operation

Rj�� j� = Rz
�j��� j/2�Rx

�j���/4�Rz
�j��− � j/2�

=
1
�2

	 1 − i exp�i� j�
− i exp�− i� j� 1


 , �14�

can be implemented, which will take an important role for
testing Bell’s inequality.

III. TESTING BELL’S INEQUALITY BY USING
EFFECTIVE SINGLE-QUBIT LOCAL OPERATIONS

By using the above dynamical decoupling procedure, we
now show that Bell’s inequality may be tested with fixed-
coupling Josephson qubits.

First, the desired entanglement between these SQUID-
based qubits can be created in a repeatable way. Initially, the
system works sufficiently far from the coresonance point
and remains at the state ��0�= �00� , 	 j =0. Now, a pair of
gate voltage pulses brings the system to the coresonance

point5 and lets the system undergo the evolution Û3�t�
=exp�−itĤ3 /
�, with

Ĥ3 = − �J �
j=1,2

�x
�j� + E12�z

�1�
� �z

�2�. �15�

For simplicity, here we assume that �J
�1�=�J

�2�=�J. We ana-
lytically derive the time-dependent degree of entanglement
or concurrence7 CE�t� of this circuit

CE�t� =
1

2
�P2�t� + Q2�t� , �16�

with

P�t� = cos2��t� − cos ��t� + sin2��t�	 1

1 + �̃ 2
−

1

1 + �̃ −2
 ,

�17�

Q�t� =
sin2�2��t��
�1 + �̃ −2

− sin ��t� , �18�

and

��t� = ��t��1 + �̃ 2�1/2, ��t� = 2�̃��t� ,

��t� = 2�Jt/
, �̃ = E12/�2�J� .

Figure 3 shows this evolution, showing some plateaus near
the times te when sin ��te�=0. At these times, the system is
in the following compact entangled state

FIG. 2. �Color online� Probabilities Pappr �solid lines� and
Pex �dotted lines� for the transition �1 j0k�↔ �0 j0k� versus �=�J

�j�t /
,
due to the approximate and exact time evolutions, respectively.
The difference between them decreases with decreasing interbit
coupling � j.
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��e� = ��00� + ��11� , �19�

with

CE�te� = 2��+�−� = �sin�E12te/
�� , �20�

and

�± = �1 ± exp�±iteE12/
��/2.

These states are very adjacent to the eigenstates of Ĥ3, and
almost do not evolve for several very short time intervals.
Thus, periodically, their degrees of entanglement are almost
unchanged, shown by the short plateaus in Fig. 3. The maxi-
mally entangled states �corresponding to the top plateaus in
Fig. 3� occur when the pulse durations te are set properly
such that the condition cos�E12te /
�=0 is further satisfied.

Next, using dynamically generated single-qubit opera-
tions, the controllable variables �� j� can be encoded into the
generated entangled states, keeping the degree of entangle-
ment unchanged. The change of concurrence of the two-
qubit entangled state can be effectively suppressed by con-
tinuously applying controllable single-qubit operations. This
is similar to the approaches for suppressing decoherence in
open quantum systems by using the quantum Zeno effect and
the “bang-bang” decoupling method.16 Thus, the new en-
tangled state

��e�� = �
j=1,2

R̂j�� j���e� = �
m,n=0,1

amm�mn� , �21�

with

a00 = �� − � exp�i�1 + i�2��/2,

a10 = �− i� exp�− i�1� − i� exp�i�2��/2,

a01 = �− i� exp�− i�2� − i� exp�i�1��/2,

a11 = �� exp�− i�1 − i�2� − ��/2,

has the same degree of entanglement as that of the ��e� gen-
erated above.

Finally, the correlations between the classical variables
�� j� can be measured by simultaneously detecting the popu-
lations of qubits in the excited �1� or ground states �0�.17

Experimentally, the above steps can be repeated many times
for the same classical variables and then the correlation func-
tion Ee��1 ,�2� can be measured as

Ee��1,�2� =
Nsame��1,�2� − Ndiff��1,�2�
Nsame��1,�2� + Ndiff��1,�2�

, �22�

with Nsame��1 ,�2��Ndiff��1 ,�2�� being the number of events
with two qubits found in the same �different� logic states.
Theoretically, the above projected measurements can be ex-
pressed via

P̂T = �11��11� + �00��00� − �10��10� − �01��01� = �̂z
�1�

� �̂z
�2�,

�23�

and the correlation in the outcomes can be calculated as

E��1,�2� = ��e��P̂T��e�� = ± sin�teE12/
�sin��1 + �2� .

�24�

For the sets of angles: �� j ,� j��= �−� /8 ,3� /8�, the
Clauser, Horne, Shimony, and Holt �CHSH� �Ref. 9� function

f���e��� = �E��1,�2� + E��1�,�2� + E��1,�2�� − E��1�,�2���

= 2�2�sin�teE12/
�� �25�

is larger than 2 for

�sin�teE12/
�� �
1
�2

. �26�

Therefore, properly setting the pulse duration te to prepare
the desired entangled state �whose plateaulike concurrence is
larger than 0.707�, the CHSH-type Bell’s inequality9

fe���e��� � 2 �27�

can be effectively tested by experimentally measuring the
CHSH function: fe���e���= �Ee��1 ,�2�+Ee��1� ,�2�+Ee��1 ,�2��
−Ee��1� ,�2���.

IV. DISCUSSIONS AND CONCLUSIONS

The simplest dynamical-decoupling process proposed
above consists of two �x

�j� pulses and two delays

Ûd��� = exp�− iE12��z
�1��z

�2�� . �28�

The duration of the �x
�j� pulse is calculated5 as tx= �2l+1�t0,

l=0,1,2,…; and t0=�
 / �2�J
�j��1+2� j

2���31 ps. Conse-
quently, the longest time delay � between the two �x pulses
could be estimated5 as ��270 ps �for l=0�, �200 ps �for l
=1�, �145 ps �for l=2�, and �98 ps �for l=3�, etc. Thus, it
is easy to experimentally check this simplest proposal for

FIG. 3. �Color online� Dynamical evolution of the degree of
entanglement CE�t� for the circuit �Fig. 1� with couplings: Em /�J

=1/2 �dashed line�, 1 /4 �solid line�, respectively. Here, �J

=30 �eV. The CE=0.707 �dotted line� gives the threshold for the
violation of Bell’s inequality for the entangled state �8�, whose de-
gree of entanglement slowly changes during several short time in-
tervals �see the plateaus in the figure�.

WEI, LIU, AND NORI PHYSICAL REVIEW B 72, 104516 �2005�

104516-4



eliminating the fixed interbit coupling by using the pulse
sequence: Ûd����x

�j�Ûd����x
�j� or �x

�j�Ûd����x
�j�Ûd���. After

these operations the two qubits should return to their initial
states. Furthermore, a universal two-qubit controlled-�z

�j�

gate could be implemented by using the operational se-
quence: Ûd�−� /4E12�Rz

�k��� /4�Rz
�j��� /4�.

Similar to other theoretical schemes �see, e.g., Ref. 18�,
the realizability of the present proposal also faces the tech-
nological challenge of rapidly switching on/off the Joseph-
son energy of the qubit by using fast magnetic pulses.19 This
experimental difficulty could be relaxed by increasing the
durations of the applied pulses. Especially, the decoherence
time of the two-qubit capacitively coupled Josephson
circuit20 could be increased by decreasing the coupling ca-
pacitance Cm. In principle, the lifetime of the generated en-
tangled state �19� adequately allows us to perform the re-
quired operations for testing Bell’s inequality �27�, since
such a state is very adjacent to the eigenstates of the circuit’s

Hamiltonian Ĥ3. In fact, the decay time of a two-qubit ex-
cited state is long �up to �0.6 ns�, even for very strong in-
terbit coupling �e.g., Em�2�J

�j� in the recent experiment5�. In
addition, the influence of the environmental noise and opera-
tional imperfections is not fatal, as the nonlocal correlation

E��i ,� j� in Bell’s equality is statistical—i.e., its fluctuations
could be effectively suppressed by averaging over several
repeatable experiments.

In summary, we propose an effective dynamical-
decoupling approach to overcome the fixed-interaction diffi-
culty in superconducting nanocircuits. The dynamically gen-
erated single-qubit operations may be used to test Bell’s
inequality, providing another way to verify the existence of
entanglement between two capacitively coupled Josephson
qubits. The proposed approach can be easily modified to ma-
nipulate quantum entanglement in other ”fixed-interaction”
solid-state systems, e.g., the capacitively �inductively�
coupled Josephson phase �flux� circuits, and the Ising
�Heisenberg�-spin chain.
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