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We propose an effective scheme for manipulating quantum information stored in a superconducting nano-
circuit. The Josephson qubits are coupled via their separate interactions with an information bus, a large
current-biased Josephson junction treated as an oscillator with adjustable frequency. The bus is sequentially
coupled to only one qubit at a time. Distant Josephson qubits without any direct interaction can be indirectly
coupled with each other by independently interacting with the bus sequentially, via exciting/deexciting vibra-
tional quanta in the bus. This is a superconducting analog of the successful ion trap experiments on quantum
computing. Our approach differs from previous schemes that simultaneously coupled two qubits to the bus, as
opposed to their sequential coupling considered here. The significant quantum logic gates can be realized by
using these tunable and selective couplings. The decoherence properties of the proposed quantum system are
analyzed within the Bloch-Redfield formalism. Numerical estimations of certain important experimental pa-
rameters are provided.
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I. INTRODUCTION

The coherent manipulation of quantum states for realizing
certain potential applications, e.g., quantum computation and
quantum communication, is attracting considerable interest.1

In principle, any two-state quantum system works as a qubit,
the fundamental unit of quantum information. However, only
a few real physical systems have worked as qubits, because
of requirements of a long coherent time and operability.
Among various physical realizations, such as ions trapsssee,
e.g., Refs. 2–4d, QED cavitiesssee, e.g., Refs. 5 and 6d,
quantum dotsssee, e.g., Refs. 7 and 8d and NMR ssee, e.g.,
Refs. 9 and 10d, etc., superconductors with Josephson junc-
tions offer one of the most promising platforms for realizing
quantum computationssee, e.g., Refs. 11–31d. The nonlinear-
ity of Josephson junctions can be used to produce control-
lable qubits. Also, circuits with Josephson junctions combine
the intrinsic coherence of the macroscopic quantum state and
the possibility to control its quantum dynamics by using volt-
age and magnetic flux pulses. In addition, present-day tech-
nologies of integration allow scaling to large and complex
circuits. Recent experiments have demonstrated quantum co-
herent dynamics in the time domain in both single-qubitssee,
e.g., Refs. 12–14d and two-qubit Josephson systems.15

There are two basic types of Josephson systems used to
implement qubits: charge qubits12 and flux qubits,13 depend-
ing on the ratio of two characteristic energies: the charging
energyEC and the Josephson energyEJ. The charge qubit is
a Cooper-pair box with a small Josephson coupling energy
EJ!EC and a well defined number of Cooper pairs. The flux
qubit operates in another extreme limit, whereEJ@EC and
the phase is well defined. A “quantronium” circuit operating
in the intermediate regime of the former two has also been
proposed.14 Voltage-biased superconducting quantum inter-
ference devicessSQUIDsd, which work in the charge regime

and with controllable Josephson energies, form the SQUID-
based charge qubits that we will consider in this work. Our
results can be extended to flux and flux-charge qubits.

The key ingredient for computational speedup in quantum
computation is entanglement, a property that does not exist
in classical physics. Thus, manipulating coupled qubits plays
a central role in quantum information processingsQIPd.
Heisenberg-type qubit-couplings are common for the usual
solid state QIP systems, e.g., the real spin states of the elec-
trons in quantum dots.7,8 However, the interbit couplings for
Josephson junctions involve Ising-type interactions, as super-
conducting qubits with two macroscopic quantum states pro-
vide pseudo-spin-1/2 states. Recently, either the current-
current interaction, by connecting to a common inductor, or
the charge-charge coupling, via sharing a common capacitor,
have been proposed to directly couple two Josephson charge
qubits: theith andj th ones. Current-current interactions have
been used to implement eithersy

sid
^ sy

s jd-type17 or
sx

sid
^ sx

s jd-type18 Ising couplings. While, charge-charge inter-
actions yield asz

sid
^ sz

s jd-type15,16 coupling. Compared to
single-qubit operations, the two-qubit operations based on
these second-order interactions are more sensitive to the en-
vironment. In addition, the capacitive coupling between qu-
bits is not easily tunable. Thus adjusting the physical param-
eters for realizing two-qubit operation is not easy. In order to
ensure that the quanta of the relevantLC oscillator is not
excited during the desired quantum operations, the time
scales of manipulation in the inductively coupled circuit
should be much slower than the eigenfrequency of theLC
circuit.17

Alternatively, the Josephson qubits may also be coupled
together by sequentially interacting with a data bus, instead
of simultaneously. This is similar to the techniques used for
trapped ions,2,3 wherein the trapped ions are entangled by
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exciting and deexciting quanta of their shared center-of-mass
vibrational modesi.e., the data busd. This scheme allows for
faster two-qubit operations and possesses longer decoherence
times. Indeed, a bus design in a Josephson system has been
proposed in Ref. 19 for couplingd-wave grain-boundary qu-
bits. Recently, an externally connectedLC resonator20 and a
cavity QED mode21 were chosen as alternative data buses.
However, it is not always easy to control all the physical
properties, such as the eigenfrequencies and decoherence, of
these data buses.

A large se.g., up to 10mmd current-biased Josephson
junction sCBJJd22 is very suitable to act as information bus
for coupling Josephson qubits. This is becausesid the CBJJ is
an easily fabricated device23 and may provide more effective
immunities to both charge and flux noise,sii d due to its large
junction capacitance, the CBJJ can be capacitively coupled
over relatively long distances,siii d the quantum properties,
e.g., quantum transitions between the junction energy levels,
of the current-biased Josephson junction are well
established,24,32andsivd its eigenfrequency can be controlled
by adjusting the applied bias current. In fact, a CBJJ itself
can be an experimentally realizable qubit, as demonstrated
by the recent observations of Rabi oscillations in them.25,26

Two logic states of such a qubit are encoded by the two
lowest zero-voltage metastable quantum energy levels of the
CBJJ. The decoherence properties of this CBJJ qubit were
discussed in detail in Ref. 27. Experimentally, the entangled
macroscopic quantum states in two CBJJ qubits coupled by a
capacitor were created.28 Also, by numerical integration of
the time-dependent Schrödinger equation, a full dynamical
simulation of two-qubit quantum logic gates between two
capacitively coupled CBJJ qubits was given in Ref. 29.

In this paper, we propose a convenient scheme to selec-
tively couple two Josephson charge qubits. Here, a large
CBJJ acts only as the information bus for transferring the
quantum information between the qubits. Thus, hereafterthe
CBJJ will not be a qubit, as in Refs. 22 and 25–29. Two
chosen distant SQUID-based charge qubits can be indirectly
coupled by sequentially interacting these with the bus. Our
proposal could be considered as a superconducting analog of
the ion trap2 QC, with the phononsstheir data busd replaced
by a CBJJ. The eigenfrequency of this information bus can
be easily adjusted by controlling the applied bias current.
Thus, the bus can couple to any selected qubit, either reso-
nantly or dispersively, although different qubits may possess
different eigenfrequencies. The anharmonic energy levels of
the bus assure that the possible transition only takes place
between its ground and the first excited states. This coupling
method provides a repeatable way to generate entangled
states, and thus can implement elementary quantum logic
gates between arbitrarily selected qubits. Our proposal shares
some features with the circuits proposed in Refs. 17, 18, 20,
and 22, but also has significant differences. Our proposal
might be more amenable to experimental verification.

The outline of the paper is as follows. In Sec. II we pro-
pose a superconducting nanocircuit with a CBJJ acting as the
data bus, and investigate its elemental quantum dynamics.
The bus is biased by a dc current and is assumed to interact
with only one qubit at a time. There is no direct interaction
between qubits. Therefore, the elemental operations in this

circuit consist ofsid the free evolution of the single qubit,sii d
the free evolution of the bus, andsiii d the coherent dynamics
for a single qubit coupled to the bus. In Sec. III we show
how to realize the elemental logic gates in the proposed
nanocircuit: the single-qubit rotations by properly switching
on/off the applied gate voltage and external flux, and the
two-qubit operations by letting them couple sequentially to
the bus. The vibrational quanta of the bus is excited/absorded
during the qubit-bus interactions. In Sec. IV we analyze the
decoherence properties of the present qubit-bus interaction
within the Bloch-Redfield formalism,33 and give some nu-
merical estimates for experimental implementations. Conclu-
sions and some discussions are given in Sec. V.

II. A SUPERCONDUCTING NANOCIRCUIT AND ITS
ELEMENTARY QUANTUM EVOLUTIONS

The circuit considered here is sketched in Fig. 1. It con-
sists ofN voltage-biased SQUIDs connected to a large CBJJ.
The kth sk=1,2,… ,Nd qubit consists of a gate electrode of
capacitanceCgk

and a single-Cooper-pair box with two ultr-
asmall Josephson junctions of capacitanceCJk

0 and Josephson
energyEJk

0 , forming a dc-SQUID ring. The inductances of
these dc-SQUID rings are assumed to be very small and can
be neglected. The SQUIDs work in the charge regime with
kBT!EJ!EC!D, in order to suppress quasiparticle tunnel-
ing or excitation. Here,kB, D, EC, T, andEJ are the Boltz-
mann constant, the superconducting gap, charging energy,
temperature, and the Josephson coupling energy, respec-
tively.

The connected large CBJJ biased by a dc current works in
the phase regime withEJ@EC. It acts as a tunable anhar-
monic LC resonator with a nonuniform level spacing and
works as a data bus for transferring quantum information
between the chosen qubits. The mechanism for manipulating
quantum information in the present approach is different
from that in Refs. 17, 18, 20, and 22, although the circuit
proposed here might seem similar to those there. The differ-
ences are as follows.

s1d A large CBJJ, instead of theLC oscillator17,18,20

formed by the externally connected inductanceL and the
capacitances in circuit, works as the data bus.

FIG. 1. SQUID-based charge qubits coupled via a large
CBJJ.
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s2d We modulate the applied external flux, instead of the
bias current,22 to realize the perfect coupling/decoupling be-
tween the chosen qubit and the bus.

s3d The free evolution of the bus during the operational
delays will be utilized to control the dynamical phases for
implementing the expected quantum gates.

After a canonical transformation11,30 the Hamiltonian for
the present circuit can be written as

Ĥ = o
k=1

N F2e2

Ck
sn̂k − ngk

d2 − EJk
cosSûk −

Cgk

Ck
ûbDG + Ĥr ,

s1d

with

Ĥr =
s2pp̂b/F0d2

2C̃b

− Eb cosûb −
F0Ib

2p
ûb. s2d

Here, ngk
=Cgk

Vk/ s2ed, Ck=Cgk
+CJk

, CJk
=2CJk

0 , C̃b=Cb

+ok=1
N CJk

Cgk
/Ck, EJk

=2EJk

0 cosspFk/F0d, and uk=suk2

+uk1
d /2 with uk1

and uk2
being the phase drops across two

small Josephson junctions in thekth qubit, respectively. Also,
Cgk

, F0, Fk, andVk are the gate capacitance, flux quantum,
external flux, and gate voltage applied to thekth qubit, re-
spectively. Correspondingly,Cb, ub, Eb, andIb are the capaci-
tance, phase drops, Josephson energy, and the bias current of
the large CBJJ, respectively. Above, the number operatorn̂k
of excess Cooper-pair charges in the superconducting island

and the phase operatorûk of the order parameter of thekth
charge qubit are a pair of canonical variables and satisfy the
commutation relation

fûk,n̂kg = i .

The operatorsub and p̂b are another pair of canonical vari-
ables and satisfy the commutation relation

fûb,p̂bg = i",

with 2ppb/F0=2nbe representing the charge difference
across the CBJJ.

The CBJJ works in the phase regime. Thus,ECb

=e2/ s2C̃bd!Eb and the quantum motion ruled by the Hamil-

tonian Ĥr equals that of a particle with massm

=C̃bsF0/2pd2 in a potentialUsubd=−Ebscosub+ Ibub/ Ird, Ir

=2pEb/F0. For the biased caseIb, Ir, there exists a series
of minima of Usubd, where]Usubd /]ub=0, ]2Usubd /]ub

2.0.
Near these pointsu0=arcsinsIb/ Ird, Usubd approximates to a
harmonic oscillator potential with a characteristic frequency

vb =Î 2pIr

C̃bF0

F1 −S Ib

Ir
D2G1/4

,

depending on the applied bias currentIb. Correspondingly,

the HamiltonianĤr reduces to

Ĥb = Sâ†â +
1

2
D"vb, s3d

with

â =
1
Î2
FSF0

2p
DÎC̃bvb

"
ûb + iS2p

F0
D p̂b

Î"vbC̃b

G
and

â† =
1
Î2
FSF0

2p
DÎC̃bvb

"
ûb − iS2p

F0
D p̂b

Î"vbC̃b

G .

For simplicity, we have redefined the original point of the
phaseub. The approximate number of quantum metastable
bound states34 of the quantum oscillator is Ns

=s23/4/3dÎEb/ECb
s1−Ib/ Ird5/4.

The energy scale of the quantum oscillators3d is
vb/ s2pd,10 GHz,25 which is of the same order of the Jo-
sephson energy in the SQUID. Therefore, the oscillating
quantum of the information bus will be really excited, even if
only one of the qubits is operated quantum mechanically.
This is different from the case considered in Ref. 17, wherein
the LC oscillator shared by all charge qubits are not really
excited, as the eigenfrequency of theLC circuit is much
higher than the typical frequencies of the qubits dynamics.
For operational convenience, we assume that the bus is
coupled to only one qubit at a time. The coupling between
any one of the qubitsse.g., thekth oned and the bus can, in
principle, be controlled by adjusting the applied external flux
se.g.,Fkd. In this case, any direct interaction does not exist
between the qubits, and the dynamics of the CBJJ can be
safely restricted to the Hilbert space spanned by the two
Fock statesu0bl and u1bl, which are the lowest two energy
eigenstates of the harmonic oscillator of Eq.s3d. Further-
more, we assume that the applied gate voltage of any chosen
skthd qubit works near its degeneracy point withngk

=1/2,
and thus only two charge statesunk=0l= u↑kl and unk=1l
= u↓kl, play a role during the quantum operation. All other
charge states with a higher energies can be safely ignored.
Therefore, the Hamiltonian

Ĥkb = Ĥk + Ĥb + lksâ† + âdsy
skd, s4d

with

Ĥk = FdECk

2
sz

skd −
EJk

2
sx

skdG , s5d

describes the interaction between any one of the qubitsse.g.,
thekth oned and the bus, and provides the basic dynamics for
the present network. Here,dECk

=2e2s1−2ngk
d /Ck, lk

=EJk
Cgk

s2p /F0dÎ" / s2C̃bvbd / s2Ckd, and the pseudospin op-
erators are defined by

sx
skd = u↑klk↓ku + u↓klk↑ku,

sy
skd = − i u↑klk↓ku + i u↓klk↑ku,

QUANTUM COMPUTATION WITH JOSEPHSON QUBITS… PHYSICAL REVIEW B 71, 134506s2005d

134506-3



sz
skd = u↑klk↑ku − u↓klk↓ku.

Above, when the first cosine-term in Hamiltonians1d was
expanded, only the single-quantum transition process ap-

proximated to the first-order ofûb was considered. The
higher order nonlinearities have been neglected as their ef-
fects are very weak. In fact, for the lower number states of
the bus, we haveCgk

Îkub
2l /Ck&10−2, for the typical experi-

mental parameters11,15,24,27Cb,1pF, vb/2p,10 GHz, and
Cgk

/CJk
,10−2.

Notice that the coupling strengthlk between the qubit and
the bus is tunable by controlling the fluxFk, applied to the
selected qubit, and the bias currentIb, applied to the infor-
mation bus. For example, such a coupling can be simply turn
off by setting the fluxFk as F0/2. This allows various el-
emental operations for quantum manipulations to be realiz-
able in a controllable way. In the logic basishu0kl , u1klj, de-
fined by

u0kl =
u↓kl + u↑kl

Î2
, u1kl =

u↓kl − u↑kl
Î2

,

and under the usual rotating-wave approximation, the above
Hamiltonians4d can be rewritten as

Ĥkb = FEJk

2
s̃z

skd −
dECk

2
s̃x

skdG + "vbSâ†â +
1

2
D

+ ilkfâs̃+
skd − â†s̃−

skdg , s6d

with

s̃x
skd = u1klk0ku + u0klk1ku,

s̃y
skd = − i u1klk0ku + i u0klk1ku,

s̃z
skd = u1klk1ku − u0klk0ku,

and s̃±
skd=ss̃x

skd± is̃y
skdd /2. Here, the logic statesu0kl and u1kl

correspond to the clockwise and anticlockwise persistent cir-
culating currents in thekth SQUID loop, respectively.

We now discuss the quantum dynamics of the above Jo-
sephson network. Without loss of generality, we assume in
what follows that the bias currentIb applied to the CBJJ does
not change, once it is set up properly beforehand. The quan-
tum evolutions of the system are then controlled by other
external parameters: the fluxes applied to the qubits and the
voltages across the gate capacitances of the qubits. Depend-
ing on the different settings of the controllable external pa-
rameters, different Hamiltonians can be induced from Eq.s6d

and thus different time evolutions are obtained. Obviously,
during any operational delayt with FXk

=F0/2 and Vk

=e/Cgk
, the kth qubit remains in its idle state because the

Hamiltonian vanishessi.e., H0
skd=0d as EJk

=0,ngk
=0. How-

ever, the data bus still undergoes a free time evolution

Û0std = expS− it

"
ĤbD . s7d

This evolution is useful for controlling the dynamical phase
of the qubits to exactly realize certain quantum operations.
For the other cases, the dynamical evolutions of the chosen
qubit depend on the different settings of the experimental
parameters.

s1d For the case whereFk=F0/2 andVkÞe/Cgk
, the ith

qubit and the bus separately evolve with the Hamiltonians

Ĥ1
skd=−dECk

s̃x
skd /2 and Ĥb determined by Eq.s3d, respec-

tively. The relevant time-evolution operator of the whole sys-
tem reads

Û1
skdstd = expS− it

"
Ĥ1

skdD ^ expS− it

"
ĤbD . s8d

s2d If the kth qubit works at its degenerate point and
couples to the bus, i.e.,Vk=e/Cgk

and FkÞF0/2, then we
have the Hamiltonian

Ĥ
˜

kb = EJk
s̃z

skd/2 + Ĥb + ilkfâs̃+
skd − â†s̃−

skdg s9d

from Eq. s6d. The corresponding dynamical evolutions are

u0blu0kl→
Û
˜

kb

eiDkt/2u0blu0kl, Û
˜

kb = exps− iĤ
˜

kbtd, Dk = EJk
/" − vb,

u0blu1kl→
Û
˜

kb

e−ivbtHFcosSVk

2
tD − i

Dk

Vk
sinSVk

2
tDGu0blu1kl

−
2lk

"Vk
sinSVk

2
tDu1blu0klJ ,

u1blu0kl→
Û
˜

kb

e−ivbtHFcosSVk

2
tD + i

Dk

Vk
sinSVk

2
tDGu1blu0kl

+
2lk

"Vk
sinSVk

2
tDu0blu1klJ , s10d

with Vk=ÎDk
2+s2lk/"d2.

Specifically, we have the time-evolution operator

Û2
skdstd = Âstd1 cosSlkt

"
În̂ + 1D −

1

În̂ + 1
sinSlkt

"
În̂ + 1Dâ

â†

În̂ + 1
sinSlkt

"
În̂ + 1D cosSlkt

"
În̂D 2 , s11d
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with

Âstd = expF− itS Ĥb

"
+

EJk
s̃z

skd

2"
DG

for the resonant caseDk=0. This reduces Eq.s10d to the time
evolutions

u0blu0kl →
Û2

skdstd

u0blu0kl,

u0blu1kl →
Û2

skdstd

e−ivbtFcosSlkt

"
Du0blu1kl − sinSlkt

"
Du1blu0klG ,

u1blu0kl →
Û2

skdstd

e−ivbtFcosSlkt

"
Du1blu0kl + sinSlkt

"
Du0blu1klG .

For another extreme case, i.e., the system works in the
dispersive regime sfar from the resonant pointd
2lk/ s" uDku d!1, we have the time evolution operator

Û
˜

2
skdstd = ÂstdexpS− i

Ĥ
˜

kb8 t

"
D , s12d

with

Ĥ
˜

kb8 = lk
2su1klk1kuââ† − u0klk0kuâ†âd/s"Dkd.

It reduces to the following time evolutions:

u0blu0kl →
Û
˜

2
skdstd

expSit
Dk

2
Du0blu0il,

u0blu1kl →
Û
˜

2
skdstd

expF− itSvb +
Dk

2
+

lk
2

"2Dk
DGu0blu1kl,

u1blu0kl →
Û
˜

2
skdstd

expF− itSvb −
Dk

2
−

lk
2

"2Dk
DGu1blu0kl,

u1blu1kl →
Û
˜

2
skdstd

expF− itS2vb −
Dk

2
−

2lk
2

"2Dk
DGu1blu1kl.

s3d Generally, if FkÞF0/2 and Vgk
Þe/Cgk

, then the
Hamiltonians6d can be rewritten as

Ĥ
¯

kb =
Ek

2
s̄z

skd + Ĥb + ilksâ†s̄−
skd − âs̄+

skdd, s13d

with

s̄x
skd = − sinhks̃z

skd − coshks̃x
skd,

s̄y
skd = − s̃y

skd,

s̄z
skd = coshks̃z

skd − sinhks̃x
skd,

and s̄±
skd=ss̄x

skd± is̄y
skdd /2. Here, coshk=EJk

/Ek, and Ek

=ÎsdECk
d2+EJk

2 . If the bias currentIb and the fluxFk are set

properly beforehand such thatEJk
,"vb!dECk

, then the de-

tuning"D̄k=Ek−"vb is very largescompared to the coupling
strengthlk&10−1EJk

d. Therefore, the time-evolution opera-
tor of the system can be approximated as

Û
¯

3
skdstd = B̂stdexpH− i

lk
2t

"2D̄k

Fs̄z
skdSâ†â +

1

2
D +

1

2
GJ ,

s14d

with

B̂std = expF− itS Ĥb

"
+

Eks̄z
skd

2"
DG .

This implies the following evolutions:

u0blu0kl →
Û
¯

3
skdstd

e−izkthfcossjktd + i coshk sinsjktdg u0blu0kl

+ i sinhk sinsjktdu0blu1klj,

u0blu1kl →
Û
¯

3
skdstd

e−izkthfcossjktd − i coshk sinsjktdgu0blu1kl

+ i sinhk sinsjktdu0blu0klj,

u1blu0kl →
Û
¯

3
skdstd

e−iszk+vbdthfcossjk8td + i coshk sinsjk8tdgu1blu0kl

+ i sinhk sinsjk8tdu1blu1klj,

u1blu1kl →
Û
¯

3
skdstd

e−iszk+vbdthi sinhk sinsjk8tdu1blu0kl + fcossjk8td

− i coshk sinsjk8tdgu1blu1klj,

with

zk = vb/2 + lk
2/s2"3D̄kd, jk = Ek/s2"d + lk

2/s2"2D̄kd

and

jk8 = jk + lk
2/s"2D̄kd.

In what follows we shall show that any process for manipu-
lating the quantum information stored in the present circuit
can be effectively implemented by selectively using the

above elementary time evolutionsÛ0std, Û1
skdstd, Û2

skdstd,

Û
˜

2
skdstd, andÛ

¯
3
skdstd.

III. QUANTUM MANIPULATIONS OF THE
SUPERCONDUCTING NANOCIRCUIT

It is well known that any valid quantum transformation
can be decomposed into a sequence of elementary one- and
two-qubit quantum gates. The set of these gates is universal,
and any quantum computing circuit comprises only gates
from this set. Several schemes17,18,29have been proposed for
implementing one of the universal two-qubit gates with Jo-
sephson qubits by using the direct interactions between them.

QUANTUM COMPUTATION WITH JOSEPHSON QUBITS… PHYSICAL REVIEW B 71, 134506s2005d

134506-5



By making use of the data bus interacting sequentially with
the selective qubits, Blaiset al.22 showed that the two-qubit
gate may be effectively realized. Two important problems
will be solved in our indirect-coupling approach:sid When
one of two qubits is selected to couple with the data bus, how
we can let the remainder qubit decouple completely from the
bus andsii d the phase changes of the bus’ and qubit’s states
during the operations are very complicated, how we can con-
trol these phase changes in order to precisely implement the
desired quantum gate.

The scheme in Ref. 22 assumed that, when one of the two
qubits is tuned to resonance with the bus, then the other qubit
is hardly affected because of its different Rabi frequency.
Obviously, this decoupling is not complete and thus it is not
easy to assure that the bus couples only one qubit at a time.
By controlling the external fluxFk applied to the qubits, the
network proposed here provides an effective method for
making the remainder qubit completely decouple from the
bus. All the desired elementary operations for quantum com-
puting can be exactly implemented by properly setting the
experimentally controllable parameters, e.g., the externalFk,
the gate voltageVk, the bias currentIb, and the durationt of
each selected quantum evolution, etc. Hereafter, we assume
that each of the selected time evolutions can be switched
on/off very quickly.

A. Single-qubit operations

First, we show how to realize the single-qubit operations
on each SQUID qubit. This will be achieved by simply turn-
ing on/off the relevant experimentally controllable param-
eters. For example, ifngk

Þ1/2 andEJk
=0 for a time spant,

then the time evolutionÛ1
skdstd in Eq. s8d is realized. This

operation is the single-qubit rotation around thex axis

R̂x
skdswkd =1 cos

wk

2
i sin

wk

2

i sin
wk

2
cos

wk

2
2 , s15d

with wk=dECk
t /". Rotations bywk=p andwk=p /2 produce

a spin flip si.e., a NOT-gate operationd and an equal-weight
superposition of logic states, respectively.

The rotation around thez axis can be implemented by
using the evolutions12d. This operation is conditional and
dependent on the state of the bus. If the bus is in the ground
stateu0bl, the rotation reads

Rz
skdsfkd = e−i%ktSe−ifk 0

0 eifk
D , s16d

with %k=vb/2+lk
2/ s2"2Dkd, fk=EJk

t / s2"d+lk
2t / s2"2Dkd.

With a sequence ofx and z rotations, any rotation on the
single qubit can be performed. For example, the Hadamard
gate applied to thekth qubit

Ĥg
skd =

1
Î2

S1 1

1 − 1
D

can be implemented by a three-step rotation

R̂z
skdSp

4
D ^ R̂x

skdS−
p

2
D ^ R̂z

skdSp

4
D = Ĥg

skd. s17d

Here, the relevant durationst1, t2, and t3 are set properly to
satisfy the conditions

cosSdECk
t2

"
D = − sinSdECk

t2

"
D = sinFEJk

t1

2"
+

slk/"d2t1
2Dk

G
= sinFEJk

t3

2"
+

slk/"d2t3
2Dk

G =
1
Î2

.

B. Two-qubit operations

Second, we show how to realize two-qubit gates by letting
a pair of qubitssthekth andj th onesd interact separately with
the bus. Before the quantum operation, the chosen qubits
decouple from the bus. At the end of the desired gate opera-
tion the bus should be disentangled again from the qubits,
and returned to its ground state. For operational simplicity,
we assume that the bus resonates with the control qubit, the
kth one, i.e.,Dk=0. We now consider the following three-
step operational process.

sid Couple the control qubit to the bussi.e., the applied
external fluxFk is varied toF0d and realize the evolution

Û2
skdst1d for the durationt1:

sinSlkt1
"

D = − 1. s18d

Then, by returning theFk to its initial value, i.e., Fk
=F0/2, thekth qubit can be decoupled from the bus exactly.
Before the next step operation, there is an operational delay
t1. During this delay the state of the qubits does not evolve,

while the data bus still undergoes a time evolutionÛ0st1d.
sii d Couple the target qubitsthe j th oned to the bus and

realize the time evolutionÛ
¯

3
s jdst2d. This is achieved by letting

the chosen qubit work near its degenerate pointsi.e., ngj
Þ1/2d and switching on its Josephson energysi.e., F j
ÞF0/2d. After the timet2 determined by the condition

cossj jt2d = − sinsj j8t2d = 1, s19d

we decouple thej th qubit from the bus and let it be in the
idle state by returning its gate voltageVj to the degenerate
point sngj

=1/2d, and simultaneously switching off the rel-
evant Josephson energy. During another operational delayt2
before the next step operation, the bus undergoes another

free evolutionÛ0st2d.
siii d Repeat the first step and realize the evolution

Û2
skdst3d with

sinSlkt3
"

D = 1. s20d

Diagrammatically, the above three-step operational process
with two delays can be represented as follows:
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u0b0k0jl →
Û0st1dÛ2

skdst1d

e−ivbt1/2u0b0k0jl →
Û0st2dÛ

¯
3
s jdst2d

e−ixu0b0k0jl

→
Û2

skdst3d

e−ixu0b0k0jl,

u0b0k1jl →
Û0st1dÛ2

skdst1d

e−ivbt1/2u0b0k1jl →
Û0st2dÛ

¯
3
s jdst2d

e−ixu0b0k1jl

→
Û2

skdst3d

e−ixu0b0k1jl,

u0b1k0jl →
Û0st1dÛ2

skdst1d

e−ivbst1+3t1/2du1b0k0jl

→
Û0st2dÛ

¯
3
s jdst2d

ie−ix−ivbst1+t2+t1+t2dscosh ju1b0k0jl

+ sinh ju1b0k1jld →
Û2

skdst3d

ie−ix−ivbTscosh ju0b1k0jl

+ sinh ju0b1k1jld,

u0b1k1jl →
Û0st1dÛ2

skdst1d

e−ivbst1+3t1/2du1b0k1jl

→
Û0st2dÛ

¯
3
s jdst2d

ie−ix−ivbst1+t2+t1+t2dssinh ju1b0k0jl

− cosh ju1b0k1jld →
Û2

skdst3d

ie−ix−ivbTssinh ju0b1k0jl

− cosh ju0b1k1jld,

with T= t1+ t2+ t3+t1+t2 being the total duration of the pro-
cess, andx=z jt2+vbst1+t2d /2. Obviously, the information
bus remains in its ground stateu0bl after the operations. If the
total durationT is satisfied as

sinsvbTd = 1, s21d

the above three-step process with two delays yields a two-
qubit gate expressed by the following matrix form:

Û1
skjdsh jd =1

1 0 0 0

0 1 0 0

0 0 cosh j sinh j

0 0 sinh j − cosh j

2 , s22d

which is a universal two-qubit Deutsch gate.35

Analogously, if the second step operationÛ
¯

3
s jdst2d in the

above three-step process is replaced by the operation

Û
¯

2
s jdst2d, then another two-qubit operation expressed by

Û
¯

2
skjdst2d =1

G j 0 0 0

0 G j
* 0 0

0 0 L je
−ivbT 0

0 0 0 L j
*e−ivbT

2 , s23d

with G j =expsi§ jt2d, L j =expsi§ j8t2d, § j =EJj
/ s2"d

+l j
2/ s2"2D jd, § j8=§ j +l j

2t2/ s"2D jd, can be implemented. This

three-step operational process can similarly be represented
diagrammatically as

u0b0k0jl →
Û0st1dÛ2

skdst1d

e−ivbt1u0b0k0jl →
Û0st2dÛ

˜
2
s jdst2d

Ge−inu0b0k0jl

→
Û2

skdst3d

Ge−inu0b0k0jl,

u0b0k1jl →
Û0st1dÛ2

skdst1d

e−ivbt1u0b0k1jl →
Û0st2dÛ

˜
2
s jdst2d

G*e−inu0b0k1jl

→
Û2

skdst3d

G*e−inu0b0k1jl,

u0b1k0jl →
Û0st1dÛ2

skdst1d

e−ivbst1+3t1/2du1b0k0jl

→
Û0st2dÛ

˜
2
s jdst2d

Le−in−ivbst1+t2+t1+t2du1b0k0jl

→
Û2

skdst3d

Le−in−ivbTu0b1k0jl,

u0b1k1jl →
Û0st1dÛ2

skdst1d

e−ivbst1+3t1/2du1b0k1jl

→
Û0st2dÛ

˜
2
s jdst2d

L*e−in−ivbst1+t2+t1+t2du1b0k1jl

→
Û2

skdst3d

L*e−in−ivbTu0b1k1jl,

with n=vbt2/2+l j
2t2/ s2"2D jd+vbst1+t2d /2. Above, the du-

rations of the first- and third-step operations have been set
the same as those for realizing the two-qubit operation

Û1
skjdsh jd.
The two-qubit gateÛ1

skjdsh jd for Û2
skjdst2dg performed

above forms a universal set. Any quantum manipulation can
be implemented by using one of them, accompanied by ar-
bitrary rotations of single qubits. Obviously, if the system
works in the strong charge regimeEJj

/ sdECj
d!1 and

cosh j ,0, sinh j ,1, then the two-qubit gateÛ1
skjdsh jd in Eq.

s22d approximates the well-known controlled-NOTsCNOTd
gate

ÛCNOT
skjd =1

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0
2 .

Also, if the durationt2 of the evolutionÛ
˜

2
s jdst2d and the de-

lays t1, t2 are further set properly such that

coss§ jt2d = sins§ j8t2d = sinsvbTd = 1,

then the two-qubit operationÛ2
skjd in Eq. s23d reduces to the

well-known controlled-phasesCROTd gate
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ÛCROT
skjd =1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 − 1
2 .

IV. DECOHERENCE OF THE QUBIT-BUS SYSTEM DUE
TO THE BIASED VOLTAGE AND CURRENT

NOISES

An ideal quantum system preserves quantum coherence,
i.e., its time evolution is determined by deterministic revers-
ible unitary transformations. Quantum computation requires
a long phase coherent time evolution. In practice, any physi-
cal quantum system is subject to various disturbing factors
which destroy phase coherence. In fact, solid-state systems
are very sensitive to decoherence, as they contain a macro-
scopic number of degrees of freedom and interact with the
environment. However, coherent quantum manipulations of
the qubits are still possible if the decoherence time is finite
but not too short. Hence, it is important to investigate the
effects of the environmental noise on the present quantum
circuit.

The typical noise sources in Josephson circuits consist of
the linear fluctuations of the electromagnetic environments
se.g., circuitry and radiation noisesd and the low-frequency
noise due to fluctuations in various charge/current channels
se.g., the “background charge” and “critical current”d. Usu-
ally, the former one behaves as Ohmic dissipation36 and the
latter one produces a 1/f spectrum.37 It is well known that
the problem of 1/f noise is still unsolved in solid-state cir-
cuits ssee, e.g., Ref. 38d. An efficient strategy, proposed in
Refs. 39 and 40, is to suppress it by dynamical decoupling
techniques using controllable pulses. Within the present
work, we will consider the case of Ohmic dissipation due to
linear fluctuations of the external circuit parameters: the bias
currentIb applied to the CBJJ and the gate voltages applied
to the qubits. The effect of gate-voltage noise on a single
charge qubit and that of bias-current noise on a single CBJJ
has been discussed in Refs. 11 and 36 and in Ref. 27, respec-
tively. We now study these noises togetherssee Fig. 2d, since
the interaction between a CBJJ, acting as a bus here, and a

selectedse.g., thekthd qubit takes a central role in the present
scheme for quantum manipulations. Each electromagnetic
environment is treated as a quantum system with many de-
grees of freedom and modeled by a bath of harmonic oscil-
lators. Furthermore, each of these oscillators is assumed to
be weakly coupled to the chosen system. The Hamiltonian of
a chosenskthd qubit coupling to the bus, containing the fluc-
tuations of the applied gate voltageVk and bias currentIb,
can be generally written as

Ĥ = Ĥ
¯

kb + ĤB + V̂,

with

HB = o
j=1,2

o
v j

F pv j

2

2mv j

+
mv j

v j
2xv j

2

2 G = o
j=1,2

o
v j

Sâv j

† âv j
+

1

2
D"v j

s24d

and

V̂ = − fsinaks̄z
skd + cosaks̄x

skdgsR̂1 + R̂1
†d − sâ†R2 + âR̂2

†d,

s25d

being the Hamiltonians of the two baths and their interac-

tions with the nondissipative qubit-bus systemĤ
¯

kb, respec-
tively. Above, âv j

, âv j

† are the Boson operators of thej th
bath, and

R̂1 =
eCgk

Ck
o
v1

gv1
âv1

, R2 =Î "

2C̃bvb

o
v2

gv2
âv2

,

with gv j
being the coupling strength between the oscillator of

frequencyv j and the nondissipative system. The effects of
these noises can be characterized by their power spectra,
which in turn depend on the corresponding “impedance”sor
“inductance”d and the temperature of the relevant circuits.
For example, introducing the impedanceZtsvd=1/fivCt

+Z−1svdg with Zsvd=RV being the Ohmic resistor, the corre-
sponding voltage between the terminals of impedanceZtsvd
can be expressed asdV=ov1

lv1
xv1

. Thus, the spectral den-
sity of this voltage source for Ohmic dissipation can be ex-
pressed as

Gsvd = po
v1

lv1

2

2mv1
dsv − v1d = po

v1

ugv1
u2dsv − v1d , RVv.

s26d

Similarly, the spectral density for the bias-current source can
be approximated as

Fsvd = po
v2

ugv2
u2dsv − v2d , YIv, s27d

with YI being the dissipative part of the admittance of the
current bias.

The well-established Bloch-Redfield formalism33,41 offers
a systematic way to obtain a generalized master equation for
the reduced density matrix of the system, weakly influenced
by dissipative environments. A subtle Markov approximation
is also made in this theory such that the resulting master

FIG. 2. Schematic diagram of a SQUID-based charge qubit with
impedanceZsv1d coupled to a CBJJ with admittanceYsv2d.
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equation is local in time. Of course, in the regime of weak
bath coupling and low temperatures, this theory is numeri-
cally equivalent to a full non-Markovian path-integral
approach.42 For the present qubit-bus system and in the basis
spanned by the eigenstateshugl , uunl , uvnl ,n=1,2,…j of the

nondissipative HamiltonianĤ
¯

kb, the Bloch-Redfield theory
leads to the following master equations:

dsab

dt
= − ivabsab + o

m,n
sRabmn + Sabmndsmn s28d

with

Rabmn = −
1

"2E
0

`

dt 3 Fg1stdSdbno
k

AakAkmeivmkt

− AamAnbeivmatD + g1s− tdSdamo
k

AnkAkbeivknt

− AamAnbeivbntDG s29d

and

Sabmn = −
1

"2E
0

`

dt 3 Fg2
†stdSdbno

k

Bak
† Bkmeivmkt

− BamBnb
† eivmatD + g2

†s− tdSdamo
k

Bnk
† Bkbeivknt

− BamBnb
† eivbntD + g2

−stdSdbno
k

BakBkm
† eivmkt

− Bam
† BnbeivmatD + g2

−s− tdSdamo
k

BnkBkb
† eivbkt

− Bam
† BnbeivbntDG s30d

with

g1s±td = SeCgk

Ck
D2

o
v1

ugv1
u2fknsv1d + 1le7iv1t

+ knsv1dle±iv1tg,

g2
†s±td = S "

2C̃bvb
Do

v2

ugv2
u2knsv2d + 1le7iv2t,

g2
−s±td = S "

2C̃bvb
Do

v2

ugv2
u2knsv2dle7iv2t.

Above, each one of the statesual , ubl ,…, can be equal to one

of the eigenstates ofĤ
¯

kb.knsv jdl=1/fexps"v j /kBTd−1g is the
average number of thermal photons in the mode of frequency
v j. The denotationxab=kaux̂ubl accounts for the matrix ele-
ment of operatorx̂, i.e.,

Aab = kauÂkubl, Âk = s̄z
skd sinak + s̄x

skd cosak = sz
skd,

and

Bab = kauâubl, Bab
† = kauâ†ubl.

Also, vab=sEa−Ebd /" with EasEbd being one of eigenval-

ues of the nondissipative HamiltonianĤ
¯

kb, corresponding to

the eigenstateualubl. The spectrum ofĤ
¯

kb includes the
ground stateugl= u−k,0l, corresponding to the energyEg=

−"D̄k/2, and a series of dressed doubled states

uunl = cosunu+k,nl − i sinunu−k,n + 1l,

uvnl = − i sinunu+k,nl + cosunu−k,n + 1l

corresponding to the eigenvalues

Eun
= "vbsn + 1d −

rn

2
, Evn

= "vbsn + 1d +
rn

2
,

with

cosun = rn − "D̄k/Îsrn − "D̄kd2 + 4lk
2sn + 1d

and

rn = Îs"D̄kd2 + 4lk
2sn + 1d.

Here,u±kl andunl are the eigenstates of the operatorss̄z
skd and

Ĥb with eigenvalues61 and"vbsn+1/2d, respectively.
Under the secular approximation, the evolution of the

non-diagonal elementsab of the reduced density matrixs is
determined by

d

dt
sab + hifvab + ImsRababd + ImsSababdg + fResRababd

+ ResSababdgjsab = 0. s31d

Here, Rabmn and Sabmn are calculated, respectively, from
Rabmn andSabmn by settingm=a andn=b. Resxd and Imsxd
represent the real and imaginary parts of the complex num-
berx. The formal solution of the above differentials31d reads

sabstd = sabs0dexps− t/Tabdexps− iQabtd, s32d

with Qab=vab+ImsRababd+ImsSababd being the effective
oscillating frequencysthe original Bohr frequencyvab plus
the Lamb shiftDvab=ImRabab+ImSababd and

Tab
−1 = − fResRababd + ResSababdg s33d

describing the rate of decoherence between the statesual and
ubl.

In the present qubit-bus system operating near the reso-
nant pointEk,"vb, the decoherences relating to the lowest
three energy eigenstates, i.e.,ugl, uu0l= uul, anduv0l= uvl, are
especially important for the desired quantum manipulations.
The decoherences outside these three states are negligible.
After a long but direct derivation, we obtain the decoherence
rates of interest
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Tgu
−1 = aVH4ssinak cos2 u0d22kBT

"

+ 2scosak cosu0d2 cothS"vug

2kBT
Dvug

+ scosak sinu0d2FcothS"vvg

2kBT
D − 1Gvvg

+ ssinak sin 2u0d2FcothS"vvu

2kBT
D − 1GvvuJ

+ aI sin2 u0HcothS"vug

2kBT
D + 1Jvug, s34d

Tgv
−1 = aVH4ssina sin2 u0d22kBT

"

+ 2scosa sinu0d2 cothS"vvg

2kBT
Dvvg

+ scosa cosu0d2FcothS"vug

2kBT
D − 1Gvug

+ ssina sin 2u0d2FcothS"vvu

2kBT
D + 1GvvuJ

+ aI cos2 u0HcothS"vvg

2kBT
D + 1Jvvg, s35d

and

Tuv
−1 = aVH4ssina cos 2u0d22kBT

"

+ 2ssina sin 2u0d2 cothS"vvu

2kBT
Dvvu

+ scosa cosu0d2FcothS"vug

2kBT
D + 1Gvug

+ scosa sinu0d2FcothS"vvg

2kBT
D + 1GvvgJ

+ aIHsin2u0FcothS"vug

2kBT
D + 1Gvug

+ cos2u0FcothS"vvg

2kBT
D + 1GvvgJ . s36d

Above, the various Bohr frequencies read

vug = vb/2 + Ek/s2"d − Îs"vb − Ekd2 + 4lk
2/s2"d,

vvg = vb/2 + Ek/s2"d + Îs"vb − Ekd2 + 4lk
2/s2"d,

and

vvu = Îs"vb − Ekd2 + 4lk
2/".

Two dimensionless parametersaV=pRVCgk

2 / fRKCk
2g, RK

=h/e2<25.8 kV, and aI =YI / sC̃bvbd characterize the cou-
pling strengths between the environments and the system.

Especially, if the system works far from the resonant point
swith lk,0, achieved by switching off the Josephson en-
ergyd, the above resultsfshown in Eqs.s34d–s36dg reduce to
those11,27,36for the case when the qubit and the bus indepen-
dently decohere. Namely,Tgu

−1 reduces to the rate11

T↑↓
−1 = 8aVkBT/",

which describes the decoherence between two charge states
u↓ l and u↑ l of the superconducting box with zero Josephson
energy. Also,Tgv

−1 reduces to the decoherence rate27

T01
−1 = aIfcoths"vb/2kBTd + 1gvb,

between the ground and first excited states of the data bus.
However, for the strongest coupling casesi.e., when the sys-
tem works at the resonant pointd, we haveEk=EJk

="vb,
cosak=1, cosu0=sinu0=1/Î2, and cothf"vug/ s2kBTdg−1
.cothf"vvg/ s2kBTdg−1,0 s,10−7, for the typical experi-
mental parameters12 lk.0.1EJk

, EJk
="vb.50 meV@kBT

.3 meVd. Thus, the minimum decoherence rates

T̃gu
−1 = saV + aIdvug, s37d

T̃gv
−1 = saV + aIdvvg, s38d

and

T̃uv
−1 = T̃gu

−1 + T̃gv
−1, s39d

are obtained for the above three dressed states, respectively.
It has been estimated in Ref. 11 that the dissipation for a

single SQUID qubit is sufficiently weak:aV,10−6 for RV
=50V, CJk

/Cgk
,10−2, which allows, in principle, for 106

coherent single-qubit manipulations. For a single CBJJ the
dimensionless parameteraI only reaches 10−3 for typical ex-
perimental parameters:25 1/YI ,100V, Cb,6pF, vb/2p
,10 GHz. This implies that the quantum coherence of the
present qubit-bus system is mainly limited by the bias cur-
rent fluctuations. Fortunately, the impedance of the above
CBJJ can be engineered25 to be 1/YI ,560 kV. This letsaI
reach up to 10−5 and allow about 105 coherent manipulations
of the qubit-bus system.

V. CONCLUSIONS AND DISCUSSIONS

In summary, we have proposed an effective scheme to
couple any pair of selective Josephson charge qubits by let-
ting them sequentially couple to a common CBJJ, which can
be treated as an oscillator with adjustable frequency. Two
logic states of the present qubit are encoded by the clockwise
and anticlockwise persistent circuiting currents in the dc
SQUID loop. At most one qubit can be set to interact with
the bus at any moment. The interaction between the selected
qubit and the data bus is tunable by controlling the flux ap-
plied to the qubit and the bias current applied to the data bus.
This selective coupling provides a simple way to manipulate
the quantum information stored in the connected SQUID qu-
bits. Indeed, any pair of selective qubits without any direct
interaction can be entangled by using a three-step coupling
process. Furthermore, if the total duration is set up properly,
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the desired two-qubit universal gates, which are very similar
to the CNOT and CROT gates, can be implemented via such
three-step operational processes. During this operation, the
mode of the data bus is unchanged, although its vibrational
quantum is really excited/absorbed. After the desired quan-
tum operation is performed on the chosen qubits, the data
bus disentangles from the qubits and returns to its ground
state.

In previous schemes, the distant Josephson qubits are
coupled directly by either the charge-charge interaction, via
connecting to a common capacitor, or by a current-current
interaction, via sharing a common inductor. The present in-
direct coupling scheme offers some advantages:sid the cou-
pling strength is tunable and thus easy to be controlled for
realizing the desired quantum gate,sii d this first-order inter-
action is more insensitive to the environment, and thus pos-
sesses a longer decoherence time. Also, compared to previ-
ous data buses, the externally connectedLC resonator20 and
cavity QED mode,21 the present CBJJ bus might be easier to
control for coupling the chosen qubit. For example, its eigen-
frequency can be controlled by adjusting the applied dc bias
current. In addition, the CBJJ is easy to fabricate using cur-
rent technology23 and may provide more effective immuni-
ties to both charge and flux noise.

By considering the decoherence due to the linear fluctua-
tions of the applied voltageVk and currentIb, we have ana-

lyzed the experimental possibility of the present scheme
within the Bloch-Redfield formalism. A simple numerical es-
timate showed that the quantum manipulations of the present
qubit-bus system are experimentally possible, once the im-
pedanceYI of the CBJJ can be engineered to have a suffi-
cient low value, i.e., 1 /YI can be enlarged sufficientlyfe.g.,
1 /YI ,560 KV sRef. 25dg. Of course, this possibility, similar
to those in previous schemes,17,18,20–22 is also limited by
other technological difficulties, e.g., suppress the low-
frequency 1/f noise, and fast switch on/off the external flux
to couple/decouple the chosen qubit, etc. For example, a very
high sweep rate of magnetic pulsefe.g., up to,108 Oe/s
sRef. 43dg, is required to change half of flux quantum
through a SQUID loopswith the size, e.g., 50mmd in a suf-
ficiently short timese.g., the desired,40 psd. This and other
obstacles pose a challenge that motivate the exploration of
novel circuit designs that might minimize some of the prob-
lems that lie ahead in the future.
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