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Using the rigid magnetic vortex model, we develop a substantially modified Landau theory approach for
analytically studying phase transitions between different spin arrangements in circular submicron magnetic
dots subject to an in-plane externally-applied magnetic field. We introduce a novel order parameter: the inverse
distance between the center of the circular dot and the vortex core. This order parameter is suitable for
describing closed spin configurations such as curved or bent-spin structures and magnetic vortices. Depending
on the radius and thickness of the dot as well as the exchange coupling, there are five different regimes for the
magnetization reversal process when decreasing the in-plane magnetic field. The magnetization-reversal re-
gimes obtained here cover practically all possible magnetization reversal processes. Moreover, we have derived
the change of the dynamical response of the spins near the phase transitions and obtained a “critical slowing
down” at the second order phase transition from the high-field parallel-spin state to the curved(C-shaped) spin
phase. We predict a transition between the vortex and the parallel-spin state by quickly changing the magnetic
field—providing the possibility to control the magnetic state of dots by changing either the value of the
external magnetic field and/or its sweep rate. We study an illuminating mechanical analog(buckling instability)
of the transition between the parallel-spin state and the curved spin state(i.e., a magnetic buckling transition).
In analogy to the magnetic-disk case, we also develop a modified Landau theory for studying mechanical
buckling instabilities of a compressed elastic rod embedded in an elastic medium. We show that the transition
to a buckled state can be either first or second order depending on the ratio of the elasticity of the rod and the
elasticity of the external medium. We derive the critical slowing down for the second-order mechanical
buckling transition.
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I. INTRODUCTION

A. Overview of magnetic microdots

Recent achievements in nanotechnology now allow the
fabrication of different arrays of small magnetic dots of vari-
ous shapes and different interdot spacings.1–18 The size of
these small magnetic dots range from several tens to several
hundred nanometers in length and from a few to several tens
of nanometers in thickness. Such dot arrays are potentially
useful for memory elements,1 magnetic field sensors,19 and
logic devices,2 among other applications. By using different
experimental techniques, including magneto-optical Kerr
effect,1,2,8,11–13 Lorentz transmission electron
microscopy,6,7,10 and magnetic force microscopy,3–5,8,13,14it
has already been observed, that the magnetic vortex,1,3,5–10

parallel-spin state,1,8 and different realizations of curved spin
states[also known as bent spin states, including the so-called
C-phase(e.g. Refs. 6 and 10), and the S-phase(e.g., Ref.
10)] compete for the magnetization reversal process and the
remanent state. For instance, different sequences of these
magnetic states can contribute to the magnetization reversal
process depending on the shape of the dots,6,7,15 dot sizes,7

interdot distances10–13 and dot arrangements.11,12 Also, the
detailed spin configuration depends on small structural de-
fects, surface roughness,16 and small variation of the shape
of the dots.6

Recent micromagnetic simulations also suggest different
types of spin arrangements. Depending on the dot shape, its

aspect ratio, interdot distance, and the exchange length, ob-
served spin configurations include out-of-plane1,20–22 and
in-plane23,24 vortices, the onion state,23,24 the C and S bent
states,16,21–24etc. However, there is still no general and clear
understanding of how each one of these magnetic phases
transforms into another one when the magnetic field
changes. For instance, recent simulations22–24pose the ques-
tion of why, in some region of parameters, the vortex state
does not contribute to the reversal magnetization process
even though it provides the minimum energy at zero mag-
netic field. Another related unclear issue ishow one magnetic
spin configuration loses its stability and transforms into an-
other oneand what happens with thedynamical response of
magnetic dots when the spin configuration changes near the
phase boundaries.

The detailed investigation of how different spin arrange-
ments evolve when changing the in-plane magnetic field for
different sets of parameters is very time consuming compu-
tationally (e.g., Ref. 22) and can sometimes provide contra-
dictory results(see, e.g., Ref. 16) depending on the computer
codes used. Thus, it is very desirable to explore alternative
ways to study this problem without the use of micromagnetic
computer codes.

B. Novel order parameters to describe magnetic and
mechanical phase transitions

Instead of the usual microscopic description of spin ar-
rangements, we use a modified Landau-type25 theory, study-
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ing the general properties of the magnetic phase evolution in
micromagnetic dots. Indeed, the most significant modern ad-
vance in our general understanding of equilibrium critical
phenomena26,27 was preceded by the gradual realization that
apparently dissimilar and unrelated phenomena(e.g., chemi-
cal, mechanical, optical, magnetic, superconducting and su-
perfluid transitions) shared some commonalities near critical
points. More recently, the focus has shifted to systems driven
away from equilibrium(e.g., Refs. 28–31) or in metastable
states, and to the search for common behaviors and trends
near their phase transitions. For example, the mechanical
stick-slip plastic effect, known as the Portevin-Le Châtelier
effect (PLC), was studied in Ref. 28 by compressing Al-
Mg alloys in a very large deformation range, and the re-
sults interpreted from the viewpoint of phase transitions
and critical phenomena. The experiments in Refs. 28 and
29 applied a generalized force, the externally imposed
stress, on metallic samples that responded by generating
intermittent bursts. This is the mechanical analog of ap-
plying an external magnetic field, another generalized
force, to a spin configuration, and monitor its continuous
and discontinuous response. The mechanical response was
quantified by the rate of burst generation, 1/tbursts, which
can be seen as the order parameter for the mechanical
stick-slip plastic effect observed there.28 This is the analog
of the magnetizationM in a magnet, or the density of
paired electrons in superconductors.

In order to develop our modified Landau-type theory for
studying the phase transitions among different spin arrange-
ments in micromagnetic dots, we restrict ourselves to circu-
lar flat dots with no interdot interactions, which is valid12 if
the interdot distance is larger than the dot radiusR. More-
over, we will utilize the commonly used “rigid” vortex
model (see, e.g., Refs. 11, 20, 21, and 32), which describes
different spin arrangements in terms of the displacement of
the vortex core from the disk center. Namely, based on ear-
lier works,33,34 several groups11,20,21,32have assumed that the
magnetic vortex core[Fig. 1(a)] moves away from the center
of the disk, keeping the spin arrangement unchanged, when
the magnetic field increases from zero to an “annihilation
field” corresponding to the disappearance of the vortex.
When the externally applied in-plane magnetic field de-
creases from some very high value, the center of the mag-
netic vortex can move from infinity[parallel-spin state
[(sometimes called single-domain state35)] towards the center
of the disk with the vortex core still sitting outside the dot
[Fig. 1(b)]—this describes the so-called C-phase11,21 since
the spin arrangement inside the disk has a C-shape configu-
ration. Therefore, we will consider how these three magnetic
phases(the vortex phase, the C-phase and the parallel-spin
state) evolve when the in-plane magnetic field is varied.

Note that the rigid vortex model has been successfully
used to obtain values of the applied magnetic fields for the
annihilation and nucleation of a vortex11,20,21in small micro-
magnetic disks. These results are consistent with both experi-
ments and numerical simulations. Also, the rigid vortex
model has been useful to study some dynamical properties of
magnetic vortices.36 These works(e.g., Refs. 11, 20, 21, 32,
and 36) almost prove the applicability of the rigid vortex
model for describing the evolution of spin structures in an

array of micromagnetic dots. Of course this model is phe-
nomenological, but has been verified via micromagnetic
simulations and experiments. In addition, this model pro-
vides a great advantage: the spin system can be described by
only one degree of freedom—the distances between the
magnetic vortex and the dot center. This makes the problem
analytically tractable.

Here, we introduce a novel order parameter, which isnot
the usual average magnetization used for description the
magnetic phase transition25 in bulk materials, but the inverse
distancec=1/s between the center of the disk and the vortex
center. Expanding the energy of the rigid vortex with respect
to this new order parameter, we derive a modified Landau-
type theory describing magnetic states for micromagnetic
disks. Interestingly, the order parameter introduced here ex-
hibits some analogies with other systems, including elastic
and plastic deformation transitions.28 For the micromagnetic
disk case, the order parameter

FIG. 1. (a) Schematic diagram of a magnetic vortex sitting in-
side the dot and shifted from the dot center because of an applied
in-plane external magnetic fieldH. The coordinate system is cen-
tered at the vortex core. Thez-axis is perpendicular to the surface of
the dot and towards the reader.(b) The so-called C-phase or bent
spin configuration is modeled as a magnetic vortex sitting outside
the dot. For this casess.1d, the origin of the coordinate system is
located at the dot center. The anglew describes the possible rotation
of the vortex around the dot center. The anglef and the
f-dependent distancesr1sfd andr2sfd are used in Appendix A in
order to derive the exchange and Zeeman energies.
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c =
1

s
s1d

describes transitions among metastable states, while for plas-
tic stick-slip deformations28

cp =
1

tbursts
s2d

is used to describe a temporal order parameter. Near the dy-
namic critical points, the order parametercp=1/tburstsof the
PLC effect exhibits large fluctuations, and “critical slowing
down,” in analogy with the critical slowing down predicted
here for micromagnetic disks. Note that critical slowing
down is a quite general dynamical property near second or-
der phase transitions, and can manifest itself in condensed
matter, cosmology, and other areas.37

We have found a much closer mechanical analog bycom-
paring the transition between the parallel-spin state and
curved spin state (magnetic buckling) with the known me-
chanical buckling instabilities(see, e.g., Chap. II of Ref. 38).
This analogy is schematically shown in Fig. 2. Using the
approach we develop for the micromagnetic disk case, we
study the second and first order buckling transitions for a
compressed rod placed in an elastic medium.38 Our approach
is more general than other approaches used for studying the
second-order buckling transition.39,40

Note that recently there is a growing interest in the buck-
ling of small rods in the context of, e.g., mechanical proper-
ties and stability of carbon nanotubes,41–45 multilayers,46

biopolymers,47,48 DNA,49,50 and fracture.51,52A nice modern
introduction to the application of buckling to pattern forma-
tion in physical and biological systems can be found in Ref.
53. Also, the mechanical bending and buckling of microrods
is currently explored for novel applications in nano-
mechanics(e.g., Ref. 54), as well as for quantum detection
and information processing.55–58

C. Summary of results

Although the simple rigid vortex model cannot describe
very complicated spin arrangements in magnetic dots(e.g.,
“S”-shaped spin arrangements), the magnetization-reversal
regimes obtained here cover practically all possible magne-
tization reversal processes. Depending on the radius and
thickness of the dot, as well as the exchange coupling, there
are five different regimes(see Fig. 3) for the magnetization
reversal process when decreasing the externally applied in-
plane magnetic field.

(1) For large radius of the microdisk: when lowering the
magnetic field from an initial high value, the parallel-spin
magnetic state of the microdisk becomes metastable and then
unstable for a certain value of the(nucleation) external mag-
netic fieldHn and transforms to the vortex phase(via a first
order phase transition). When the magnetic field changes po-
larity and increases in absolute value, the vortex phase first
becomes metastable and afterwards it transforms(another
discontinuous transition) to a parallel-spin state at a certain
negative value, −Han, of the magnetic field.

(2) For intermediate disk radius: the bent or C-shaped

spin arrangement(the C phase) mediates the transition be-
tween the parallel-spin state and the vortex state. Moreover,
the transition from the parallel-spin state to the C-phase(and
vice versa) is a continuous second-order transition, while the
C-phase transforms to the vortex state via a discontinuous
transition.

(3) For smaller disk radius: the vortex state does not par-
ticipate in the magnetization reversal process while the
parallel-spin state first transforms to the C-phase, which sur-
vives up to zero magnetic field. When the magnetic field
changes its polarity, the C-phase rotates first and then trans-
forms to a parallel-spin state at a high negative external field.
This rotation of the C-phase when the polarity changes cor-
responds to a Goldstone mode moving along the minima of a
hat-shaped potential. This rotation, like all Goldstone modes,
costs either zero or little energy.

(4) For even smaller disk radius: the parallel-spin state
rotates as a whole at zero magnetic field. Nevertheless, the
vortex phase is stable or metastable at low magnetic fields in
the third and fourth reversal magnetization regimes described
above; this results in the initial(virgin) magnetization pro-
cess.

(5) For even smaller radius: the parallel-spin phase is the
only state having an energy minimum for any value of the
external magnetic field. The vortex and C phase are not
accessible.

The dynamical response of the spin configurations
changes drastically at the phase transitions, producing“criti-
cal slowing down” at the second-order phase transition be-
tween the parallel-spin and the C phase. We want to stress
that the obtained physical scenarios are related to thespon-
taneous symmetry breakingat the transitions between the
parallel-spin state and the bent or vortex states and, there-
fore, these results are more general than the rigid vortex
model itself. Moreover, our predicted “critical slowing
down” has already been verified in micromagnetic
simulations:59 this confirms the second order phase transition
derived here between the parallel-spin phase and the
C-phase. Hence, this physical picture could be generalized to
some extent to much more complicated spin configurations
in the circular thin dots,16,22,23and certainly can be used as a
guide to look for novel ways to control spin configuration in
magnetic dots. It can also be generalized to micromagnetic
disks exposed atransverseor out-of-plane applied magnetic
field.

Using the very physical analogy[Figs. 2(a)–2(d)] between
the “straight-to-bent rod” Euler buckling instability and the
“parallel-to-curved” spin configuration phase transition in
micro-magnetic disks, we have extended our modified
Landau-type theory approach[Figs. 2(e)–2(h)] for an elastic
rod embedded in an elastic medium. We found that the buck-
ling transition can be either first or second order depending
on the ratio of the rod and external-medium elasticity. For
the case of the second order buckling, we predict that the
dynamical response exhibits a “critical slowing down.”

It is important to stress that theresults obtained for both
magnetic and mechanical buckling do not seem to be model-
dependent since they are based on the general symmetry-
breaking mechanism of phase transitions.
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II. ENERGY OF SPINS IN A DOT IN A MAGNETIC FIELD

The energy of a spin system in a dot subject to an external
magnetic field contains three contributions:(i) the exchange
energy, describing nearest-neighboring spin interactions;(ii )
the magnetostatic energy, attributed to the magnetic interac-
tion of spins; and(iii ) the Zeeman energy, which takes into
consideration the interaction of spins with the external mag-
netic field. In the continuous approximation, the exchange

energyWex is determined(e.g., Ref. 21) by

Wex = 1
2CE d3r fs¹mxd2 + s¹myd2 + s¹mzd2g, s3d

wherem=M /Ms is the dimensionless magnetization normal-
ized to the saturation magnetizationMs, C is the exchange
constant, while the integration is over the dot volume. The

FIG. 2. (Color online) (a–d) When increasing an ex-
ternally applied forcef on a compressed bar, it eventu-
ally changes from a staight configuration(a) to a bent
one (b) via a (first or second order) buckling transition.
This Euler Buckling instability Ref. 38 is an example of
spontaneous symmetry breaking(i.e., the bar can bend
either facing left or right). We study this here as a phase
transition. Here we also consider a magnetic analog of
this mechanical spontaneous symmetry breaking transi-
tion. When decreasing the value of an externally applied
magnetic fieldH, the spin arrangement inside a micro-
magnetic disk changes from a “straight” or “perfectly
aligned” parallel-spin configuration(c) to a “bent” or
C-shaped magnetization(d) with the spin configuration
following a curved or bent shape. 1/H plays the role of
a generalized force. This is an example of a magnetic
spontaneous symmetry breaking transition(e.g., the
C-phase can face either to the left or to the right). This is
studied here as a phase transition by expanding the mag-
netic energy of the dot. The order parameters(M and
cb) versus “generalized forces” are schematically shown
in (e,g). The effective response function, or susceptibil-
ity, for the standard ferromagnetic-paramagnetic phase
transition and the buckling phase transition are com-
pared in(f, h). (e) For zero externally applied magnetic
field H, the magnetizationM is zero in the paramagnetic
phase and starts to continuously increase in the ferro-
magnetic phase when lowering the temperature below
Tc. As schematically shown in(e), an applied magnetic
field HÞ0 smears out theMsTd phase transition, result-
ing in a nonzero magnetization in the paramagnetic
phase.(f) The magnetic susceptibilityx=]M /]H has a
peak atTc. (g) The transverse buckling amplitudecbsfd
increases continuously when the compression forcef
exceeds a critical valuefc

* , for small values of the elas-
ticity a of the external medium. However, the continu-
ous cbsfd transition becomes a discontinuous(first or-
der) transition for higher values of the elasticitysa
.acd. (h) The buckling of the rod becomes very sensi-
tive to changes in the parameters when it is nearfc

* ,
exhibiting critical slowing down and a peaked effective
susceptibilityxb=]cb/]a. A closer analog of the exter-
nal magnetic fieldH is an external forcef' perpendicu-
lar to the rod and applied near its center. Note thatf'

buckles the rod whilea suppresses its buckling. More
precisely, sufficiently large values of eitherf' or f
buckle the rod, whena is sufficiently weak. Ifa→`,
then f and/or f' will not be able to buckle the rod.
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FIG. 3. (Color online) (a) Phase diagram showing the domains of parameters for the different sequences of transitions among three stable
and metastable spin configurations inside a micromagnetic disk. The parameters are the square of the reduced radiusR2/R0

2 versus the aspect
ratio b=L /R. Above the dotted top curve, the parallel spin state, which exists for high applied in-plane magnetic fields, discontinuously
transforms to a magnetic vortex sitting inside the disk. This is because the large radius of the microdisk can easily accommodate a vortex
inside. For parameter values between the dotted and continuous curves(e.g., for smaller disk radius at a fixedb), a second-order phase
transition from the parallel spin configuration to the C-phase occurs first. Upon further lowering the in-plane field, the C phase abruptly
transforms to a vortex sitting inside the disk. Between the dashed and continuous curves, the C-phase survives down toh=H /Ms=0, and
rotates as a whole when the magnetic field changes its polarity. This rotation costs little or no energy and it is a Goldstone mode(Refs.
61–66). Below the dashed curve, the magnetization reversal process proceeds via a rotation of the parallel-spin state as a whole ath=0. Even
though the vortex state does not contribute to the magnetization reversal process below the continuous curve, the magnetic vortex is stable
or metastable at low magnetic fields above the continuous curve located at the bottom of the diagram. In practice, the stable or metastable
vortex states below the continuous curve cannot be reached besides at high temperatures or whenH changes suddenly. Below this continuous
bottom curve, the magnetic vortex does not correspond to an energy minimum and it is unstable for any value ofh. (b) Phase diagram plotted
on the plane[magnetic field=sgeneralized forced−1=h=H /Ms, reduced radius=R/R0]. This shows magnetization reversal processes for a
fixed aspect ratiob=L /R=1 when lowering the applied magnetic fieldh from a high valueh.hc. Dashed(solid) lines correspond to
first-(second-) order phase transitions. The short black segment at the top left corner corresponds to Goldstone modes, where the magneti-
zation can be rotated with zero or little energy cost. For the case of increasingh from a high negative valueh,−hc, the diagram is inverted
with respect to theh=0 axis. In order to construct this diagram, we use Eqs.(18) and(B4) and the criterionc=1 for penetrating a magnetic
vortex (transition from the C-phase to the vortex state).
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magnetic energyWm is determined by the surface magnetic
charges20,21,32as

Wm =
1

2
E dSE dS8

ssrdssr8d
ur − r8u

, s4d

wheres=M ·n is the magnetic charge density with unit vec-
tor n directed outside of the dot surface, whiler and r8 are
the positions of the elements of the surface. Here, the inte-
gration has to be performed over the dot surface. The Zee-
man energyWH has the usual form,

WH = −E
V

d3r Msrd ·H s5d

with integration over the volume of a dot.

III. RIGID VORTEX MODEL

In order to obtain the energy of the vortex sitting either
inside or outside the circular dot we need to know the mag-
netization as a function of the vortex position. In the rigid
vortex model, the magnetization inside the dot is defined by
the solution:21,34mr=0, mf= ±sin qsrd, andmz= ±cosqsrd,
where tanfqsrd /2g=r / b̃, with vortex core radiusb̃. Heremr,

TABLE I. Comparison between the usual Landau approach to study magnetic phase transitions and the
modified version studied here.

Standard approach Our approach used here

Order parameter MagnetizationM c=1/s=

sdisk-vortex distanced−1

High T or M =0 c=0 (parallel-spin phase)

high H phase (high T) (high H)

Low T or M Þ0 cÞ0 (C or vortex phase)

low H phase (low T) (low H)

T=0 or M =Ms For certain parameter values

H=0 phase sT=0d c=` (vortex centered

in the dot center atH=0)

Energy[order parameter] FLfMg=FL0+aM2+bM4−HM Ffcg=F0+Ac2+Bc4+Osc6d

Energy expansion T-dependent, H-dependent,

coefficients phenomenological analytically derived

Stability of the phases Truncated series expansion of Full expression of

determined by FLfMg wfcg (at all orders inc)

Odd powers are symmetry Analytically derived; this already satisfies

zero because of FLfMg=FLf−Mg the symmetry restrictionFfcg=Ff−cg

Coefficient ofc2 or M2 a~ sT−Tcd A~ sh−hcd

Coefficient ofc4 or M4 b=const.0 Bsh,C,R,Ld_0

1st order transition requires cubic term~M3 A changes sign whenB,0

2nd order transition a changes sign andb.0 A changes sign whenB.0

Order parameter M ~ sTc−Td1/2 (nearTc) c~ shc−hd1/2 (nearhc)

nearTc or hc

Susceptibility ]MsTd/]H~ uT−Tcu−1 ]cshd/]T~ uh−hcu−p

nearTc or hc (nearTc) (nearhc)

Critical slowing down dM= deviation from equilibrium dc= deviation from equilibrium

nearTc or hc dMstd~exps−t /tmd dcstd~exps−t /td
tm=sTc−Td−1, T,Tc t=−hB2/A3 = 512hB2/ shc−hd3 , h,hc

tm=sT−Tcd−1, T.Tc c=s2At/h +c−4st=0dd−1/4
, h.hc

SAVEL’EV AND NORI PHYSICAL REVIEW B 70, 214415(2004)

214415-6



mf, andmz are the magnetization components using a cylin-
drical coordinate systemsr ,f ,zd with its origin at the center
of the rigid vortex[Fig. 1(a)]. Also q denotes the angle be-
tween the local magnetization and thez-axis. Thez-axis in
Fig. 1 is perpendicular to the page and directed upwards
(towards the reader).

As was done in Refs. 21 and 60, hereafter we will neglect
the vortex core region. Note that as soon as the radius of the
dot is larger than the vortex core, the contribution of the core
region to the total energy gives a physically irrelevant energy
offset when the magnetic vortex is inside the dot. Of course,
this assumption becomes invalid and we, strictly speaking,
should take the core into account when the vortex ap-
proaches the dot side surface from both inside and outside of
the dot. However, the applicability of the “rigid” vortex
model itself becomes problematic in this case due to the
elliptical deformation of the vortex spin arrangement(see,
for instance, Ref. 22). Thus, we can neglect the vortex core
in the whole region of the applicability of the rigid vortex
model. In such a case the magnetization can be approximated
by m= ±ef with the f-unit vectoref.

In this case the total dimensionless energyw (normalized
by Ms

2pR2L) depends on the exchange lengthR0=ÎC/Ms
2,

the disk radiusR, the dimensionless in-plane magnetic field
h=H /Ms, and the aspect ratiob=L /R with the dot thickness
L. Considering contributions from the exchangewex, magne-
tostaticwm, and Zeemanwh energies(see, Appendix A) we
derive

wssd = −
R0

2

2R2flns1 − s−2d − Ag −
4h cosw

3p
Gssd + wm,

s. 1 + b,

wssd =
R0

2

2R2lns1 − s2d −
4h cosw

3p
s Gss−1d + wm, 1 −s. b,

s6d

with magnetostatic energy

wm =
s2

2p
E

−p

p

dfE
−p

p

df8

3
Ksf − f8,bdsin f sin f8

Î1 + s2 − 2s cosfÎ1 + s2 − 2s cosf8
, s7d

and

Ksf − f8,bd = ln
Î2f1 − cossf − f8dg + b2 + b

Î2f1 − cossf − f8dg + b2 − b

−
2

b
fÎ2f1 − cossf − f8dg + b2

− Î2f1 − cossf − f8dgg. s8d

The functionGssd can be expressed as

Gssd = fss2 + 1dEss−1d − ss2 − 1dKss−1dg s9d

using the complete elliptic integrals of the first and second
kinds K andE, respectively. The constant

A = lnFb2s4 − b2d
sb + 1d2 G s10d

has been chosen to keep the continuity of the energy ats
=1. Here, the dimensionless displacements of the magnetic
vortex from the center of the disk(normalized byR) and the

FIG. 4. (Color online) The evolution of the dependence of the total energywscd when lowering the applied in-plane magnetic fieldh
;H /Ms, for the parameters chosen at point A of the diagram in Fig. 3(a). For highh (e.g.,h=5) there is only one minimum of the energy
w corresponding to the parallel spin state(the bottom dashed line). For lower values of the applied field, a metastable energy minimum
associated with a vortex inside the disk appears and then deepens when further loweringh (the continuous line). Finally, for even lower
values of h, the minimum energy corresponding to the parallel spin state disappears(the top dotted line) and the spin arrangement
discontinuously changes to a vortex state. The corresponding magnetization loop is shown in the right bottom corner.
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dimensionless vortex core sizeb= b̃/R have been introduced.
The position of the magnetic vortex is also determined by the
anglew in the polar coordinate system with its origin at the
center of the dot[see Fig. 1(b)].

Expression(6) allows us(i) to analytically obtain the ex-
pansion of the total energyw with respect toc=1/s (used
below as an order parameter) in order to study phase transi-
tion (Fig. 3) when changing the applied magnetic field and
(ii ) to numerically calculatews1/sd for any value of 1/s
(shown in Figs. 4–6).

IV. MAGNETIC ENERGY IN TERMS OF THE INVERSE
VORTEX DISTANCE

The usual Landau theory uses the magnetization as the
order parameter to describe phase transitions in bulk mag-
netic materials(see Table I). However, an unusual type of
spin arrangement—magnetic vortex—can be realized in
small magnetic dots. This motivates us to introduce a novel
order parameter for describing the evolution of magnetic
phases when the external magnetic field changes.

In order to investigate the magnetization reversal process,
we begin our considerations by first studying very high posi-

tive in-plane magnetic fields. From the total energyw in Eq.
(6), it is clear that the minimum of the total energywssd
corresponds tow=0, s=`. In other words, when the distance
between the center of the disk and the center of the vortex is
infinite then the energy is minimum for high magnetic fields.
This is consistent with physical intuition. If we introduce the
inverse vortex distance as

c =
1

s
, s11d

thenc is equal to zero for this parallel-spin phase. When the
external in-plane magnetic fieldH decreases, this configura-
tion can become unstable and a vortex can appear either
inside or outside the dot. For the C phase and the vortex
phase, the inverse vortex distancec is nonzero, suggesting
that c could be chosen as an order parameter.

Let us write the expansion of the total energyw, in Eq.
(6), with respect toc,

wscd = wsc = 0d + Ashdc 2 + Bshdc4 + Osc6d. s12d

If c is small enough, the expansion can be truncated, keeping
the first twoc-dependent terms. Here we introduce two co-

FIG. 5. (Color online) Total magnetic energyw versus order parameterc when lowering the in-plane magnetic fieldh for the parameters
chosen at point B on the diagram in Fig. 3(a). For relatively high magnetic fields, the observed change ofwscd is similar to the one shown
in Fig. 4 (the dashed curve at the bottom,h=2, and the middle continuous curve,h=1). However, the minimum inwscd, originally
corresponding to the parallel spin state,c=0, starts to shift to the right resulting in a second-order phase transition to the C-phase. In this
case, the vortex begins to “continuously penetrate” the disk from infinity(see the left portion of the top dotted curve which is inside the left
inset). The metastable C-phasescÞ0d shown there continuously evolves from the parallel state atc=0. The minimum inwscd correspond-
ing to the C-phase survives even ath=0. For very low negative fields, the C-phase rotates as a whole(Goldstone mode corresponding to a
zero-energy rotation ofM) and the vortex state does not contribute to the reversal magnetization process even though it has a minimum
energy at low fields. The corresponding magnetization loop with the virgin magnetization curve related to the vortex state is shown in the
right bottom corner. The dashed arrow shows how one could access the vortex state by a sudden drop(or jump) of the external magnetic
field.
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efficients,Ashd and Bshd which resemble the ones used for
standard Landau-type energy expansions. In the frame of the
standard Landau approach these coefficients are chosen phe-
nomenologically such as to obtain a second order phase tran-
sition (e.g., see Table I:a has to change its sign andb.0 at
a critical point) and satisfy the symmetry restrictions.In con-
trast to the phenomenological dependence of a and b on the
system parameters, we have obtained a well-defined depen-
dence of A and B on the dot radius, aspect ratio and mag-
netic field(see Appendix A for details):

Ashd = wm
s2dsbd +

h

8
+

R0
2

2R2 ,

Bshd = wm
s4dsbd +

h

64
+

R0
2

4R2 , s13d

where

wm
s2d =

1

2p
E

−p

p

dfE
−p

p

df8Ksf − f8,bdsin f

3sin f8S1

2
+

3

2
cos 2f + cosf cosf8D ,

wm
s4d =

1

2p
E

−p

p

dfE
−p

p

df8Ksf − f8,bdsin f sin f8

3 S11

32
+ cos 2f +

35

32
cos 4f +

3

4
cosf cosf8

+
5

4
cos 3f cosf8 +

9

16
cos 2f cos 2f8D . s14d

Note that here the coefficientsA andB are driven by the
magnetic fieldh, not the temperature, as in the usual Landau
theory. Thus, changing the in-plane magnetic fieldh can in-
duce phase transitions. Several very substantial differences
between the modified Landau-type approach derived here
and the usual Landau theory for bulk magnets are summa-
rized in Table I. The next section will consider phase transi-
tions in the framework of the Landau energy obtained via a
power-series expansion ofwscd.

V. PHASE TRANSITIONS WHEN CHANGING THE
MAGNETIC FIELD

A. A and B are positive in the Landau energy for anyhÐ0

For highh, bothAshd andBshd are positive for any values
of the aspect ratiob=L /R and reduced radiusR/R0. This

FIG. 6. (Color online) Main panel: dependence of the total energywscd when lowering the in-plane magnetic fieldh for the parameters
chosen at point C on the diagram in Fig. 3(a). For high and positiveh (e.g.,h=2, 0.8), the behavior ofwscd is similar to the one seen in Figs.
4 and 5(the bottom dashed and the continuous curve). However, the parallel spin state is metastable even at zero magnetic field(the dotted
line). For negative values of the external field, the parallel-spin state rotates as a whole(Goldstone mode). If the magnetic field suddenly
drops to the negative valueh=−0.6, then a gradient of the energy towards the vortex state appears(the top dotted-dashed curve). As shown
in the top right inset, there is no energy minimum corresponding to the vortex state for the parameters corresponding to point D in Fig. 3(a).
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corresponds to the minimum ofwscd at c=1/s=0, i.e., the
parallel-spin state: the vortex is infinitely away from the cen-
ter, and all spins are parallel to the external field. There is a
region of parameters in the parameter space(aspect ratio,
freduced radiusg2)=sb ,R2/R0

2d [see Fig. 3(a), below the
dashed line] whereA is positive even ath=0. For such pa-
rameters, the parallel spin state remains stable or meta-stable
with respect to the vortex penetration even at zero field. The
condition Ash=0d=0 determines the boundary[dashed line
in Fig. 3(a)] of this parameter domain, corresponding to

R2

R0
2 = −

1

2 wm
s2dsbd

. s15d

When the magnetic field changes sign, the system be-
comes unstable(see Appendix A) with respect to a rotation
(around the dot center) of a vortex located far away from the
center(essentially at infinity). In other words, the minimum
at w=0 becomes maximum as soon ash changes sign and the
anglew starts to increase(or decrease) with time until the
system settles in its minimum whenw= ±p. Thus,the mag-
netization reversal process proceeds via a rotation of the
parallel spin state as a whole(Fig. 3(b)). Interestingly, the
vortex in the center of the disk is stable(or metastable) in
h=0 for the parameter domain

R2

R0
2 .

1

2 wm
s0d s16d

[above the continuous curve at the bottom of Fig. 3(a)] with

wm
s0d =

1

2p
E

−p

p

dfE
−p

p

df8 Ksf − f8,bd sin f sin f8.

s17d

Of course, this stable(or metastable) state is not necessarily
occupied, in the sense that the system might be trapped in
some others local energy minimum. The last result Eq.(16),
can be easily verified(see Appendix B) by expandingw with
respect tos arounds=0 as done in Refs. 11 and 21. There-
fore, in the region of parameters between the continuous and
dashed curves in Fig. 3(a), the magnetic vortex can be either
stable or metastable at low magnetic fields but the vortex
state doesnot contribute to the magnetization reversal pro-
cess. However, if the magnetic vortex is created in the center
(for instance, via a thermal activation process at high enough
temperatures) the initial magnetization(virgin) curve has to
be observed. This virgin curve isnot accessible any more
during the steady magnetization reversal process. This is
consistent with and elucidates several numerical results22–24

obtained earlier. Thus, the vortex statecannot be obtained
during the magnetization reversal process because the system
always follows the metastable minimum if the system is
slowly driven. However, the system can be excited enough to
reach the stable vortex state when the system is driven suf-
ficiently fast. Only for a sufficiently small radiusR of the
disk, no vortex can be nucleated inside the disk[region be-
low the bottom continuous curve, which is far below the
dashed curve in Fig. 3(a)].

B. Second-order phase transition from parallel-spin to curved
spin state: A„hc…=0, B„hc….0

1. Order parameter near critical points

Next consider the region of parameters whereAsh=0d
,0, i.e., above the dashed line in Fig. 3(a). In this case, the
parallel spin configuration(or parallel spin state) becomes
unstable at

hc = − 8wm
s2d − S2 R0

R
D2

. s18d

In this subsection we consider the case whenBshcd.0.
This inequality can be rewritten as

R2

R0
2 ,

3

2wm
s2d − 16wm

s4d , s19d

corresponding to the parameter domain below the top dotted
line in Fig. 3(a). If Bshcd.0, then our energy isformally
similar to the usual Landau functional for second-order
phase transitions. Namely, when loweringh, a second order
phase transition occurs from the parallel spin configuration
to a curved spin configuration(i.e., the magnetic vortex sit-
ting outside the disk, also known as the C-phase) at h=hc
[Fig. 3(b)]. This happens in the parameter region between the
top dotted and dashed lines in Fig. 3(a). In such a case, the
magnetic vortex starts to continuously move from infinity
towards the dot center when the external magnetic field de-
creases. In other words, the order parameterc continuously
increases fromc=0 to

c = ceq=
1

seq
=Î−

A

2B
=Îhc − h

16B
. s20d

2. Critical slowing down near the critical points

Interestingly, the dynamical properties also change
abruptly at the phase transition between the C-phase and the
parallel-spin phase. For instance, small deviationsdc from
the equilibrium stateceq can be described by the following
equation hds/dt=−]w/]s, according to the overdamped
magnetic vortex dynamics with viscosityh. This equation
for s can be rewritten as

dsdcd
dt

= −
sdcd

t
, for h , hc,

dc

dt
= −

2A

h
c 5, for h . hc, s21d

wheredc=c−ceq is the deviation from the equilibrium so-
lution ceq=ÎA/ s−2Bd, and

t = −
hB2

A3 =
512hB2

shc − hd3 s22d

for h,hc. As a consequence, the deviationc0−ceq with
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cst = 0d = c0 =
1

s0
Þ ceq=

1

seq
s23d

from the equilibrium decays exponentially in the C phase:

dc = sc0 − ceqdexpS−
t

t
D ; s− seq= ss0 − seqdexpS−

t

t
D .

s24d

Equation (22) shows that when the magnetic field ap-
proacheshc from belowsh,hcd the relaxation timetshd di-
verges showing the so-called “critical slowing down” when
approaching the critical point.

In contrast to the exponential decay forh,hc, the mag-
netic vortex approaches the parallel-spin state whenh.hc
following the power law

cstd = F2 At

h
+ c0

−4G−1/4

; s= F8 At

h
+ s0

4G1/4

. s25d

Note that the relaxation also becomes slower thenh ap-
proacheshc from above, h.hc, becauseA~ sh−hcd→0.
Therefore, thedynamicsof the spin system has to drastically
change at this second-order phase transition.

Interestingly, the spin dynamics remains the same before
and after the discontinuous transition(the rotation of the
parallel-spin state) at h=0 for the case discussed above when
Ashd.0 andBshd.0 for anyhù0; the dynamics can only
change ath=0 due to the switching between the two rotated
parallel-spin states.

3. Evolution of spin configurations at low fields: Transition
between C and vortex phases

When the magnetic field decreases further, the C-phase
can either survive untilh=0 or transform to the vortex state
[Fig. 3(b)]. In order to estimate the stability of the C-phase at
h=0 we can use the criterioncsh=0d,1, which can be re-
written in the form,

Bs0d .
hc

16
. s26d

This approximately gives the boundary of stability of the
C-phase ath=0, within the frame of the “rigid” vortex model
for R,RC with

RC
2

R0
2 = −

1

2 wm
s4d + wm

s2d . s27d

This is shown in Fig. 3(a) between the dashed and continu-
ous lines. Therefore, whenR,RC, the C phase exists down
to h=0 and then ath,0 the system becomes unstable with
respect to rotations of the vortex center around the dot cen-
ter: the minimum atw=0 becomes maximum and the system
rotates to the new minimum atw= ±p.

If R.RC the C-phase becomes unstable with respect to
the nucleation of a magnetic vortex inside the dot. One can

use the criterioncshnd<1 (condition when vortex crosses
the dot surface,s=1) to estimate the nucleation fieldhn. Us-
ing this criterion we obtain the region of stability of the
C-phase[Fig. 3(b)]; a quantitative comparison of these ana-
lytical calculations with micromagnetic simulations should
be straightforward and could elucidate the limitations of the
approach developed here. When the external magnetic field
decreases further,h,hn, the vortex center[Fig. 1(a)] evolves
following the energy minimum of Eq.(6) for s,1 and
reaches zero ath=0. When the magnetic field changes sign
and increases in modulus the vortex is first displaced from
the dot center[Fig. 3(b)] and then a phase transition to either
the C or the parallel-spin phase occurs[Fig. 3(b)] when
ss−hexitd<1 (see, e.g., Refs. 20 and 21). Because of the sur-
face barrier, this transition has to be abrupt, namely first-
order.

C. Transition between the parallel-spin and the vortex phase:
A„hc…=0, B„hc…,0

Now consider the case whenBshcd,0, i.e., the parameter
region above the dotted line in Fig. 3(a). Interestingly,the
usual argument, that the stability of the system requires B
.0, is not applicable to our analytically-derived energy ex-
pansion in (12). Indeed, it is important to stress that the
stability is determined by the nonexpanded energy(6), and
not the truncated one in(12). In other words, the coefficients
at higher powers ofc (i.e.,c6, c8, . . .) are responsible for the
system stability(see Table I).

For high magnetic fieldsh.hc [i.e., Ashd.0, Bshd,0 in
Eq. (4)], there is a maximum of the energywscd at cmax

=ÎA/ s−2Bd and minimum atc=0 corresponding to the
parallel-spin state. This maximum(at cmax) approaches the
minimum (at c=0) when decreasing the magnetic field. At
h=hc the maximum reachesc=0, while the minimum disap-
pears. As soon as the applied magnetic fieldh becomes lower
than hc, there is no minimum nearbyc=0 and the system
abruptly (discontinuously) goes to the vortex state[Fig.
3(b)]. Thus, instead of a second-order phase transition, a first
order phase transition occurs in the parameter regionBshcd
,0 above the top dotted line in Fig. 3(a) (see also Table I).
This corresponds to a microdisk with large radiusR. Intu-
itively, large-radius disks can abruptly accommodate a vortex
inside it from the large-h straight parallel-spin phase. Me-
chanically, it corresponds toa sudden “curling” transition of
a compressed rod(see Sec. VI A below). Furthermore, this
sharp transition between theC and vortex phases agrees well
with the sharp magnetization drop obtained earlier by micro-
magnetic simulations(see, e.g., Ref. 16).

VI. EVOLUTION OF THE TOTAL ENERGY WITH
MAGNETIC FIELD: NUMERICAL CALCULATIONS

A. Controlling the magnetic state of a dot by slowly changing
the applied magnetic field

To finalize our analysis in the frame of the “rigid vortex”
model, we performed numerical calculations of the total en-
ergy w in Eq. (6) when changing the magnetic fieldh. We
chose the parameters, the reduced radiusR/R0 and the aspect
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ratio b=L /R, from domains with different stable and meta-
stable states[at the points A, B, C, D indicated in Fig. 3(a)].

Figure 4 shows the evolution of the energy whenh de-
creases, for the parametersR/R0 and b corresponding to
point A in Fig. 3(a). At high h there is only one minimum of
wscd corresponding to the parallel-spin state(the parallel
spin configuration has a minimum in the dashed line at the
bottom). At lower fields, a metastable energy minimum ap-
pears which is associated with the vortex state inside the disk
(continuous line). This energy minimum deepens while the
minimum atc=0 for the parallel spin configuration flattens.
Finally, the minimum of the parallel spin configuration at
c=0 disappears and the vortex abruptly enters the disk(top
dotted curve in Fig. 4). The corresponding schematic mag-
netization loop is shown in the inset of Fig. 4.

For the set of parameters corresponding to point B in Fig.
3(a), the evolution ofwscd, when h decreases from high
values to zero, is shown in Fig. 5. The behavior ofwscd,
with changingh, is similar to the previous case whenh
.hc. When loweringh further, the energy minimum previ-
ously located atc=0 starts to continuously move towards
higher values ofc (see the left-top inset in Fig. 5 which
magnifies a segment of the dotted curve on top). This corre-
sponds to a second-order phase transition from the parallel
spin configuration(the vortex is located at infinity,c=0) to
the C-phase(where the vortex is at a finite distance outside
the diskcÞ0) [Fig. 3(b)]. For the case of parameters corre-
sponding to point B in Fig. 3(a), the minimum ofwscd as-
sociated with the C-state exists even at zeroh (see the left-
top inset in Fig. 5). When the magnetic field changes polarity
this C-phase rotates around the center of the disk Fig. 3(b).
This rotationcosts zero additional energy and corresponds to
a Goldstone modemoving at the bottom of a “mexican-hat”
shaped potential. Note that such potentials appear in different
fields of physics, including: quantum field theory and
cosmology,61–63 critical phenomena, equilibrium and non-
equilibrium thermodynamics,64 superconductivity, superflu-
idity, vortex dynamics65 in superconductors, and even the
theory of polyatomic molecules.66 However, in the case con-
sidered here, the hat has an additional minimum at the center
of the hat, like in many real hats. Therefore, for these param-
eters, the magnetic vortex state does not contribute to the
magnetization reversal process, while it has a minimum en-
ergy at low magnetic fields in agreement to the recent micro-
magnetic simulations.22–24 The corresponding magnetization
loop is shown in the right-bottom inset of Fig. 5.

The discussed Goldstone mode does not depend on the
shortcomings of the considered model. Indeed, at zero mag-
netic fields, the magnetization of small dots is not necessarily
zero and the Goldstone mode describes the rotation of the
magnetization vector. In a real system, with magnetic aniso-
tropy or an anisotropy related to an unperfect dot shape, this
rotation can cost some energy. However, when the asymme-
try is weak, one can treat this rotation ofMsh=0d as a Gold-
stone mode.

The evolution of the total energywscd, when changing
the magnetic fieldh for the parameters corresponding to the
point C in Fig. 3(a), is shown in Fig. 6. The minimum in
wscd, corresponding to the parallel spin state,c=0, survives

even ath=0 (the local minimum in the dotted line in Fig. 6).
Whenh changes its sign, the parallel-spin staterotatesas a
whole [Fig. 3(b)] around the dot center(another Goldstone
mode) even though the vortex configuration has a minimum
energy. The situation corresponding to point D is shown in
the inset of Fig. 6. For this case the magnetic vortex is un-
stable for any value of the magnetic field.

B. Controlling the magnetic state of a dot via fast,
nonequilibrium change in the applied magnetic field

Now, let us again consider the region of parameters cor-
responding to points B and C in Fig. 3(a). The question
arises: Is it possible or not to reach the vortex spin configu-
rations having the minimum energy at low fields? One of the
possibilities is via thermal activation at high enough tem-
peratures. Another possibility is to reach the minimum en-
ergy state via fast jumps of the external field(an example is
shown by the dotted arrow in the right-bottom inset in Fig.
5). In such a case the system is brought far from both the
stable and metastable minima. Thus, the spin configuration is
exposed to an attraction of these two energy minima: the
basin of attraction in the energy landscape towards the vortex
state and the separate basin corresponding to a rotation as a
whole. These two basins of attraction compete. This can be
seen in the energy profile having a gradient towards a
minima for the vortex state in Fig. 6, the dotted-dashed line.
Depending on which minima is closer(namely, which
minima the system can approach quicker: the vortex state or
the rotated state), the system can evolve towards the parallel-
spin state or towards a vortex state.

For instance, if the applied magnetic field suddenly
changes(during a time scale which is much shorter thanh)
from a high positive field(say,h1=2) to a certain negative
value (say,h2=−0.6) for the dot parameters used to plot the
total energyw in Fig. 6, then the magnetic vortex begins to
move towards the dot center from infinity and simulta-
neously to rotate around the disk. In order to reach the
boundary of the disk, the magnetic vortex needs a time

t`→disk , h*E1

` ds

] w

] s
ss,f = 0,h2d* . s28d

If this time t`→disk is shorter than the time

trotation, h*E0

p df

] w

] f
ss= 1,f,h2d* , s29d

which the vortex needs to rotate around the disk, than the
vortex state is settled in. Otherwise, the system is set in the
parallel-spin state. Thus,changing the timing and the ampli-
tude of the external magnetic field jumps we can better con-
trol the spin configurations in magnetic dots. This will be
further explored elsewhere.
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VII. BUCKLING INSTABILITIES

A. First versus second order buckling phase transition

Our approach to describe phase transitions in micro-
magnetic dots, including “magnetic buckling,” has several
deep physical analogies with both the elastic and plastic sys-
tems discussed in the introduction. Some of these are com-
pared in Tables I and II. This section is devoted to present a
modified Landau-type theory approach to describe buckling
transitions in an inextensible rod embedded in an elastic me-
dium. This system was studied using a conventional mechan-
ics approach, as in Chap. II of Ref. 38. The problem dis-
cussed here could be applicable to the buckling of very small
rods which strongly interact with their environment, as, for
instance, for charged carbon nanotubes45 or carbon nano-
tubes embedded in an elastic medium.

For arbitrary strong deflectionsysld (see Fig. 7) param-
etrized by the arclengthl s0ø l ø lmaxd, the energy functional
Fb of a rod having circular cross section can be written(see
Appendix C) as

Fb =E
0

lmax

dlH IEsy9d2

2s1 − sy8d2d
+ fsÎ1 − sy8d2 − 1d +

a

2
y2J .

s30d

Here we introduce the elastic modulusE and the moment of
inertia I of the rod, the mechanical forcef acting on the end
of the rod in the longitudinal direction, and the elastic con-
stanta of the external elastic medium. Hereafter, we use the
notationd/dl=8.

As an example, we consider a rod with hinged ends, i.e.,
ys0d=yslmaxd=y9s0d=y9slmaxd=0. In such a case the possible
buckling modes are38

ysld = cb sinSnpl

lmax
D , s31d

where we introduce the buckling order parametercb and the
undulation numbern. Interestingly, the magnetic buckling
shape (C, S, W, etc.,16) and the vorticity in mesoscopic

TABLE II. Comparison between our Landau theory approach to study mechanical buckling instabilities
with the order parameter of another mechanical instability, known as the Portevin-Le Châtelier(PLC) effect
or stick-slip plastic deformation(Ref. 28). The energy versus order parameter for the buckling case is
considered here, but the analog for the PLC effect is not known yet. Thus, the five cells at the bottom right
of the table, for the PLC effect, remain an open problem.

Euler buckling instability Stick–slip plastic effect

Order parameter cb (a spatial cp=1/tbursts(a temporal

order parameter, the amplitude of order parameter, the number of

the destabilizing mode) bursts per unit time)

Driving parameter T̃=1/ f, the relative deformatione,

corresponding toT f is the applied force ue−ecu acts as

in the usual approach uT̃−T̃cu / T̃c acts as a reduced temp. the reduced temperature

Low force f , fc cb=0, cp=1/tbursts=0

(high T̃. T̃c) straight bar compression with no plastic jump

Low relative deformation deformations(“Laminar” flow phase)

High force f . fc cbÞ0, cp=1/tburstsÞ0

(low T̃, T̃c) curved(bent) bar intermittent plastic compression

High relative deformation with sudden jumps(“turbulent-like”)

Energy[order parameter] Fbfcbg=Fb0+Ab c b
2

+Bb cb
4+Oscb

6d

Odd powers are (1) symmetry

zero because of Fbfcbg=Fbf−cbg

Energy expansion (2) it can also be derived

coefficients from theory of elasticity

Coefficient ofcb
2

Ab~ sfc− fd or Ab~ sT̃−T̃cd

Coefficient ofcb
4 at f = fc Bbsfcd.0, second-order

(continuous) transition;

Bbsfcd,0, first-order

(discontinuous) transition
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superconductors67–73 could be mapped to the undulation
numbern. Also charged rods,45 as well as the elastic block-
ade and Coulomb blockade of charged disks can be studied
with this approach.

Substituting these buckling modesysld into the energy
functional, Eq.(30), and expandingFbscbd up to cb

4, we get
the Landau-type energy expansion

Fb = Absfdc b
2 + Bbsfdc b

4 + Oscb
6d s32d

with

Ab =
p2n2

4lmax
sfcsnd − fd, s33d

Bb =
p4n4

64l3
S4IEn2p2

lmax
2 − 3fD , s34d

and

fcsnd =
IEp2

lmax
2 Sn2 +

almax
4

IEp4n2D . s35d

Obviously, the transition from the straight rod to a buck-
led state occurs as soon as the external force exceeds the
minimum value of the critical forcefcsnd [fcsnd is consistent
with Chap. II of Ref. 38, whileAb andBb are new]. At this
force, fc

* = fcsn*d=minsfcsndd, the rod becomes unstable with
respect to the buckling mode withn=n* and a mechanical
buckling phase transition occurs.

Our approach goesbeyondthe usual purely mechanical
treatment and can predict the regime of parameters where the
transition is either first or second order. Our approach also
provides quantitative predictions for the bucklingdynamics
near critical points. As was discussed in previous sections,
this buckling transition is of second order ifBbsf = fc

*d is posi-
tive. Otherwise, whenBbsf = fc

*d,0, there is no energy mini-
mum nearbycb=0, at f = fc

* +0, and the system discontinu-
ously(via a first-order phase transition) changes to a strongly
bent state. This is an analog of the magnetic vortex state in
microdisks. The sign ofBbsfc

*d can be derived from the equa-
tion

Bbsfc
*d =

p6sn*d4IE

64l5
Ssn*d2 − 3

al4

IEp4sn*d2D . s36d

After minimizing fcsnd with respect ton, we can obtain the
value of Bbsfc

*d. From these results, we can construct the
buckling phase diagram shown in Fig. 7. Note that this dia-
gram corresponds to the one shown in Fig. 3(b) for magnetic
microdisks.

More detailed analysis, including the transition between
different metastable configurations as well as possible tran-
sition between buckling modes with different undulation
number, will be presented elsewhere.

B. Critical slowing down for a second-order buckling phase
transition

Now we consider the region of parameters(see Fig. 7)
where the second order phase transition occurs. This covers

FIG. 7. (Color online) Phase diagram for the mechanical buckling instability. The parameters shown are the normalized force =f l2/ sp2IEd
versus the ratio of the medium/rod elasticitiesal4/ sp4IEd. Solid segments correspond to second-order phase transitions from the straight rod
state to the buckled state, while the first-order phase transitions are indicated by the dashed lines. The different buckling modes, with
different undulation numbersn* , are sketched in the corresponding phase domains. The black vertical dotted segment aroundal4/ sp4IEd
<4 corresponds to a first-order transition between then* =1 (C-phase-like) and then* =2 (S-phase-like). The transition from the straight rod
phase to then* =1 buckled phase is the mechanical analog of the magnetic phase transition between the straight and bent spin-configuration
phases: this diagram corresponds to the one shown in Fig. 3(b). The transition to then* =2 buckled rod state is the mechanical analog of the
magnetic transition to the S phase in microdisks.
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the important case when there is no external elastic medium
sa=0d. When the externally applied force exceeds a critical
threshold valuefc

* = fcsn*d, the buckling order parameter(or
curvature of the rod) begins to increase continuously and
follows the equation

cbsfd = cb
eq=

pn*

2
Î f − fc

*

2lmaxBsfc
*d

s37d

near the critical forcefc
* .

Next, we consider of how small deviations, from the equi-
librium valuecb

eq, of the order parameter decay. The dynami-
cal equation for the rod can be written as

meff c̈b + hċb = −
dFb

dcb
= − 2Abcb + 4Bbcb

3, s38d

wheremeff=m/2 is the effective mass of the order parameter
with the rod massm, while d/dt=˙. The damping coefficient
h is determined by the energy dissipation during rod motion.
For small deviationsdcb/cb

eq, with dcb=cb−cb
eq, we obtain

meff

h
sdc̈bd + sdċbd = −

sdcbd
tb

s39d

with relaxation time

tb
−1 =

p2sn*d2

2h lmax
sf − fcsn*dd for f , fc

* ,

tb
−1 =

p2sn*d2

h lmax
sfcsn*d − fd for f . fc

* . s40d

Therefore, the relaxation timetbsfd diverges at the phase
transition fc

* and takes different values for different undula-
tion numbersn* that minimizefcsnd.

According to the dynamical equation(39), the buckling
order parametercb (or curvature of the rod) approaches the
equilibrium showing several oscillations if

tb ,
4meff

h
. s41d

However, the oscillations vanish when the mechanical force
f becomes closer to its critical valuefc

* . Very near to the
critical point, the buckling order parameter decays exponen-
tially

cb ~ exps− t/tbd. s42d

Therefore, we predict that the compressed rod exhibits criti-
cal slowing down near the critical forcefc

* .

VIII. CONCLUSIONS

A. Open problems

Answering several important issues and presenting sev-
eral physical analogies, this work can pose some questions to
guide several future studies in both micromagnetic and na-
nomechanics:

(1) How to develop a more general theoretical framework

related to the rigid vortex model for an array of interacting
micromagnetic dots.

(2) Detailed micromagnetic simulations and experiments
could be useful for further confirmation of the effects pre-
dicted here and for extending the models and ideas presented
in this work.

(3) The generalization of our approach to the case when
quantum effects are important, including a quantum treat-
ment of the Goldstone modes studied here.

(4) When the applied magnetic field is perpendicular to
the micromagnetic dot, there is a phase transition between
the parallel-spin(for larger H') and a vortex phase(for
smallerH'). This transition can be easily described with a
modified version of our approach.

(5) How to best study driven nonequilibrium phase tran-
sitions like the Portevin-Le Châtelier effect, and complete
the five cells at bottom of Table II[e.g., what is the analog of
the free energy for the Portevin-Le Châtelier(PLC) effect?
Can we consider the PLC effect as a generalized cascade of
buckling transitions?].

(6) Table II and Fig. 2 suggest a plethora of open prob-
lems involving the development of a generalized thermody-
namics of the buckling instability. For instance, the analog of
the free energyF=U−TSwould become

F = sElastic energyd − s1/fdSbar,

whereSbar would be the “effective entropy” of the bar, and
f is the externally applied longitudinal force actingsas an
inverse temperatured on the elastic bar.

(7) Further investigations of illuminating and insightful
analogies between phase transitions in micromagnetic dots,
compressed rods, and nanosuperconductors.67–73

B. Summary

In conclusion, using the rigid magnetic vortex model, we
studied phase transitions in the spin configuration of a mi-
crodisk when changing the external magnetic field. We ana-
lytically showed that five different sequences of phase tran-
sitions can be realized among three different spin-
configuration phases: parallel-spin phase, curved spin phase,
and vortex phase. Which sequence is realized depends on the
dot radius,R, aspect ratiob=L /R, and the exchange length
R0. The numbers(1), (2), (3), (4), (5) below refer to five
different parameter regions in Fig. 3(a).

(1) The parallel-spin state transforms into the vortex state
and vice versa via a first order phase transition.

(2) The C-phase mediates the transformation from the
parallel-spin to the vortex state: a second-order phase transi-
tion occurs between the parallel-spin and the C-phase, while
a discontinuous first-order transition occurs between the C
phase and the vortex phase.

(3) The parallel-spin state can transform into a C-phase
which rotates when the magnetic field changes sign. Even
though the vortex phase has a minimum energy at low mag-
netic fields, it does not contribute to the magnetization rever-
sal process and appears only during the initial magnetization.
This rotation costs zero additional energy and corresponds to
a Goldstone mode moving at the bottom of a “hat-shaped”
potential.
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(4) The parallel-spin state rotates when the magnetic field
changes sign. Neither the C-phase nor the vortex phase con-
tribute to the magnetization reversal process here, although
the vortex state has a minimum energy at low magnetic fields
resulting in the initial magnetization curve. Note that in(3)
the C-phase rotates whenh changes sign, while in(4) it is the
straight parallel-spin phase that rotates.

(5) Only the parallel-spin state has an energy minimum.
The C phase and the vortex phase cannot appear because
they are completely unstable in this region.

The dynamical response of the order parameter can dras-
tically change at the phase transitions, producing “critical
slowing down” at the second order phase transition between
the parallel-spin and the C phase. We want to stress that the
physical scenarios obtained here are related to thespontane-
ous symmetry breakingat the transition between the parallel-
spin state and the bending or vortex states and, therefore,
these results are more general than the rigid vortex model
itself. Hence, this physical picture could be generalized to
much more complicated spin configurations in circular thin
dots,16,22,23and can be used as a guide to look for novel ways
to control the spin configuration in magnetic dots. We predict
a “critical slowing down” at the second-order phase transi-
tion between the parallel-spin and the C phase. Recent mi-
cromagnetic simulations59 support our predicted “critical
slowing down”, thus, partly verifying the whole physical pic-
ture proposed here. Other predictions of our work are con-
sistent with earlier micromagnetic computations.16,23,24

We have found thatthe buckling instability is a good me-
chanical analog of the magnetic buckling transition from the
parallel-spin to a bent spin configuration (either C-phase or
vortex phase).Using a substantially modified Landau theory
for studying mechanical buckling instabilities of a com-
pressed elastic rod embedded in an elastic medium, we prove
that the transition to a buckled state can be either first or
second order, depending on the ratio of the elasticity of the
rod and the elasticity of the external medium. Also, critical
slowing down was predicted for the second-order mechanical
buckling transition.
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APPENDIX A: TOTAL ENERGY OF THE RIGID
MAGNETIC VORTEX AND ASYMPTOTICAL EXPANSION

OF THE ENERGY

Here we outline how to obtain the expression(6) for the
total energyw of a magnetic dot and how to derive the
asymptotic expansion shown in Eq.(12).

In order to obtain the expressions for the exchangewex
and magnetostaticwm energies, we use a coordinate system

centered at the vortex core[see Fig. 1(a)]. The dimensionless
exchangewex and Zeemanwh energies can then be rewritten
as

wex =
R0

2

2pR2 E 1

r
dr df

=
R0

2

2pR2E
−fm

fm

df hlnfr1sfdg − lnfr2sfdgj,

wh = −
h

pR2 E r cosf dfdr

= −
h

2pR2E
−fm

fm

hr1
2sfd − r2

2sfdjcosfdf, sA1d

where r1,2=Rhs±Î1−s2 sin2 fj [see Fig. 1(b)] and sinfm

=1/s, if the center of the vortex is outside the dot; while
r1=RhÎ1−s2 sin2 f−s cosfj and fm=p, if the magnetic
vortex is inside the dot. Althoughr2=0 when the magnetic
vortex is inside the dot, the integration for the exchange en-
ergy wex has to be cut off at a distance of about the vortex
core sizeb. After an additional simple integration overf we
obtain the expression for the exchange and Zeeman energies
presented in Eq.(6).

In order to derive the magnetostatic energywm, we can
use the equation

s =
Msssinf

Î1 + s2 − 2s cosf
sA2d

for the magnetic charge densitys accumulated at the side
surface of the dot. Heref is now the angle in the cylindrical
coordinate system with its origin in the dot center(Fig. 1(b)).
Next, the distance between two elements on the side surface
can be written asur −r8u=Î2R2f1−cossf−f8dg+sz−z8d2

wheref, f8, z, andz8 are the coordinates of these surface
elements. Therefore, the magnetostatic energywm can be
written as

wm =
s2

2Lp
E

−p

p sin f sin f8 df df8
Î1 + s2 − 2s cosfÎ1 + s2 − 2s cosf8

3E
0

L dz dz8
Î2R2f1 − cossf − f8dg + sz− z8d2

. sA3d

Integrating overz andz8, we derive the magnetostatic energy
in Eq. (7).

Here it is important to stress that]w/]w=−Gssdh sin w,
and]2w/]w2=Gssdh cosw, with Gssd.0 for anys. Thus, the
minimum and the maximum of the total energyw with re-
spect tow occur at

wmin =
1 − h/uhu

2
p + 2pñ, wmax= p + wmin sA4d

with integerñ.
Now let us expand the total energyw of a magnetic dot

for large vortex displacementss@1 andw=0; i.e., we con-
struct the asymptotic expansion with respect to 1/s up to
1/s4. For the exchange energywex we obtain
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wex = S R0

2R
D2

f2s−2 + s−4 + Oss−6dg. sA5d

Expanding the complete elliptic integralsK andE in Eq. (9)
we derive an expression for the Zeeman energy as

wh = − h + S h

23Ds−2 + S h

26Ds−4 + Oss−6d. sA6d

After simple, but long, calculations one can derive an
asymptotic expansion for the magnetostatic energywm, Eq.
(7), as

wm = wm
s0d + wm

s2ds−2 + wm
s4ds−4 + Oss−6d. sA7d

Combining the asymptotic expansions forwex, wh, andwm,
and using the notationc=1/s, we derive the modified
Landau-type energy shown in Eq.(12).

APPENDIX B: ENERGY EXPANSION FOR SMALL
VORTEX DISPLACEMENTS FROM THE DOT CENTER

The aim of this appendix is to derive an expansion of the
total energywshd in Eq. (6) for small values ofs andw=0.
Note that a similar expression was obtained earlier(see Refs.
20 and 21) and we just summarize a brief derivation of it
only for the reader’s convenience and for completeness. The
exchange energywex for small s has the form:

wex = −
R0

2

2R2s2 + Oss4d. sB1d

Hereafter, we omit ans-independent constant. The Zeeman
energywh, up to second order with respect tos, is

wh = − hs+ Oss3d, sB2d

while the magnetostatic energywm can be expanded as

wm = wm
s0d s2 + Oss4d. sB3d

Next, minimizing the total energyw we obtain the equation
for the equilibrium vortex positionsv as follows 2fwm

s0d

−R0
2/ s2R2dgsv=h. This equation can be used to calculate the

susceptibility and to estimate the annihilation fieldhexit,
21

uhexitu = 2Swm
s0d −

R0
2

2R2D . sB4d

Note that the total energyw=wex+wh+wm has a minimum at
s=sv, if ]2w/]s2ss=svd.0. This condition becomes invalid
when wm

s0d−R0
2/ s2R2d becomes negative. Therefore, there is

no minimum corresponding to the vortex state ifR0
2/ s2R2d

.wm
s0d, as mentioned in the text.

APPENDIX C: POTENTIAL ENERGY OF A
LONGITUDINALLY COMPRESSED ROD

Here we derive the expression for a longitudinally com-
pressed inextensible rod embedded in an elastic medium. We
start from the well known expression(see, e.g., Ref. 38) for
the elastic energy of a rod having circular cross section with
no torsion,

Felastic=
IE

2
E

0

lmax

dlHt 3
dt

dl
J2

, sC1d

wheret is a unit vector tangential to the rod,E is the elastic
modulus, andI is the moment of inertia of the rod. The
mechanical forcef acting on the rod in the longitudinal di-
rection provides an additional contributionFf to the energy
of the curved rod,

Ff = − fE
0

lmaxSdx

dl
− 1Ddl. sC2d

Hereafter we will use the coordinates of the bent rod:xsld
and ysld. These coordinates obey the equation:dx2+dy2

=dl2. This can be rewritten as

dx

dl
=Î1 −Sdy

dl
D2

. sC3d

The unit tangential vector and its derivative can be expressed
via deflection as

t = Sdx

dl
,
dy

dl
D = FÎ1 −Sdy

dl
D2

,
dy

dl
G;

dt

dl
=

d2y

dl2S−
dy/dl

Î1 − sdy/dld2
,1D . sC4d

Using Eqs.(C4), we obtain

Felastic+ Ff =E
0

lmax

dlH IEsy9d2

2f1 − sy8d2g
+ fsÎ1 − sy8d2 − 1dJ .

sC5d

This equation was independently obtained in, e.g., Ref. 40.
Finally, assuming an ideal elastic response of the external
medium, with no anharmonic terms, we derive Eq.(30).
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