
PHYSICAL REVIEW B, VOLUME 64, 104505
Vortex structure and dynamics in kagoméand triangular pinning potentials
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~Received 27 February 2001; published 20 August 2001!

We study the dynamics of thermally driven superconducting vortices in two types of periodic pinning
potentials: kagome´ and triangular. For the first, second, and third matching fields, we obtain the corresponding
ground-state vortex configurations and their phase diagrams. We analyze the system properties by looking at
the vortex trajectories and the structure factor, as well as the linear and angular diffusion. The temperature
versus pinning force phase diagram is analyzed in detail for each matching field. When the temperature is
varied, we observe several stages of lattice pinning and melting. In most of the cases we find, for decreasing
temperature, first a pinning of vortices and afterwards a freezing transition of the interstitial vortices. The
intermediate regime corresponds to interstitial vortices in a confined liquidlike state and pinned vortices. The
kagomépinning potential shows interesting behavior at low temperatures: there is a phase with rotating vortex
triangles caged by kagome´ hexagons~‘‘cooperative ring elementary excitations’’!, and there is geometric
frustration forT→0 with a nearly degenerate ground state.

DOI: 10.1103/PhysRevB.64.104505 PACS number~s!: 74.60.Ge, 74.80.2g, 74.60.Jg
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I. INTRODUCTION

Kagoméstructures have been extensively used to st
several physical phenomena. One refers to a central que
in magnetism: theT50 order of the two-dimensional~2D!
nearest-neighbor-coupled Heisenberg antiferromagnet.
kagomélattice seems to be the first 2D spin-1/2 model w
vanishing further-neighbor interactions, which appears
have a disordered ground state.1 Kagoméstructures have also
been used to study quite different systems. For insta
measurements of the heat capacity of3He absorbed on
graphite at millikelvin temperatures have been recently in
preted using a kagome´ lattice structure.2 In addition, mea-
surements on the layered oxide SrCr82xGa41xO19, with
kagomé-like layers, have attracted considerable attentio3

The connection between theideal kagoménetwork and the
real structures mentioned above~e.g., 3He absorbed on
graphite and SrCr82xGa41xO19) is somewhat unclear, be
cause of the very important effects of disorder, impuriti
three-dimensionality, etc., present in those materials.

It would be useful to address these and related phys
questions linked to kagome´-type structures using more con
trollable experimental systems. One candidate for this wo
be to use periodic pinning arrays interacting with a vor
lattice.4–30As a function of temperature, many types of vo
tex arrangements appear due to the competition between
repulsive vortex-vortex interaction and the atractive vort
pinning force.6,14–19 This field is of great interest both
theoretically16–30 and experimentally.4–15

Superconducting networks and arrays of pinning sites~re-
alizable, for instance, via Bitter pinning or irradiation,
made with electron-beam lithography! offer the possibility of
experimentally studying nearly perfect kagome´ structures.
When immersed in an externally applied magnetic field,
perconducting networks5,32 made of thin wires, proximity-
effect junctions, and tunnel junctions exhibit complex a
interesting forms of phase diagrams. Kagome´ structures of
0163-1829/2001/64~10!/104505~13!/$20.00 64 1045
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this type33,34 and kagome´ arrays of pinning sites can be pro
duced in a very controlled manner, and allow the possibi
to study some of the unique features present in kago´
structures, like frustration, degeneracy, and metastability.
cent applications of artificial kagome´ lattices even include
the two-dimensional kagome´ photonic bandgap waveguide.35

An important role of the behavior of the vortex system
carried out by the interstitial vortices, which produce a
markable variety of stabilized vortex lattices that can be
served both in experiments12 and simulations.17,18 Commen-
surability in the ground-state vortex configuration enhan
the pinning effect.11,12,17,18Therefore, it is very useful to de
termine what the matching configurations are for the diff
ent pinning geometries and, more importantly, how tempe
ture affects them. Several geometries of arrays of pins w
studied in detail by Reichhardtet al.,17 but mostly atT50.
For instance, they obtained vortex lattice configurations
several values of the magnetic field, and they calculate
matching fields at which commensurate vortex configu
tions may occur. The central emphasis here will be on
effects of temperature on the vortex dynamics on two ty
of geometries: kagome´ and triangular.

As a function of temperature, this paper~1! studies the
vortex ground states obtained for a kagome´ periodic array of
pinning sites,~2! studies the types of multistage melting
these ground states when the temperature is slowly var
and ~3! compares these results with the simpler case o
triangular pinning potential.

In particular, for the second matching field in a kagom´
lattice we find at low temperatures bistable collective sta
of three interstitial vortices with ‘‘cooperative ring elemen
tary excitations’’ and, atT50, degenerate ground states wi
geometric frustration.

II. MODEL

We perform numerical simulations with Langevin dynam
ics for a two-dimensional system of vortices interacting w
©2001 The American Physical Society05-1
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LAGUNA, BALSEIRO, DOMÍNGUEZ, AND NORI PHYSICAL REVIEW B64 104505
a periodic pinning potential. These model the dynamics
parallel 3D rigid vortices. The dynamical equations are17

hvi5f i5f i
vv1f i

vp1f i
T , ~1!

wherevi5dr i /dt is the vortex velocity,h is the Bardeen-
Stephen friction, and

f i
vv52¹Uvv5(

j Þ i

Fv

r i j
~12r i j

2 /r c
2! r̂ i j ~2!

describes the vortex-vortex interaction,31 which has a cutoff
at a distancer c . Here Fv is the maximum force betwee
vortices. The sum in Eq.~2! computes the interaction be
tween the i th vortex and all the vortices at a distan
r i j ,r c .

The pinning is modeled as a triangular or a kagome´ array
of attractive Gaussian wells with

f i
vp52¹Uvp52 (

j 851

Np Fp

r p
exp~2r i j 8

2 /r p
2! r̂ i j 8 , ~3!

whereFp is the maximum pinning force,r p is the radius of
the pinning site, andr i j 8 is the distance between the vortexi
and the pinning sitej 8. The sum in Eq.~3! is over theNp
pinning sites.

The effect of temperature is added as a stochastic t
with properties

^ f i
T~ t !&50 ~4!

and

^ f i
T~ t ! f j

T~ t8!&52hkBTd~ t2t8!d i j . ~5!

We measure all lengths in units ofr c , the range of the
vortex-vortex interaction, and all the forces in units ofFv .
Here, the pinning radiusr p was varied from 0.05 to 0.1, an
the pinning sites can trap only one vortex. We consider p
ning forcesFp varying from 0 to 5, but in some cases, w
increase the pinning intensity up to very large values, l
Fp550. The number of vortices varies from 16 to 4096. W
use periodic boundary conditions in all cases shown h
Depending on the particular simulation, the time stepDt was
chosen in the interval@0.01,0.0001#, with the number of
simulations steps varying in the interval@104,108#.

We define thenth matching field~MF! as the magnetic
field that generates a number of vorticesNv which is an
integer multiple of the number of pinning sites of a triangu
lattice,Np

t :

Nv /Np
t 5n. ~6!

Thus, for the triangular pinning case the number of inter
tial vortices is

Ni
t5Nv2Np

t 5~n21!Np
t . ~7!

There is a relationship between the number of sites of
triangular and kagome´ lattices,

Np
k5~3/4!Np

t , ~8!
10450
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whereNp
k is the number of pinning sites of the kagome´ lat-

tice ~see Fig. 1!. Then, for thenth MF Nv /Np
k54n/3. The

number of interstitial vortices in the kagome´ pinning case is

Ni
k5Nv2Np

k5~4n/321!Np
k5~n23/4!Np

t . ~9!

It is important to notice that the fraction of interstitial vort
ces Ni

k/Nv5123/(4n) and Ni
t/Nv5121/n varies signifi-

cantly for the different MF’s. For the first MF,Ni
k/Nv51/4

andNi
t/Nv50 ~there are no interstitial vortices present in t

triangular case!; for the second MF,Ni
k/Nv55/8 andNi

t/Nv
51/2; and for third MF,Ni

k/Nv53/4 andNi
t/Nv52/3.

The vortex density corresponds to 2.5 vortices per u
length and it is a constant for all the MF studied here. Co
sequently the pinning density varies with the different M
For the first MF’s it is the same as the vortex density, and
lower for higher MF’s. We have examined the vortex latti
ordering up to the fourth MF~although we will describe here
only the first three MF’s!.

III. CALCULATED QUANTITIES

A. Ground states and trajectories

To find the vortex ground state, we gradually cool down
fixed number of randomly moving vortices from a high tem
perature toT50. A useful picture of the way in which the
vortices go from the liquid to the solid phase is provided
the vortex trajectories for a fixed temperature. When the s
tem is at high enough temperatures, the vortices m
quickly and their trajectories occupy all the space. Some
them occasionally go inside a pinning site, spend some t
there, and then get out of the local potential trap. This g
eral trend was observed for all of the MF’s studied when
temperatureT.Tp , with Tp the pinning temperature.

At T,Tp , a subset ofNp vortices are trapped in theNp
pinning sites. These vortices move inside the potential w
but they do not have enough energy to go out of their pinn
site. The remainingNi interstitial vortices, however, are fre
to move, and they describe trajectories which depend on
MF studied. The behavior of the vortex system in the cool
down process as well as the characteristic final state wil
explained in detail for each MF.

FIG. 1. ~a! Triangular lattice.~b! Kagomélattice. Note that this
lattice can be constructed with hexagonal cages~kagome´ hexagons!
and triangles pointing up and down~kagome´ triangles!.
5-2
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VORTEX STRUCTURE AND DYNAMICS IN KAGOMÉAND . . . PHYSICAL REVIEW B 64 104505
B. Diffusion

To quantify the motion of the vortices, we calculate th
linear diffusionD as the coefficient of the mean-squared d
placementŝDr 2& at long times:

^Dr 2&5
1

N K (
i 51

N

ur i~ t !2r i~0!u2L }D t, ~ t→`!. ~10!

The diffusion can be seen more clearly if we plot direc
the ^Dr 2& at different time scales as a function of tempe
ture. For high temperatures, when the vortices have es
tially unbounded motion, thêDr 2& is linear with time. For
low temperatures, the displacements are time indepen
and smaller thana, the average distance between vortic
We find that this change of behavior occurs at a tempera
Ti , the freezing temperature of interstitial vortices. In oth
words,Ti is a signature of ‘‘bounded vortex motion’’ and ca
be directly measured from thêDr 2&.

In order to study the vortex motion, we can follow th
individual squared displacement of each vortex,

Dr 2~ i !5ur i~ t !2r i~0!u2, ~11!

which allows us to distinguish the behavior of pinned a
interstitial vortices. Thus, it is useful to define the followin
quantities:Tp as the temperature below which theDr 2 of a
pinned vortex is lower thanr p

2 , the squared pinning radius
andTi as the temperature below which the interstitial vor
ces haveDr 2,a2.

Another way to study the vortex diffusion is by monito
ing a combination of ^Dr 2& and Dr 2( i ), defined as
^Dr 2(v)&, wherev5p,i , depending on the kind of vorte
studied~pinned or interstitial!. Thus, for instance,

^Dr 2~p!&5
1

Np
K (

i 51

Np

ur i~ t !2r i~0!u2L ,

where the sum is over the vortices that are pinned for te
peratures lower thanTp .

C. Pinned fraction

We define the pinned fractionx as the fraction of the tota
number of vortices,Nv , with displacements lower thanr p :

x~T!5N~T!/Nv , ~12!

whereN(T) is the number of vortices withDr 2( i ),r p
2 at the

temperatureT. In the solid vortex phasex51, and in the
liquid phasex'0. In the intermediate region, where the i
terstitial vortices move while the others are pinned,x
5Np

t /Nv51/n for the triangular lattice, whereasx5Np
k/Nv

53/4n for the kagome´ lattice. If the solid-liquid phase tran
sition is direct,x will change discontinuously from 0 to 1 in
the thermodynamic limit, without any indication of an inte
mediate region. As we show below, the behavior of t
quantity is a very good indicator ofTp andTi .
10450
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D. Structure factor

In order to analyze the structural order of the vortex ar
in the different phases, we calculate the structure facto
the vortex system at each temperature as

S~k!5
1

N2 K U(j
eik•r jU2L . ~13!

In the liquid phaseS(k)}1/N2, whereas in the solid phas
S(k).1. We studied the behavior of two peaks of the stru
ture factor, one corresponding to a wave vectork
5(2p/a,0) of the triangular lattice of vortices and the oth
with k5(3p/2a,A3p/2a) which belongs to the kagome´ lat-
tice of the pinning sites. We analyze the behavior of t
height of those peaks as a function of temperature for
different MF’s. They have a maximum in the regions
which the vortex structure has the geometry of the lattice t
they represent.

IV. PHASE DIAGRAMS

We start by presenting an overview of the phase diagra
of temperatureversuspinning strengthfor both the triangular
and kagome´ lattices. These diagrams where obtained by a
lyzing the temperature dependence for the quantities
scribed in the previous sections. The details of how the ph
boundaries where obtained are described in the follow
sections.

The phase diagram for the first MF is shown in Fig. 2 a
is qualitatively the same for the triangular@Fig. 2~a!# and
kagomé@Fig. 2~b!# pinning geometries. For the range of pin
ning strenghts studied here, we find one characteristic t
peratureTp , above which the vortex system is in aliquid
phasewith all the vortices moving through the sample. F
temperatures lower thanTp all vortices are localized aroun
their equilibrium positions and the system is in asolid phase.

The temperatureTp grows with the strength of the pin
ning potential, which is characterized by the maximum p
ning forceFp . We find thatTp(Fp) is slightly higher for the
triangular pinning potential than for the kagome´ one. This is
because, for the first MF, in the triangular lattice every vor
can be trapped at a pinning site, whereas in the kagome´ case
about 1/4 of the vortices are not core pinned—namely, 2
of the total numberNv of vortices have their equilibrium
positions inside the hexagonal kagome´ cages~kagome´ hexa-
gons!. The Ni

k interstitial vortices vibrate more than th
pinned ones, lowering the freezing temperature.

For the kagome´ pinning case, we have checked the beha
ior of the vortex system up to extremely large values of
pinning force, up toFp550 ~10 times the higherFp showed
in the phase diagram!. We find only one freezing temperatur
Tp , until reaching some pinning intensity, above which t
vortex motion is dominated by the pinning force. In th
limit, the vortex system has a different evolution with tem
perature which is not studied in the present work. In oth
words, in the parameter range studied in this paper, we
only one freezing temperatureTp . When the pinning force
becomes very large compared with the vortex-vortex rep
sion force, the problem becomes different and beyond
5-3
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LAGUNA, BALSEIRO, DOMÍNGUEZ, AND NORI PHYSICAL REVIEW B64 104505
scope of this paper. Here we are interested in the interpla
attractive~pinning! forces, repulsive~vortex-vortex! forces,
and disordering~thermal! forces.

For the first MF, we could not find a temperature range
which two separated characteristic temperatures appear.
possible that the short distance between the pinned vor
in the first MF ~due to the high pinning density! makes im-
possible the crossing of the interstitial vortices between
pinning sites. If that is the case, the only allowed moveme
are the oscillation inside a kagome´ hexagon and the creeplik
motion of all the vortices among the pinning sites. As w
will see below,Ti ~the interstitial freezing temperature ofNi

k

vortices! appears for MF’s higher than 1, where we can a
cess an intermediate phase in which some vortices are pi
and other are in a liquidlike state.

The second MF has the most interesting behavior a
function of temperature. The vortex dynamics in this cas
different for the two pinning geometries studied, as we c
observe in Fig. 3. This is the only MF studied that does
have a triangular ground state for the two pinning geomet
used. Indeed, Figs. 9~d! and 11~d! show this. The triangular
pinning case has been studied in some detail17 and at low
temperatures vortices form a honeycomb structure@Fig.

FIG. 2. Phase diagramT-Fp of temperature vs pinning force
strength for the first MF. The pinning potentials form triangular~a!
and kagome´ ~b! lattices. In all the figures, including this one, th
temperature scale is multiplied by a factor of 103.
10450
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9~d!#. For high pinning forces (Fp.1) the phase diagram
shows two relevant temperaturesTp andTi @Fig. 3~a!#. The
first one is the pinning temperature, below whichNp

t vortices
are trapped by theNp

t pinning sites. TheNi
t remaining vorti-

ces move freely. At a lower temperatureTi they freeze and
the system is in thesolid phase. The intermediate region o
temperatures, in which some vortices are pinned and ot
are moving, is the ‘‘melted interstitial vortex phase’’ orin-
terstitial phase, for short. Tp grows with Fp because the
transition between these two phases depends on the vo
pinning interaction. On the other hand,Ti mostly depends on
the vortex-vortex interaction; consequently, it is almostFp
independent. For a finite pinning intensityFp.1, the two
transitions merge in a single one (Ti5Tp) and the interstitial
phase disappears. ForFp,1 the system has a single solid
liquid transition and the ground state changes from the h
eycomb to the triangular lattice, which is the ground state
the vortex system without pinning potential. These resu
will be presented elsewhere.

The kagome´ pinning geometry@Fig. 3~b!# generates a
kagome´ phase, an intermediate phase which is neither a so
phase nor the interstitial phase that appears at a higher
perature. This case has three characteristic temperaturesTp ,
Ti , andTk . The pinning temperatureTp has the same fea
tures as in the previous case, and its behavior as a functio
Fp is similar to the triangular pinning case. At the tempe

FIG. 3. Phase diagramT-Fp of temperature vs pinning force
strength for thesecondMF. The pinning potentials form triangula
~a! and kagome´ ~b! lattices.
5-4
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VORTEX STRUCTURE AND DYNAMICS IN KAGOMÉAND . . . PHYSICAL REVIEW B 64 104505
tureTi , a fraction of interstitial vortices~which are localized
inside the kagome´ triangles! freeze, but the vortices trappe
in the kagome´ hexagons are still moving. The behavior of th
three vortices trapped in each hexagon is very particu
They form triangles which can rotate over a bistable confi
ration. Indeed, in this temperature regime the ground sta
highly degenerate, because each vortex triangle can have
possible orientations. Certainly, these vortex triangles m
until very low temperatures are reached, and only atT5Tk
do they freeze and the vortex system enter the solid ph
These triangles form a frustrated triangular lattice. T
kagoméphase has an approximately constant width in
range 1,Fp,5. This phase and the interstitial phase bo
disappear forFp&1 ~indeed,Ti5Tp for Fp.1). In the low-
pinning regionFp,1, the vortex system goes directly from
the liquid high-temperature phase to the solid phase, and
ground state changes from the disordered glassy state t
triangular lattice~at Fp50) passing through several stru
tures, which are combinations of triangular, squared,
kagoméstructures. The case of weak pinning (Fp,1) will
be studied in a future work.

Finally, the third MF has the phase diagram shown in F
4. The behavior of the vortex system for the two pinni
geometries is very similar, with two relevant temperaturesTp
andTi defined as in the previous cases. The phase diag
has a behavior which is similar to the case of the second

FIG. 4. Phase diagramT-Fp of temperature vs pinning force
strenght for thethird MF. The pinning potentials form triangular~a!
and kagome´ ~b! lattices.
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for the triangular pinning lattice. Although this MF has
triangular ground state~as the first MF!, the interstitial phase
is present at every pinning intensity higher thanFp51.

In what follows, we will analyze in some detail the phys
cal quantities that are used to characterize the differ
phases and phase boundaries.

V. FIRST MATCHING FIELD

In this section we describe the results for a vortex syst
with Nv /Np

t 51. We first show the results for the triangula
pinning lattice, which are simpler to understand. Then,
compare these results with the corresponding ones obta
for the kagome´ pinning lattice.

A. Triangular pinning potential

In Figs. 5~a!–5~d! we show the vortex trajectories for dif
ferent temperatures in the cooling down process for the
MF. In this case, every vortex has a pinning site where it c
be trapped. In Fig. 5~a! the system is at a high temperatu
T.Tp , and the vortex system behaves as a liquid o
slightly perturbed by the pinning structure. AtT.Tp @Fig.
5~b!# all vortices become trapped in the pinning sites. AtT
,Tp the system is in a solid phase. The pinned vortices
vibrating but they do not go out of their pinning sites. Th
situation can be observed in Fig. 5~c!.

Finally, by cooling the vortex system untilT50 we find a
triangular ground state.17

The behavior of the fractionx of pinned vortices is a
good indicator of a single solid-liquid transition in the fir
MF. At high temperatures,x50, indicating that all vortices
are depinned. At low temperatures,x51, characteristic of a
solid phase with no interstitial vortices. There is a charac
istic temperatureTp around whichx rapidly changes from 0
to 1, as can be seen in Fig. 6~a!. As we show below, this way
of defining the pinning temperatureTp coincides with theTp
obtained by analyzing other quantities like diffusion co
stants or structure factor. Thus, we have verified the con
tency of the criteria used to define phase boundaries.

FIG. 5. Vortex trajectories for the first MF of vortices in a tr
angular pinning lattice.~a! T.Tp , liquid phase.~b! T.Tp . ~c! T
,Tp , solid phase.~d! T50, ground state.
5-5
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The squared displacement of individual vorticesDr 2( i )
versusT at a fixed time (t5100 000) for a system of 102
vortices andFp51 is shown in Fig. 6~b! for two different
vortices. For all vorticesDr 2 has a jump at the same tem
perature Tp , with Dr 2.r p

2 for T.Tp and Dr 2,r p
2

for T,Tp .
The mean-squared displacement^Dr 2& ~an average of the

individual squared displacements! as a function of tempera
ture at different time scales is shown in Fig. 6~c! for the same
parameters than Fig. 6~b!. At different time scales, the gen
eral behavior of̂ Dr 2& is the same, showing a rapid variatio
aroundTp . For T.Tp we find ^Dr 2&.r p

2 and its value de-
pends on the time scale. A detailed analysis shows a lin
dependence of̂Dr 2& with time, characteristic of a diffusive
process~note the logarithmic scale in the figure!. For T
,Tp we find ^Dr 2&,r p

2 for all time scales.
Finally, we studied the intensity of the triangular peakk

5(2p/a,0) of the structure factor. The behavior of that pe
height as a function of temperature is showed in Fig. 6~d!,
and has its maximum height atT50, when the triangular
vortex lattice is perfectly ordered. As the temperature
creases, the triangular peak decreases and at high tem
tures is proportional to 1/Nv

2 . Note that although the structur
factor is consistent with the behavior of the other quantiti
it is not a good indicator of the phase transition since it h
important finite size effects.

FIG. 6. First MF of 1024 vortices andFp51. All the panels
here correspond to the triangular lattice of pinning traps. The
lowing quantities were calculated vs temperature:~a! Pinned frac-
tion. ~b! Dr 2( i ) of two pinned vortex~there are no interstitial vor-
tices in this case!. ~c! ^Dr 2& at different time scales.~d! Height of
the peak of the structure factor corresponding to the triangular
tice of vortices.
10450
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Following this procedure for each pinning force we we
able to define with good precision the transition temperat
Tp and build the phase diagram of Fig. 2~a!.

B. Kagomépinning potential

The behavior of the vortex system for the first MF with
kagomélattice pinning is very similar to the previous case

By following the vortex trajectories it is clear that at hig
temperatures the system is in a liquid state, as seen in
7~a!. As the temperature is lowered, a numberNp

k of vortices
become trapped in theNp

k pinning sites, as can be seen
Fig. 7~b!. As we show below, when theNp

k vortices are
trapped in the pinning centers, theN2Np

k interstitial vortices
are trapped in the kagome´ hexagons, and there is a sing
transition from the liquid to the solid phase. The solid pha
is shown in Figs. 7~c! and 7~d!.

Finally, atT50, we find the ground state for the first M
@Fig. 7~d!#. The vortex lattice is triangular, highly ordered
and the same as for the case for a triangular pinning lattic17

The vortices occupy every pinning site, no matter how we
the vortex-pinning interaction is. For the first MF~and also
for the fourth MF! the triangular vortex lattice is nonrotate
with respect to the pinning array and it is stable under sm
perturbations.

The pinned fractionx has the same behavior as in th
triangular pinning case. For all theFp studied we find the
same kind of curve as we show in Fig. 8~a!. Thus, the gen-
eral trend is robust. There is no indication of two releva
temperatures, as we see clearly for the other MF’s~see be-
low!. The temperatureTp is defined as the temperature
which x50.5, and it increases withFp .

We plot Dr 2( i ) versusT at t5100 000 in Fig. 8~b!. By
following two vortices, one that is pinned and the other th
is occupying an interstitial position atT50, we find that
both have a jump inDr 2 at the same temperatureTp . The
interstitial vortex hasDr 2( i ),a2 for T,Tp , whereas the
pinned vortex hasDr 2(p),r p

2 for T,Tp , in agreement with
what we saw in the trajectories of Fig. 7.

l-

t-

FIG. 7. Vortex trajectories of vortices, for the first MF, on
kagomépinning geometry.~a! T.Tp , liquid phase.~b! T.Tp . ~c!
T,Tp , solid phase.~d! T50, ground state.
5-6
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In Fig. 8~c! we show thê Dr 2& as a function of tempera
ture at different time scales for the same parameters as
8~b!. We observe that forT.Tp the ^Dr 2& are linear with
time, while for T,Tp the displacements are independent
time and lower than the square of the characteristic lengta
and r p . We also obtained the linear diffusion coefficientD
versusT and found that forT,Tp the diffusion coefficient is
D'0, and atT5Tp it starts to grow@see the inset of Fig
8~b!#.

Finally, we show in Fig. 8~d! the intensity of two peaks o
the structure factor, one for the triangular vortex lattice@k
5(2p/a,0)# and the other belonging to the kagome´ lattice of
pinning sites@k5(3p/2a,A3p/2a)#, both as a function of
temperature. We observe that the triangular peak has
maximum height atT50, with a similar behavior as the pea
of the triangular pinning case. However, the kagome´ peak
has a small maximum at a temperatureT*Tp at which vor-
tices are not pinned but they spend a long time at the pinn
centers, forming a kagome´ lattice. The fast movement o
vortices in the interstitial space disguises the triangular st
ture.

All these results summarized in Fig. 2~b! indicate a single
transition between a high-temperature liquid phase, in wh

FIG. 8. First MF of 1024 vortices andFp53. The plots here are
for the kagome´ pinning lattice. The following quantities were ca
culated vs temperature:~a! Pinned fraction.~b! Dr 2( i ) of a pinned
vortex ~open symbols! and a interstitial vortex~solid symbols!. In-
set: Linear diffusion coefficientD vs temperature.~c! ^Dr 2& at dif-
ferent time scales.~d! Height of two peaks of the structure facto
One corresponding to the triangular lattice of vortices~open sym-
bols! and the other to the kagome´ pinning lattice~solid symbols!.
10450
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all vortices diffuse, to a low-temperature solid phase
which all vortices are pinned, despite the fact that only 75
of the vortices are trapped in pinning sites. The pinning te
peratureTp increases with the pinning intensityFp and it is
slightly lower than the transition temperature for a vort
system in a triangular pinning lattice.

VI. SECOND MATCHING FIELD

In this section we describe the results for a vortex syst
with Nv /Np

t 52. The behaviors of the system with triangul
and kagome´ pinning lattices are very different and they wi
be described in the next two subsections.

A. Triangular pinning potential

The trajectories followed by the vortices from high to lo
temperatures are shown in Fig. 9. The regionT.Tp is a
liquid @Fig. 9~a!#. At T,Tp there areNp

t vortices pinned. In
the interstitial region@see Fig. 9~b!# Ti,T,Tp the Nv2Np

t

interstitial vortices move freely and finally they freeze atTi
@Fig. 9~c!#. The ground state is shown in Fig. 9~d!. The vor-
tex structure atT50 is a honeycomb lattice, with some de
fects, and it has two possible ground states, which were s
ied in Ref. 17. In that work the authors show that th
structure disappears for weak pinning because the orderin
not met by commensurability effects but by the dominan
of the pinning force. Also, these authors looked at the m
netization and critical current versus field.

We did the same kind of analysis as for the first MF~see
Fig. 10!, and we find two characteristic temperatures:Tp ,
the pinning temperature, which isFp dependent, andTi , the
freezing temperature of the interstitial vortices, below whi
the system behaves as a solid. This last temperature is al
independent ofFp for Fp.1.

In Fig. 10~a! we plot the pinned fractionx, which shows
that in a finite region of temperatures~betweenTi and Tp)
there are exactlyNp

t vortices withDr 2,r p
2 . We find that for

lower Fp the width of that region is smaller, and forFp51 it
disappears (Tp becomes equal toTi).

FIG. 9. Vortex trajectories for the second MF with a triangu
pinning potential.~a! T.Tp , liquid phase.~b! Ti,T,Tp , intersti-
tial phase.~c! T,Ti , solid phase.~d! T50, final state.
5-7
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In Fig. 10~b! we can see the individual squared displac
ments that show a jump at two very different temperatur
The jump in theDr 2 of the pinned vortex is at a temperatu
Tp , and forT,Tp it is Dr 2,r p

2 . The jump inDr 2 for the
interstitial vortex is at a lower temperatureTi and for T
,Ti it is Dr 2,a2. The mean-squared displacement^Dr 2& at
t5100 000, shown in Fig. 10~c!, has a jump atTi but is not
sensitive toTp .

Finally, the triangular peak of the structure factor
shown in Fig. 10~d!. We find that this last quantity is no
sensitive toTp for this MF.

The results ofx andDr 2 @Figs. 10~a! and 10~b!# clearly
show the existence of two characteristic temperatures
merge to a single one asFp approaches 1. The other qua
tities ^Dr 2&, structure factor, and specific heat~not shown
here! show a change~the first two! or a maximum~the last
one! at the transitions, but have important finite size effec

B. Kagomépinning potential

In Fig. 11 we plot the vortex trajectories for four temper
tures. Figure 11~a! corresponds to a high temperatureT
.Tp) and the system is in the liquid phase. In Fig. 11~b! the
system is in the interstitial phase (Ti,T,Tp) and we can
distinguish two kinds of vortices: the ones which are pinn
in the kagome´ pinning sites and the others that are movi

FIG. 10. Second MF of 2048 vortices andFp55 with triangular
pinning potential.~a! Order parameter.~b! Dr 2( i ) of a pinned vor-
tex ~solid symbols! and an interstitial vortex~open symbols!. ~c!
^Dr 2& at t5100 000.~d! Triangular peak of the structure factor.
10450
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freely. At a lower temperatureTk,T,Ti we find an inter-
esting behavior in the vortex trajectories@Fig. 11~c!#. Some
of the interstitial vortices are now trapped inside the kago´
triangles ~interstitial ‘‘confined freezing’’!, but others are
moving in a circle inside the kagome´ hexagons. We will see
that in this regime of temperature the vortex system has
gular diffusion but does not have linear diffusion. The vor
ces which are moving in circles~thekagome´ vortices! form a
triangle which is only slightly deformed during the rotatio
At a finite temperatureTk the kagome´ vortices freeze and the
system is in a solid phase@Fig. 11~d!#. The second MF has a
ground state which is different than the one obtained in
triangular pinning array.17 For the kagome´ case, the ground
state is nearly degenerate because the kagome´ triangles have
two equivalent orientations@in Fig. 11~d! kagométriangles
can point up or down# and the perfect order is frustrated.

To find the relevant temperatures as a function ofFp we
did the same analysis as the previous cases.

In Fig. 12~a! we show the pinned fraction versus tempe
ture forFp55. We defineTp as the temperature below whic
a finite fraction of vortices haveDr 2,r p

2 . For Fp55 this
happens at a higher temperature than forFp51 ~not shown
here! and we observe a finite region of temperatures
which x5xp (xp5Np

k/Nv is the fraction of pinning sites!.
The temperatureTi is the temperature at which the inte

stitial vortex of Fig. 12~b! hasDr 2.a2. TheTp observed in
Fig. 12~a! is the same as the one observed in Fig. 12~b!, in
which the pinned vortex hasDr 2.r p

2 .
In Fig. 12~c! we plot the mean-squared displaceme

^Dr 2& for different time scales, and we can see that
^Dr 2&.a2 at Ti .

Finally, the two peaks of the structure factor are studied
Fig. 12~d!. The triangular peak, withk5(p/a,A3p/a) ~open
symbols!, has a maximum inT50, but this value is not 1~as
we expect for a perfect triangular vortex lattice! but 1/3. This
is in agreement with the ground state not being triangu
@Fig. 4~d!#. The kagome´ peak has a maximum atT.Tp , the
temperature at which the kagome´ vortex lattice is formed on
the pinning sites.

FIG. 11. Vortex trajectories for the second MF. Kagome´ pinning
potential. ~a! T.Tp , liquid phase. ~b! Ti,T,Tp , interstitial
phase.~c! Tk,T,Ti , kagome´ phase.~d! T50, ground state.
5-8
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To separate the contribution to the diffusion of rotati
vortices in the second MF, we calculate, for temperatureT
,Ti , the mean-squared angular displacements of the vo
triangles,

^Du2&5^uu i~ t !2u i~0!u2&, ~14!

whereu( i ) is the average angular coordinate of thei th tri-
angle. When̂ Du2&<p/3 the rotation stops and the temper
ture at which the vortex triangles freeze isTk .

To study the low-temperature region (T,Ti) we calcu-
lated the same diffusive quantities than before, but we
the calculation of thêDu2&. We find that the kagome´ vorti-
ces generate a finite angular diffusion for temperaturesTk
,T,Ti , becausêDu2&.p/3 in this region. ForT,Tk the
vortex triangles oscillate around their final position but th
do not change the orientation of the triangle. There is
linear diffusion becausêDr 2&, ^Dr 2(v)&, and Dr 2( i ) are
lower thana2 in this range of temperature~they are moving
less than the average distance between them!. In Fig. 13 we
show these quantities and the way in which we determ
Tk .

FIG. 12. Second MF of 2048 vortices andFp55. Quantities
calculated vs temperature:~a! pinned fraction,~b! Dr 2( i ) of a
pinned vortex~solid symbols! and an interstitial vortex~open sym-
bols!; ~c! ^Dr 2& at different time scales, and~d! the height of two
peaks of the structure factor: one corresponding to the triang
lattice of vortices~solid symbols! and the other to the kagome´ pin-
ning lattice~open symbols!.
10450
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The region of temperaturesTk,T,Tp , for which x
5xp , corresponds to both the interstitial and kagom´
phases. In both phases there are exactlyNp pinned vortices.
We find that forFp51, thenTp5Ti ~not shown here!. Tp
grows asFp is increased butTi and Tk are independent o
the pinning intensity. Therefore, the widths of the kagom´
and the solid phases are almost constant withFp , but the
interstitial phase~bounded byTi and Tp) is wider for
higherFp .

C. Correlated ring elementary excitations

As we have seen, the second matching field in a kago´
lattice is special because it is highly degenerate. Nam
many different configurations have the same energy. W
the entropy of most matching field configurations is zero
standard lattices, it is quite large for the second match
field in a kagome´ lattice.

The second matching field in a kagome´ lattice exhibits~i!
bistable collective states of three interstitial vortices~which
can be denotedu andd, and correspond to Ising-like states!,
~ii ! collective or cooperative ring elementary excitations,~iii !
degenerate ground states and spin-glass behavior wit
disorder, also known as geometric frustration,~iv! correlated
motion inside af4-type potential, and~v! for increasing tem-
peratures, a type of melting appears that can be describe
‘‘correlated melting’’ in the sense that the ‘‘triangle’’ o

ar

FIG. 13. Second MF of 2048 vortices andFp55 in a kagome´
pinning potential. The following quantities were calculated vs te
perature forT,Ti : ~a! mean-squared angular displacements of v
tex triangles,~b! ^Dr 2& at different time scales, and~c! ^Dr 2(v)& of
rotating kagome´ vortices ~square solid symbols! pinned vortices
~open symbols! and interstitial vortices~triangular solid symbols!.
5-9
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LAGUNA, BALSEIRO, DOMÍNGUEZ, AND NORI PHYSICAL REVIEW B64 104505
‘‘loop’’ first melts in the angular coordinate, while the radi
coordinate does not melt until much higher temperatures
reached. The elementary excitations are the thermal an
of certain types of squeezed states~where fluctuations
strongly affect a coordinate and less the other coordina!.
They are also analogs of the ‘‘rotational isomers’’ or ‘‘com
formations’’ that are often found in molecules, where thr
atoms and molecules can cooperatively oscillate back
forth between two degenerate ground states.

At finite temperatures, the three vortices inside the he
gon begin to move and eventually rotate by 60°. This is do
cooperatively by the three vortices, and not by one of th
individually. They move similarly to the ‘‘cooperative ring
exchange’’ mechanism proposed by Feynman for elemen
excitations in helium 4. In the case of the second match
field for a kagome´ lattice, the elementary excitation of th
three interstitial vortices is a 60° rotation, rotating as a co
erative ring. These type ofcollective or correlated‘‘ coopera-
tive ring exchange’’ has also been studied in the context
the quantum Hall effect.

The pinning outside produces a ‘‘periodic modulation’’
the external boundary, a magnetic trap. The interstitial vo
ces form a lattice which will slowly melt, through a series
thermal excitations. The first one would be a ‘‘one-st
click’’ cooperative ring rotation of 60°~or exchange!. After-
wards, several clicks clockwise and counterclockwise, g
erated by thermal activation, produce angular difussion.

This type of ‘‘controlled melting’’ of the particles inside
‘‘magnetic trap’’ could also be visualized with a colloida
suspension surrounded by six pinned~by laser tweezers!
charged particles. This type of ‘‘vortex-analog’’ experime
is easier to visualize~optical microscope! than using vorti-
ces. Still, Lorentz microscopy techniques would easily mo
tor such motions.

Decorations experiments could also identify the ‘‘blurre
rings or ‘‘blurred triangular vertices’’ due to the thermal e
citation of the vortices in the second matching field of t
kagoméperiodic array of pinning sites.

The melting in circles would be initiated via a sequence
stick-slip discrete motions in ‘‘small loops’’ or ‘‘closed
strings’’ formed of concentric 1D Frenkel-Kontorova-typ
circles. Here the elementary excitations would be ‘‘stri
like’’ on ‘‘closed-loop like.’’

VII. THIRD MATCHING FIELD

In this section we describe the results for a vortex sys
with Nv /Np

t 53. For this MF the number of interstitial vor
tices is 2 times the number of triangular pinning sites (Ni

t

52Np
t ) and is 3 times the number of the kagome´ pinning

sites (Ni
k53Np

k). Therefore, it is useful to study the effect o
those vortices on the general behavior of the vortex syst

A. Triangular pinning potential

We study the third MF for a triangular pinning potential
the same way as the previous cases. The trajectories a
ferent temperatures are shown in Fig. 14. In Fig. 14~a! the
system is in the liquid phase (T.Tp). At T,Tp , Np

t vortices
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are trapped in the pinning sites, as we can see in Fig. 14~b!.
The N2Np

t interstitial vortices, however, are free to mov
and they describe the trajectories shown in Fig. 14~b!. At a
lower temperatureTi , the interstitial vortices freeze and th
vortex trajectories are like Fig. 14~c!. The triangular ground
state17 can be observed in Fig. 14~d!.

The behavior of the vortex system in this MF reveals th
there are two relevant temperaturesTp andTi , the first one
which depends on the pinning intensityFp and the second
almost independent of that parameter.

In Fig. 15~a! we show the pinned fractionx for Fp55.
We clearly observe that there are two temperatures sepa
for this Fp .

In Fig. 15~b! we plot the^Dr 2(v)& for pinned and inter-
stitial vortices. The temperaturesTi and Tp are in concor-
dance with the ones defined in Fig. 15~a!.

The mean-squared displacements for different time sc
are plotted in Fig. 15~c!, and they are lower thanr p

2

below Ti .
In Fig. 15~d! we plot a triangular peak of the structur

factor. It has a similar behavior as in the first MF, with
maximum atT50.

B. Kagomépinning potential

Finally, we study the third MF with a kagome´ pinning
potential, and we find a behavior similar to the triangu
case. In Figs. 16~a!–16~d! we show vortex positions during
the cooling down process. In Fig. 16~a! the system is at a
high temperature (T.Tp). At T,Tp , Np

k vortices are in the
pinning sites@Fig. 16~b!#. Again, theN2Np

k interstitial vor-
tices are free to move. The interstitial vortices freeze a
lower temperatureTi , and the vortex trajectories are lik
Fig. 16~c!. This behavior is observed also for the fourth M
the only difference is the number of interstitial vortices.

We find that for the third MF the vortex lattice atT50 is
always triangular, highly ordered, and the same as obta
for the case with a triangular pinning lattice. The vortic
occupy every pinning site, no matter how weak the vorte
pinning interaction is. The vortex lattice is rotated 30°

FIG. 14. Vortex trajectories for the third MF with triangula
pinning potential.~a! T.Tp , liquid phase.~b! Tp.T.Ti , intersti-
tial phase.~c! Ti.T, solid phase.~d! T50, ground state.
5-10
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VORTEX STRUCTURE AND DYNAMICS IN KAGOMÉAND . . . PHYSICAL REVIEW B 64 104505
relation with the pinning array@see Fig. 16~d!#. These struc-
tures are stable under small perturbations until the temp
ture Ti at which the interstitial vortices start to diffuse.

In Fig. 17 we show the same quantities as in Fig. 15 fo
system with the same number of vortices andFp . In Fig.
17~a! we show the pinned fractionx for Fp51 and 5 and we

FIG. 15. Third MF of 3072 vortices andFp55 for a triangular
pinning potential. The following quantities are shown vs tempe
ture: ~a! Pinned fractions;~b! ^Dr 2( i )& of pinned ~solid symbols!
and interstitial vortices~open symbols!, ~c! mean-squared displace
ments at different time scales,^Dr 2&, and ~d! the height of the
triangular peak of the structure factor.

FIG. 16. Vortex trajectories for the third MF.~a! T.Tp , liquid
phase.~b! Tp.T.Ti , interstitial phase.~c! Ti.T, solid phase.~d!
T50, ground state.
10450
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can observe thatTi is the same in both cases butTp is mov-
ing to a higher temperature asFp is increased. We clearly
observe that there are two different temperatures forFp55,
whereas they coincide forFp51, i.e.,Ti5Tp .

In Fig. 17~b! we plot the^Dr 2(v)& for pinned and inter-
stitial vortices. The temperatureTi is again in concordance
with the Ti defined in Fig. 17~a!, andTp coincides with the
one defined inx for Fp55.

The mean-squared displacement for different time sca
is plotted in Fig. 17~c!, and shows a change of behavi
in Ti .

Finally, in Fig. 17~d! we plot the two peaks of the struc
ture factor. The behavior of the triangular peak is the sam
in the triangular case, with a maximum atT50. However,
the kagome´ peak has a nonzero height atT50 because the
kagoméstructure is present still at this temperature. A po
sible cause of this behavior is the high density of intersti
vortices, which makes possible the contribution of this latt
until T50.

VIII. SUMMARY AND CONCLUSIONS

We have studied the dynamics of a vortex system in
acting with a periodic pinning array. We explore the pha

-

FIG. 17. Third MF of 3072 vortices andFp55 for a kagome´
pinning potential. Quantities calculated vs temperature:~a! Pinned
fraction ~we also showx for Fp51), ~b! ^Dr 2( i )& of pinned~open
symbols! and interstitial vortices~solid symbols!, ~c! mean-squared
displacements at different time scales,^Dr 2&, and~d! height of two
peaks of the structure factor. One corresponding to the triang
lattice of vortices~open symbols! and the other to the kagome´ pin-
ning lattice~solid symbols!
5-11
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LAGUNA, BALSEIRO, DOMÍNGUEZ, AND NORI PHYSICAL REVIEW B64 104505
diagram temperature-pinning intensity for the first thr
MF’s and for the triangular and kagome´ pinning geometries.
We find several stages of lattice pinning and melting, wh
depend on the MF studied, i.e., the fraction of interstit
vortices present.

For the first MF we find only one relevant temperatu
Tp , below which every vortex is pinned. This behavior w
found for the two pinning geometries. The high-temperat
region is a liquid phase whereas the low-temperature reg
is a solid phase.

The second MF with triangular pinning has two chara
teristic temperaturesTp andTi . The first one is the tempera
ture below whichNp

t vortices are trapped in the pinning site
whereasTi is the freezing temperature of theNi

t interstitial
vortices. Besides the solid and liquid phases, there is an
termediate region of temperaturesTi,T,Tp called the in-
terstitial phase.

For the second MF with kagome´ pinning geometry the
vortex system has three relevant temperaturesTp , Ti , and
Tk . The first is again the pinning temperature ofNp

k vortices.
The second is the freezing temperature of the interstitial v
tices which are trapped inside the kagome´ triangles. Finally,
Tk is the freezing temperature of the vortex triangles trap
in the kagome´ hexagons. The regionTi,T,Tp is the inter-
stitial phase, whereas the regionTi,T,Tk in which the
only vortex motion is the rotation of the vortex triangle
inside the hexagons is called the kagome´ phase.

For the third MF we find two characteristic temperatur
Tp andTi , defined as in the second MF with triangular g
ometry. For both geometries the vortex system has an in
stitial phase which has a broader width as higher is the
ning intensity.

The ground state for the first and third MF’s is alwa
triangular and highly ordered, and is the same for the t
pinning geometries in all the range studied (1,Fp,5).

The second MF has a partially ordered ground state wh
-
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is different for the kagome´ and the triangular pinning geom
etries. The first one is highly degenerated whereas the se
has twofold degeneracy.

To reach different ground states after every annealing
standard in glasses, where there is disorder. However,
sample studied here has no disorder~a perfect kagome´ array
of pins!. There is a geometry-induced frustration. Eve
kagomé hexagon would have two states (entropy
5k log 2). HereN hexagons would have 2N states, and a
very large entropy~of the order ofN k log 2). Thus the sys-
tem has a very large degeneracy and a huge~low-T) entropy,
making it difficult to reach theT50 ground state.

In conclusion, in most of the cases there are two ph
transitions for strong pinning, in which the vortex syste
pins at a temperatureTp higher than the freezing temperatu
of the interstitial vortices,Ti . This is very different of the
well-known case of the submatching fields in periodic pote
tials, where the pinning temperature is lower than the m
ing temperature.23–25

More interestingly, the kagome´ pinning potential shows
new low-temperature phases for the second MF, with ro
ing triangles of vortices and frustration forT→0.
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9J.I. Martı́n, M. Vélez, J. Nogue´s, and Ivan K. Schuller, Phys. Rev
5-12



Y.

nd

.V.

o

d

Y

ys

er

.J
J.

n

re

am

ys.

lv.

D.

d R.

in
J.

ra-

J.

VORTEX STRUCTURE AND DYNAMICS IN KAGOMÉAND . . . PHYSICAL REVIEW B 64 104505
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