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Commensurate and incommensurate vortex states in superconductors
with periodic pinning arrays

C. Reichhardt, C. J. Olson, and Franco Nori
Department of Physics, The University of Michigan, Ann Arbor, Michigan 48109-1120

~Received 31 October 1997!

As a function of applied field, we find a rich variety of ordered and partially ordered vortex lattice configu-
rations in systems with square or triangular arrays of pinning sites. We present formulas that predict the
matching fields at which commensurate vortex configurations occur and the vortex lattice orientation with
respect to the pinning lattice. Our results are in excellent agreement with recent imaging experiments on square
pinning arrays@K. Haradaet al., Science274, 1167~1996!#. @S0163-1829~98!02214-0#
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I. INTRODUCTION

The concept of an elastic lattice interacting with a rig
substrate lattice producing commensurate and incomme
rate transitions when the periodicities of the two lattic
match or mismatch is found in numerous condensed ma
systems, including atoms adsorbed on surfaces,1 layered
superconductors,2 superconducting networks and Josephs
junction arrays,3 colloids,4,5 and magnetic bubble arrays in
teracting with patterned substrates.6 Recently, increased in
terest has been focused on superconducting systems
well-defined square or triangular periodic pinning arrays
which vortices can be trapped both at individual pinning si
and also at the interstitial regions between pinning sites.7–13

Due to the interstitial pinning, the vortex system differs s
nificantly from systems such as atoms on surfaces
Josephson-junction arrays. For instance, in the latter syst
the potential substrate has an egg-carton form, and so
atom or vortex lattice has thesameconfiguration whenever i
matches the underlying potential. Recent direct imag
experiments7 and simulations12 indicate that ordered vorte
configurations in samples with periodic pinning canvary at
each matching field, producing a remarkable variety of s
bilized vortex lattices which are quite distinct from tho
found in superconducting networks3 and other systems.

Since highly ordered commensurate lattices can be m
strongly pinned than incommensurate lattices,7,9–12 a deter-
mination of how different matching configurations affect t
overall pinning of the vortex lattice could be useful for tec
nological applications of superconductors. For instance,
hanced pinning at certain matching fields has been veri
with the observation of peaks in easily measurable magn
zation curves,9,11,12 including high-Tc materials.11

Imaging experiments have so far only probed up to
fourth matching field and have only examined square p
ning arrays.7 A general characterization of the vortex matc
ing patterns as a function of arbitrary matching densities
square and triangular pinning arrays has not been done u
this point.

We have performed a series of large-scale simulated
nealing as well as flux-gradient-driven14 molecular dynamics
simulations of vortices interacting with square and triangu
arrays of small pinning sites for very high fields~up to the
570163-1829/98/57~13!/7937~7!/$15.00
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28th matching field! and for a wide range of pinning param
eters and system sizes.

Our results show that the vortex lattice~VL ! is highly
ordered only at certain matching fields~MF’s! and can have
various orientations with respect to the underlying pinni
array. At some MF’s the VL is actually disordered. The e
hancements ofM (H) are most noticeable for fields less tha
the second matching field; however, we find some evide
of small enhancements ofM (H) for higher fields. Square
and triangular arrays producedifferentsequences of ordere
matching fields at which the pinning is enhanced. At so
MF’s, we find novel vortex arrangements with translation
order only along certain directions. Our numerical results
in excellent agreement with recent low-field experiments
square pinning arrays.7 Moreover, using geometrical argu
ments that take into account the constraints of the pinn
array, we derive simple formulas for the ordered MF’s a
for the orientation of the VL with respect to the square
triangular pinning array.

II. SIMULATION

We perform simulated annealing simulations for a tw
dimensional~2D! transverse slice~in the x-y plane! of a
superconducting 3D slab by numerically integrating t
overdamped equation of motion of rigid 3D vortices:

hvi5f i5f i
vv1f i

vp1f i
T . ~1!

The termf i is the total force per unit length acting on vorte
i . The force due to the interactions with other vortices is

f i
vv5(

j 51

Nv

f 0K1S ur i2r j u
l D r̂ i j , ~2!

where Nv is the number of vortices,r̂ i j 5(r i2r j )/ur i2r j u,
and we takeh51. K1(r /l) is the modified Bessel function
l is the penetration depth, and

f 05
F0

2

8p2l3
.

The Bessel function decays exponentially forr greater than
l, and so for computational efficiency the interaction can
7937 © 1998 The American Physical Society
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FIG. 1. Vortex ground states
obtained from simulated annea
ing for a square pinning array with
B50.17F0 /l2, r p50.35l, and
f p / f 050.625 showing a
12l312l subset of a 36l336l
sample. The flux density is
B/Bf51 in ~a!, 2 ~b!, 3 ~c!, 4 ~d!,
5 ~e!, 6 ~f!, 7 ~g!, 8 ~h!, and 9~i!.
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safely cut off at 6l. In thin-film superconductors the long
range vortex-vortex interaction decays as 1/r unlike in 3D
bulk superconductors; however, the excellent agreement
tween our results and experiments in thin films7 indicates
that our results are valid for both slabs and thin films and
general enough to be applicable to other systems with re
sive particles on a periodic substrate~e.g., colloids!. The pin-
ning force is

f i
vp5 (

k51

Np S f p

r p
D ur i2r k

~p!uQS r p2ur i2r k
~p!u

l
D r̂ ik

~p! , ~3!

whereQ is the Heaviside step function,f p is the maximum
pinning force, Np is the number of pinning sites, an
r̂ ik

(p)5(r i2r k
(p))/ur i2r k

(p)u. Temperature is added as a st
chastic term with properties

^ f i
T~ t !&50 ~4!

and

^ f i
T~ t ! f j

T~ t8!&52hkBTd i j d~ t2t8!. ~5!

To find the vortex ground state, we gradually cool a fix
number of randomly moving vortices from a high tempe
ture toT50, simulating the field-cooled experiments of Re
7. To examine vortex mobility and features in the magne
zation curves as a function of applied fieldH, we use flux-
gradient-driven simulations in which only the central 2/3
e-

e
l-

-

i-

f

the sample contains pinning sites. In this case, vortex li
are slowly added to the unpinned region and force their w
into the pinned region~the actual sample!. Although the vor-
tex system in flux-driven simulations is in a nonequilibriu
state, almost all of the vortex states found by simulated
nealing also appear in the flux-driven case in parts of
sample.

We measure all lengths in units ofl and fields inF0 /l2,
and consider systems from 36l336l up to 72l372l in
size. The pinning is placed in square or triangular arrays
densities betweennp50.072/l2 and 0.81/l2. The pinning
radius is fixed atr p50.35l. Pinning sites this size and
smaller trap onlyonevortex per pinning site, which is simi
lar to the experimental situation in Ref. 7. We consider p
ning forcesf p varying from 0.2f 0 to f 0 and examine the VL
ordering up to the 28th MF.

III. VORTEX LATTICE GROUND STATES:
SQUARE CASE

A. Patterns experimentally observed

In Fig. 1 we show a series of VL orderings after anneali
from our simulations for a square pinning array wi
B50.17F0 /l2 for each integer MF up to the ninth MF. In
~a!, at the first MF, all the vortices are trapped at the pinn
sites so that the overall VL is square. At the second MF~b!
the interstitial vortices occupy the regions in between
pinning sites, and so the overall VL is square but rotated
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FIG. 2. Vortex ground states
obtained from simulated annea
ing for a triangular pinning array
with B50.17F0 /l2, r p50.35l,
and f p / f 050.625 for a 12l312l
subset of a 36l336l sample. The
flux density isB/Bf51 in ~a!, 2
~b!, 3 ~c!, 4 ~d!, 5 ~e!, 6 ~f!, 7 ~g!,
8 ~h!, and 9 ~i!.
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with respect to the pinning array. At the third MF~c!, the VL
is still highly ordered, with pairs of interstitial vortices alte
nating in position. In~d!, at the fourth MF, a VL with trian-
gular ordering is observed. These structures for the first f
MF’s correspond exactly to those found in direct imagi
experiments.7 We also observe ordered VL’s at the sub-MF
(B/Bf51/4 and 1/2, whereBf is the vortex density at the
first MF! and partially ordered VL’s at fractional MF’s
(B/Bf53/2 andB/Bf55/2) in agreement with experiment7

We find that the general features of the observed VL c
figurations up to the fourth matching field are robust fo
wide range of parameters with 0.2f 0< f p< f 0 and also for
0.072F0 /l2<Bf<0.81F0 /l2, for system sizes up to
72l372l.

B. Patterns not yet experimentally observed

In Figs. 1~e!–1~i! we show vortex configurations from ou
simulations that have not yet been observed experiment
In ~e!, at the fifth MF, the overall VL is again square an
rotated 27° with respect to the pinning lattice. In~f! a very
unusual VL is observed; although the VL is neither squ
nor triangular, some ordering is still visible. Along th
(21,1) direction the vortices are spaced periodically wh
in other directions apparently periodic distortions can
clearly seen. At the seventh MF, in~g!, the VL is disordered.
In ~h!, at the eighth MF, the VL is nearly triangular. In~i!, at
the ninth MF, a distorted square VL with two different or
entations appears, separated by a twin boundary in
ur

-

ly.

e

e

he

middle of the figure. For similar systems with lower pin de
sity we have studied up to the 28th MF. We see the sa
VL’s already described as well as ordered VL’s at the 12
and 15th MF’s, while the vortex configurations at the oth
MF’s have no particular ordering. ForB/Bf.15, at high
MF’s with no overall lattice order, the VL contains ordere
domains separated by grain boundaries of defects simila
those observed in Ref. 8.

Due to numerical constraints, we could only look at pi
ning densities up tonp50.35/l2 for 5,B/Bf<12 and
np50.072/l2 for matching fields 12,B/Bf<28. The vortex
patterns observed here are robust for system sizes u
72l372l. The fact that the same patterns appear
different-sized systems indicates that the patterns arise du
commensurability with the pinning lattice rather than co
mensurability with the periodic boundary conditions. W
should point out that since we cannot do infinite-size s
tems, we cannot conclusively rule out finite-size effects
the vortex patterns observed. Also, in an experimen
sample, edges and line or planar defects might distort
otherwise periodic VL and create ordered domains that
not extend over the entire sample.

IV. VORTEX LATTICE GROUND STATES:
TRIANGULAR CASE

In Fig. 2 we show VL configurations up to the ninth M
for a system with the same parameters as in Fig. 1 but wi
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7940 57C. REICHHARDT, C. J. OLSON, AND FRANCO NORI
triangular array of pins. In~a! at the first MF, all the vortices
are pinned in a triangular lattice. In~b! a honeycomb VL
forms, with some defects present. Ordered triangular V
are seen at the third~c! and fourth~d! MF’s with the VL
rotated 30° and 0°, respectively, in relation to the pinn
array. No clear ordering is seen at the fifth~e!, sixth ~f!, and
eighth~h! MF’s. A triangular VL rotated 18° with respect t
the pinning array is seen at the seventh~g! MF. In ~i! at the
ninth MF the VL is triangular and not rotated with respect
the pinning array. As in the samples with square pinning,
observe ordered VL’s at certain sub-MF’s but the VL is d
ordered at other non-MF’s. The matching vortex configu
tions are very robust for all the parameters we have inve
gated, except for the honeycomb VL which disappears
weak pinning, f p,0.3f 0. For different samples
(np50.072/l2, f p50.625f 0) we have studied up to th
28th MF, and find ordered triangular VL’s at the MF’s o
order 12, 13, 16, 19, 21, 25, and 28. The vortex patte
observed for the triangular pinning array are robust fo
similar set of parameters as the square pinning array
cussed in the previous section.

V. MATCHING CONDITIONS

To derive formulas for the fields at which VL’s will be
ordered, for a triangular array of pins, first take a match
field N and consider any two pinning sites along a symme
axis that haveN vortices between them. Now find a thir
pinning site that forms a 60° angle with the original tw
pinning sites, so that all three vertices form an equilate
triangle. The distances between the third site and each o
other two are integer multiples of the pinning lattice const
a where

a51.075AF0

Bf
. ~6!

We label these integersn andm. The distance between vor
ticesaN at a fieldB is

aN51.075AF0

B
. ~7!

By using the law of cosines the distances must obey

~NaN!25~ma!21~na!212mna2cos~60°!. ~8!

At the MF’s, B5NBf , so thataN5a/AN. Substituting this
into Eq. ~8! gives

N5m21n21nm. ~9!

This equality predicts that for a triangular array of pins,
ordered VL will form at valuesN51, 3, 4, 7, and 9, exactly
as seen in our simulations in Figs. 2~a!–2~i!. Equation~9!
also predicts the higher MF’s (N512, 13, 16, 19, 21, 25, an
28) that we have observed numerically. The honeycomb
seen in Fig. 2~b! is not predicted by Eq.~9! because Eq.~9!
only predicts when triangular VL’s occur. From Eq.~1! we
find that the angle the VL makes with respect to the pinn
array is
s
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u5arctanSA3m/2

n11/2D . ~10!

This equation indicates that for

B5n2Bf , ~11!

whenm50, the VL is not rotated with respect to the array
pins. This is observed forN51, 4, and 9@shown in Figs.
2~a!, 2~d!, and 2~i!#, as well as forN516 and 25. For MF’s
N53, wheren51, m51, andN57, wheren51, m52,
Eq. ~9! givesu530° and 19.11°, respectively, in agreeme
with the VL’s shown in Figs. 2~c! and 2~g!. We have found
that Eq.~10! is valid at least up to the 28th MF studied in o
simulations.

We can derive similar conditions for the square pinni
array, predicting that ordered VL’s appear at theNth MF
when

N5m21n2. ~12!

This equation predicts square VLs forN51, 2, 4, 5, 8, and 9.
Indeed, ordered VL’s are seen at these fields~see Fig. 1!.
However, onlyN51, 2, and 5 are square in the simulatio
Moreover, the angle of the VL with respect to the array
pins is in principle expected to be

u5arctanS m

n D . ~13!

These matching conditions do not always predict the ri
VL ordering observed in simulations. For instance, the VL
seen at higher fieldsN.9 have triangular or distorted squa
rather than square ordering. These equations fail when
VL tendency to remain triangular dominates the tendency
the pin array to force a square ordering on the VL. This
particularly clear for higher fields,N.9, when the many
interstitial vortices are free to minimize their energy b
forming triangular lattices. Equation~9! for the triangular
array of pins does not have this limitation becauseboth the
sample and the VL favor a triangular order.

As we have seen from the simulations, the vortex lattice
ordered at the matching fields where the commensurab
conditions outlined above are met and generally disorde
where they are not. Several low matching fields where th
conditions are not met still produce ordered or partially
dered lattices such as the honeycomb lattice at the sec
matching field for the triangular pinning lattice and the alte
nating interstitial lattice at the third field for the square arra
This ordering at fields not met by our commensurability co
ditions may occur due to the pinning being more dominan
lower fields so that ordering can be imposed on the inter
tial vortices. For higher fields the vortex configuration f
fields where commensurability conditions are not met is d
ordered or partially disordered. At higher fieldsB.6Bf the
vortex-vortex interactions dominate. Here a triangular vor
lattice is always preferred, and so any alternate ordering
posed by the pinning does not occur.

VI. TOPOLOGICAL ORDER AND MAGNETIZATION

In order to relate the MF configurations to vortex mobili
as well as to experimentally measurable bulk quantities
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FIG. 3. MagnetizationM (H) and the fraction of vortices with coordination numberk, Pk(H), for triangular~a!-~d!, square~e!-~h!, and
random~i!-~l!, arrays of pins with the same pinning parameters as found in Figs. 1 and 2. In~c!, ~g!, and~k!, P5(P7) is represented with a
dotted~solid! line. In ~a! peaks inM (H) can be seen at the third, fourth, seventh, and ninth MF’s, which coincide with peaks inP6(H)
shown in~b!. For the square pinning, small peaks are seen inM (H), ~e!, at the second, fourth, fifth, and eighth MF’s. The fourth and fi
~small! peaks merge near the fifth MF. The peaks inP6, ~f!, indicate that the VL is triangular at the fourth, sixth, and eighth MF’s, wh
peaks inP4, ~h!, indicate that the VL is square at the second and fifth MF’s. Sometimes, the peak inM (H) is slightly shifted@e.g., to 2.5
instead of 2, or 4.5 instead of 4, in~a!# or missing@e.g., atB5Bf in ~a!# because of thegradient in the field. These flux-gradient-driven
effects are stronger at low fields and weaker at higher fields. The field-cooled cases studied in Figs. 1 and 2, however, ca
commensurability throughout the sample. In~g! P5 is the upper curve, while in~c! and ~k! P5 and P7 follow each other. For the random
pinning array at low fields the maximum valueuM (H)u is 0.0095F0 /l2, about 1.5 times less than the triangular or square pinning ar
~a!,~b!. For H.0.4F0 /l2, the magnetizationM (H) falls off smoothly whileP6 slowly increases as vortex-vortex interactions dominate
higher fields.
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present the magnetizationM (H) obtained from flux-
gradient-driven simulations12 of samples with the same pin
ning parameters used in Fig. 2. In Fig. 3 we plotPk(H), the
fraction of vortices with coordination numberk obtained
from the Voronoi construction, andM (H), a useful and
common measurement of the net critical current. For a p
fect triangular latticeP651, and so any departure from th
indicates a defective lattice. A peak inM (H) indicates en-
hanced pinning. In Fig. 3~a! we find thatM (H) is very large
for fields less than about 2Bf and falls off very rapidly after
r-

this. Peaks in bothM (H) andP6(H) appear@Figs. 3~a! and
3~b!# at the MF’sN53, 4, 7, and 9 that produced triangula
VL’s in the simulated annealing~Fig. 2!. From Fig. 2~a!, the
vortex lattice would be expected to form a triangular latti
with the pinning substrate at the first matching field, andP6
would be expected to be equal to 1. In the flux-gradie
driven case shown in Figs. 3~a! and 3~b!, no peak inM (H)
or P6 at the first matching field is observed. This is due
the fact that the largeflux gradientat low fields strongly
distorts the VL. This distortion makes it difficult to achiev
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7942 57C. REICHHARDT, C. J. OLSON, AND FRANCO NORI
commensurability throughout the entire sample. In thefield-
cooledsituation shown in Fig. 2~a! there is no gradient in the
vortex density to interfere with the vortex lattice orderin
For the flux-gradient-driven case at higher fields,B.2Bf ,
the gradient flattens so that the vortex lattice can beco
commensurate with the pinning substrate over a large a
We note that even for high matching fields a small flux g
dient will always be present so thatP6 will be less than 1 as
seen in Fig. 3~b!. For weaker pinning,f p<0.3f 0, the flux
gradient is reduced at low fields so that a peak inM (H) and
P6 can be observed atB/Bf51.12 We find that this behavior
is independent of system size. At the MF’sN55 andN56
the VL is highly defective withP6(H) dropping as low as
0.5. No peak appears inM (H) for the second MF. For sys
tems in which we have studied up to the 28th MF we also
some enhancements inM (H) and P6(H) at the MF’s pre-
dicted by Eq.~9!, although the features are washed out
high fields.

In Fig. 3~e! we showM (H) for a square pinning array
with the same parameters used in Fig. 1. AgainM (H) is
large for low fields and rapidly falls off after the second M
We can see a dip after the third MF and an overall enhan
ment inM (H) at the second, fourth, fifth, and eighth MF’
although no clear enhancement is seen at the sixth and n
MF’s even though the VL’s observed through simulated
nealing at these fields also appear in this flux-gradient-dri
simulation. To examine the evolution of the vortices w
four nearest neighbors we consider a slightly modifi
Voronoi algorithm in which the lengths of each side of
Voronoi cell are compared. If the length of any side is le
than one-fourth of the average lengths of the other sides,
it is ignored. P4(H) first shows a peak at the second M
when the vortices form the lattice shown in Fig. 1~b!. There
is no peak inP4(H) at the first MF due to the large flu
gradient.P6(H) shows a large peak at the fourth MF th
corresponds to the triangular VL seen in Fig. 1~d!. P6(H)
then drops rapidly andP4(H) increases as the VL gains th
square ordering seen in Fig. 1~e!. P6(H) rises at the sixth
MF and peaks at the eighth. In square pinning arrays, wh
we have gone up to the 28th MF, small enhancements
M (H) are observed for most of the MF’s that produced
dered VL’s. The results indicate that, without directly ima
ing the VL, it could be experimentally possible to deduce
existence of the ordered vortex arrays seen here, by loo
for a specific sequence of peaks inM (H), at least up to the
fifth matching field. Beyond the fifth matching field we ob
serve only very small peaks inM (H), which may make them
difficult to see experimentally.

Our results are only valid for pins small enough thatonly
one vortex can be trapped in each pinning site. With tria
gular pinning, peaks inM (H) should in principle occur for
MF’s N that satisfy Eq.~9!. For square pinning arrays, w
observe that peaks inM (H) occur for MF’s given by
N5n21m2, when N<10, and by N5n21m221, when
N.10. This pattern of peaks differs from those already s
experimentally using periodic pinning arrays with large p
ning radii, as shown in Ref. 12. In experiments, peaks
M (H) are usually observed at every MF due tomultiple
vortices being trapped in pinning sites.9,11

To compare the effects of random pinning to square
triangular arrays, in Fig. 3~i! we plot M (H), and in Figs.
.
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3~j!–3~l! we plot Pk(H) for a sample with the same pinnin
parameters as in Figs. 3~a! and 3~e! except the pinning sites
are placed in a random array. It can clearly be seen that m
of the peaks inPk andM (H) are washed away withM (H)
having a smooth falloff after the peak and the strong va
tions inPk lost. The fraction ofP6 gradually increases as th
vortex-vortex interactions dominate at higher fields. At t
matching fields, the random array of pins has no peaks
enhancements inM (H) or Pk . This suggests that the pres
ence of peaks in the periodic pinning arrays are due to
commensurability effects with the pinning substrate.

The maximum value of the absolute value ofM (H),
uM (H)u, is 0.0095F0 /l2 for the random pinning in Fig. 3
while it is 0.015F0 /l2 for the triangular array and squar
array. The latter value is about 1.5 times larger than t
found for the random pinning case. This enhancemen
M (H) occurs only for a limited range of fields. TheM (H)
for the triangular pinning array falls to the same value
M (H) for the random pinning array atH'0.30F0 /l2,
which is less than 2Bf . The M (H) for the square pinning
array remains higher than theM (H) of the random pinning
array untilH'0.45F0 /l2. This higher value ofH at which
the drop occurs for the square pinning array is due to
strong commensurability at the second MF for the squ
pinning array, whereas for the triangular array the seco
MF is a less stable defective honeycomb lattice. For the
angular pinning array at the third MF,M (3Bf)
'0.004F0 /l2, while the random pinning gives
M (3Bf)'0.0025F0 /l2. For fields higher than the fourth
MF, M (H) is of the same order for the three pinning arr
geometries studied here.

VII. REMARKS ON FINITE-SIZE EFFECTS

Regarding finite-size effects, we would like to emphas
that we have conducted simulations in samples that var
size from 36l336l up to 72l372l, and we observe the
same features in all our simulations regardless of the sys
size. We have also done simulations with different pinni
strengths and observe the same peaks inM (H) and P6(H).
This reproducibility in the peaks in different simulations su
gests that the peaks are not merely fluctuations but are ro
and reproducible results. To further address this issue
have included in Fig. 3 bothM (H) andPk(H) for a system
with the same pinning parameters as in the first two plots
M (H) but with pinning placed randomly. In this plot n
peaks are visible inM (H) beyond the initial peak and no
are any peaks visible inPk(H). The same behavior for the
random array is observed for different-sized systems. If
peaks inM (H) in systems with square and triangular pi
ning are due to finite-size effects such as commensurab
with the boundary conditions, then peaks inM (H) and Pk
for a system with the same size and boundary conditions
with random pinning should appear as well.

The absence of any peaks inM (H) andPk for the system
with random pinning strongly suggests that peaks in th
quantities for the square and triangular pinning arrays
due to commensurability effects with the pinning latti
only. It is important to stress that in our simulations, o
analytical results and experimentally observed vortex lat
~VL ! configurations are all consistent with each other.
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VIII. CONCLUSION

To summarize, we have studied VL’s interacting with p
riodic pinning arrays in which interstitial pinning is releva
above the first MF. We have shown that this system beha
considerably differently from atoms on surfaces
Josephson-junction arrays. A rich variety of distinct VL
can be stabilized including several novel partially orde
lattices. We have also derived commensurability conditio
for MF’s at which stable ordered VL’s appear. For the tria
gular pinning array these commensurability conditions are
excellent agreement with our simulations, while for t
square array the commensurability conditions work for l
fields ~up to the tenth matching field!. Our simulations are in
excellent agreement with recent imaging experiments7 and
are robust over a wide range of parameters and system s
Our predictions can be tested with Lorentz microscopy te
s.

ra

o

-

es
r

d
s
-
n

es.
-

niques and Bitter decoration techniques, and by looking fo
specific sequence of peaks in magnetization measurem
These phases should be accessible to other systems wit
riodic pinning, including charged colloidal particles in a p
riodic array of optical traps5 and magnetic bubble arrays in
teracting with patterned substrates.
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