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As a function of applied field, we find a rich variety of ordered and partially ordered vortex lattice configu-
rations in systems with square or triangular arrays of pinning sites. We present formulas that predict the
matching fields at which commensurate vortex configurations occur and the vortex lattice orientation with
respect to the pinning lattice. Our results are in excellent agreement with recent imaging experiments on square
pinning arrayd K. Haradaet al, Science274, 1167(1996]. [S0163-1828)02214-7

[. INTRODUCTION 28th matching fieldand for a wide range of pinning param-
eters and system sizes.

The concept of an elastic lattice interacting with a rigid ~ Our results show that the vortex latti¢¥L) is highly
substrate lattice producing commensurate and incommens@tdered only at certain matching fielddF’s) and can have
rate transitions when the periodicities of the two latticesvarious orientations with respect to the underlying pinning
match or mismatch is found in numerous condensed matteé¥ray. At some MF's the VL is actually disordered. The en-
systems, including atoms adsorbed on surfictsjered hancements o (H) are most noticeable for fields less than
superconductorssuperconducting networks and Josephsonthe second matching field; however, we find some evidence
junction array$ colloids*5 and magnetic bubble arrays in- ©f Small enhancements df(H) for higher fields. Square
teracting with patterned substrafeRecently, increased in- @nd triangular arrays produckfferentsequences of ordered

terest has been focused on superconducting systems wi atching fi_elds at which the pinning is enhgnced. At Some
well-defined square or triangular periodic pinning arrays in F's, we find novel vortex arrangements with translational

which vortices can be trapped both at individual pinning Sitesorder only along certain directions. Our numerical results are

and also at the interstitial regions between pinning i3, in excellent agreement with recent low-field experiments on

: o X . square pinning arraysMoreover, using geometrical argu-
D_u_e to the interstitial pinning, the vortex system differs S19"ments that take into account the constraints of the pinning
nificantly from systems such as atoms on surfaces o

érray, we derive simple formulas for the ordered MF's and

Josephson-junction arrays. For instance, in the latter systemg,, {he orientation of the VL with respect to the square or
the potential substrate has an egg-carton form, and so tr{ﬁangular pinning array.

atom or vortex lattice has treameconfiguration whenever it
matches the underlying potential. Recent direct imaging
experiments and simulation¥ indicate that ordered vortex
configurations in samples with periodic pinning czary at We perform simulated annealing simulations for a two-
each matching field, producing a remarkable variety of stadimensional(2D) transverse slicdin the x-y plang of a
bilized vortex lattices which are quite distinct from those superconducting 3D slab by numerically integrating the

Il. SIMULATION

found in superconducting networkand other systems. overdamped equation of motion of rigid 3D vortices:
Since highly ordered commensurate lattices can be more 0o 4 op o T
strongly pinned than incommensurate lattié8s'? a deter- pvi=h=F"+Fr+ 1. (1)

mination of how different matching configurations affect the.l.he termf; is the total force per unit length acting on vortex

overa_ll pinning of _the vortex lattice could be use_ful for tG}Ch'i. The force due to the interactions with other vortices is
nological applications of superconductors. For instance, en-

hanced pinning at certain matching fields has been verified N,
with the observation of peaks in easily measurable magneti- frr="> oK,
zation curves:***?including highT, materials* b=
Imaging experiments have so far only probed up to the ) A
fourth matching field and have only examined square pinWhereN, is the number of vortices;; = (ri—r;)/|ri—ry],
ning arrays. A general characterization of the vortex match-and we taken=1.K,(r/)) is the modified Bessel function,
ing patterns as a function of arbitrary matching densities foft iS the penetration depth, and
square and triangular pinning arrays has not been done up to 5
this point. P
We have performed a series of large-scale simulated an- f0_8772)\3'
nealing as well as flux-gradient-driv€rmolecular dynamics
simulations of vortices interacting with square and triangularThe Bessel function decays exponentially fogreater than
arrays of small pinning sites for very high fieldsp to the X\, and so for computational efficiency the interaction can be

|ri;r1|)ﬂj, @
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safely cut off at @. In thin-film superconductors the long- the sample contains pinning sites. In this case, vortex lines
range vortex-vortex interaction decays as (ihlike in 3D  are slowly added to the unpinned region and force their way
bulk superconductors; however, the excellent agreement bénto the pinned regiofthe actual sampjeAlthough the vor-
tween our results and experiments in thin filmisdicates  tex system in flux-driven simulations is in a nonequilibrium
that our results are valid for both slabs and thin films and aretate, almost all of the vortex states found by simulated an-
general enough to be applicable to other systems with repuhealing also appear in the flux-driven case in parts of the
sive particles on a periodic substrégeg., colloids. The pin-  sample.

ning force is We measure all lengths in units bfand fields indq/\?,
and consider systems from B8 36\ up to 72AX72\ in

op Np fo ) rp—|ri—r(kp)| ~(p) size. The pinning is placed in square or triangular arrays at
fi :kgl T =10l ————] "k’ @  densities betweem,=0.072A? and 0.81X?% The pinning

radius is fixed atr,=0.35\. Pinning sites this size and
where® is the Heaviside step functiofi, is the maximum  smaller trap onlyonevortex per pinning site, which is simi-
pinning force, N, is the number of pinning sites, and lar to the experimental situation in Ref. 7. We consider pin-
r®P=(r;—r®Y/|r;—r{P|. Temperature is added as a sto- ning forcesf, varying from 0.2, to f, and examine the VL

chastic term with properties ordering up to the 28th MF.
T _
(fi(1))=0 (4) IIl. VORTEX LATTICE GROUND STATES:
and SQUARE CASE

- T A. Patterns experimentally observed
(F(OF(t)=27ksT 5 6(t—t"). ®) , . . .
In Fig. 1 we show a series of VL orderings after annealing
To find the vortex ground state, we gradually cool a fixedfrom our simulations for a square pinning array with
number of randomly moving vortices from a high tempera-B=0.17P,/\? for each integer MF up to the ninth MF. In
ture toT=0, simulating the field-cooled experiments of Ref. (a), at the first MF, all the vortices are trapped at the pinning
7. To examine vortex mobility and features in the magneti-sites so that the overall VL is square. At the second (dF
zation curves as a function of applied fiet] we use flux- the interstitial vortices occupy the regions in between the
gradient-driven simulations in which only the central 2/3 of pinning sites, and so the overall VL is square but rotated 45°
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with respect to the pinning array. At the third M), the VL  middle of the figure. For similar systems with lower pin den-
is still highly ordered, with pairs of interstitial vortices alter- sity we have studied up to the 28th MF. We see the same
nating in position. In(d), at the fourth MF, a VL with trian-  VL'’s already described as well as ordered VL'’s at the 12th
gular ordering is observed. These structures for the first fouand 15th MF’s, while the vortex configurations at the other
MF’s correspond exactly to those found in direct imagingMF’s have no particular ordering. Fd/B,>15, at high
experiments.We also observe ordered VL'’s at the sub-MF’s MF’s with no overall lattice order, the VL contains ordered
(B/B4y=1/4 and 1/2, wherd, is the vortex density at the domains separated by grain boundaries of defects similar to
first MF) and partially ordered VL's at fractional MF's those observed in Ref. 8.

(B/B4=3/2 andB/B ,=5/2) in agreement with experimeht. Due to numerical constraints, we could only look at pin-
We find that the general features of the observed VL conning densities up tonp=0.35/)\2 for 5<B/B4<12 and
figurations up to the fourth matching field are robust for anp:0.072/}\2 for matching fields 12 B/B,<28. The vortex
wide range of parameters with @2<f,<f, and also for patterns observed here are robust for system sizes up to
0.072by/\%< B¢<O.81<Do/)\2, for system sizes up to 72AX72n. The fact that the same patterns appear for

TONXT2N. different-sized systems indicates that the patterns arise due to
commensurability with the pinning lattice rather than com-

should point out that since we cannot do infinite-size sys-
. > , tems, we cannot conclusively rule out finite-size effects on
simulations that have not yet been observed expenmentallyfhe vortex patterns observed. Also, in an experimental
In (e), at the fifth MF, the overall VL is again square and sample, edges and line or planar defects might distort an

rotated 27° with respect to the pinning lattice.(fd a very  qihenise periodic VL and create ordered domains that do
unusual VL is observed; although the VL is neither square, ; axtend over the entire sample.

nor triangular, some ordering is still visible. Along the
(—1,1) direction the vortices are spaced periodically while

In Figs. 1e)—1(i) we show vortex configurations from our

in other directions apparently periodic distortions can be IV. VORTEX LATTICE GROUND STATES:

clearly seen. At the seventh MF, (g), the VL is disordered. TRIANGULAR CASE

In (h), at the eighth MF, the VL is nearly triangular. (i, at

the ninth MF, a distorted square VL with two different ori-  In Fig. 2 we show VL configurations up to the ninth MF

entations appears, separated by a twin boundary in thi®r a system with the same parameters as in Fig. 1 but with a



7940 C. REICHHARDT, C. J. OLSON, AND FRANCO NORI 57
triangular array of pins. Iifa) at the first MF, all the vortices

\/§m/2
are pinned in a triangular lattice. Ifb) a honeycomb VL 6=arctar6 Y
forms, with some defects present. Ordered triangular VL's
are seen at the thirtt) and fourth(d) MF’s with the VL  This equation indicates that for
rotated 30° and 0°, respectively, in relation to the pinning
array. No clear ordering is seen at the fiféh, sixth (f), and B=n’B,, (12)

eighth(h) MF's. A triangular VL rotated 18° with respect to whenm=0, the VL is not rotated with respect to the array of
the pinning array is seen at the seve(@hMF. In (i) at the pins. This ’is observed foN=1, 4, and 9[shown in Figs.
ninth MF the VL is triangular and not rotated with respect t°2(a) 2(d), and Zi)], as well as fon\’l:16 and 25. Eor ME's
the pinning array. As in the samples with square pinning, Wq\|2’3 Wﬁerenzl ' m=1. andN=7 wheren=1. m=2
observe ordered VL'’s at certain sub-MF’s but the VL is dis- Eq (é) give30:3£)° and 19 11° resbectively in ,agreer1nent
ordered at other non-MF’s. The matching vortex conﬁgura-wit'h the VL’s shown in Fig§ Q:)'and 19) We’have found
tions are very robust for all the parameters we have investi,fhat Eq.(10) is valid at least u.p to the 28tH ME studied in our
gated, except for the honeycomb VL which disappears for :

weak pinning, f,<0.3f,. For different samples simulations.
(n,=0.072A2,  f,=0.625,) we have studied up to the e can derive similar conditions for the square pinning

28th MF, and find ordered triangular VL's at the MF'’s of array, predicting that ordered VL's appear at iNeén MF
order 12, 13, 16, 19, 21, 25, and 28. The vortex patterns

. (10

o_bs_erved for the triangular pinning array a_lre_robust for a N=m2+ n2. (12)
similar set of parameters as the square pinning array dis- ) .
cussed in the previous section. This equation predicts square VLs fd=1, 2, 4, 5, 8, and 9.

Indeed, ordered VL's are seen at these fidlsise Fig. 1

However, onlyN=1, 2, and 5 are square in the simulation.

Moreover, the angle of the VL with respect to the array of
To derive formulas for the fields at which VL's will be pins is in principle expected to be

ordered, for a triangular array of pins, first take a matching

field N and consider any two pinning sites along a symmetry 9=arctarﬁm _ (13)

axis that haveN vortices between them. Now find a third n

pinning site that forms a 60° angle with the original two These matching conditions do not always predict the right

pinning sites, so that all three vertices form an equilater . o . ; 4
triangle. The distances between the third site and each of tﬂél‘ ordering observed in simulations. For instance, the VL's

. . o . seen at higher fieldd>9 have triangular or distorted square
other two are integer multiples of the pinning lattice constan her th deri h ) fail wh h
a where rather than square ordering. These equations fail when the

VL tendency to remain triangular dominates the tendency of

the pin array to force a square ordering on the VL. This is
[Po
a=1.075\/ .
By

V. MATCHING CONDITIONS

6) particularly clear for higher fieldsN>9, when the many
interstitial vortices are free to minimize their energy by
_ ) forming triangular lattices. Equatiof®) for the triangular
We label these integersandm. The distance between vor- grray of pins does not have this limitation becabsth the

ticesay at a fieldB is sample and the VL favor a triangular order.
As we have seen from the simulations, the vortex lattice is
[®@g ordered at the matching fields where the commensurability
ay=1.075 B () conditions outlined above are met and generally disordered
where they are not. Several low matching fields where these
By using the law of cosines the distances must obey conditions are not met still produce ordered or partially or-
dered lattices such as the honeycomb lattice at the second
(Nay)?=(ma)?+(na)?+2mnafcog 60°). (8)  matching field for the triangular pinning lattice and the alter-

nating interstitial lattice at the third field for the square array.
At the MF’'s, B=NB,,, so thatay=a/ JN. Substituting this  This ordering at fields not met by our commensurability con-
into Eq. (8) gives ditions may occur due to the pinning being more dominant at

lower fields so that ordering can be imposed on the intersti-

N=m2+n2+nm. 9 tial vortices. For higher fields the vortex configuration for

fields where commensurability conditions are not met is dis-
This equality predicts that for a triangular array of pins, anordered or partially disordered. At higher fielBs>6B, the
ordered VL will form at valueN=1, 3, 4, 7, and 9, exactly yortex-vortex interactions dominate. Here a triangular vortex

as seen in our simulations in Figs(ag-2(i). Equation(9) |attice is always preferred, and so any alternate ordering im-
also pI'EdiCtS the hlgher MF,S\(::LZ, 13, 16, 19, 21, 25, and posed by the pinning does not occur.

28) that we have observed numerically. The honeycomb VL
seen in Fig. B) is not predicted by Eq9) because Eq9)
only predicts when triangular VL's occur. From Ed) we
find that the angle the VL makes with respect to the pinning In order to relate the MF configurations to vortex mobility
array is as well as to experimentally measurable bulk quantities we

VI. TOPOLOGICAL ORDER AND MAGNETIZATION
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oordination numterP,(H), for triangular(a)-(d), square(e)-(h), and

15 00 O

random(i)-(I), arrays of pins with the same pinning parameters as found in Figs. 1 and@, (g), and(k), P5(P-) is represented with a

dotted(solid) line. In (a) peaks inM(H) can be seen at the third,
shown in(b). For the square pinning, small peaks are seeM (i),

fourth, seventh, and ninth MF’s, which coincide with pedkg b
(e), at the second, fourth, fifth, and eighth MF's. The fourth and fifth

(smal) peaks merge near the fifth MF. The peak®ig (f), indicate that the VL is triangular at the fourth, sixth, and eighth MF's, while
peaks inP,, (h), indicate that the VL is square at the second and fifth MF's. Sometimes, the p&&fH is slightly shifted[e.g., to 2.5
instead of 2, or 4.5 instead of 4, {a)] or missing[e.g., atB=B, in (a)] because of thgradientin the field. These flux-gradient-driven

effects are stronger at low fields and weaker at higher fields.
commensurability throughout the sample.(§) Ps is the upper cur

The field-cooled cases studied in Figs. 1 and 2, however, can achieve
ve, while ifc) and (k) P5 and P follow each other. For the random

pinning array at low fields the maximum valli (H)| is 0.009%b,/)\?, about 1.5 times less than the triangular or square pinning arrays

(a),(b). ForH>0.4d,/\2, the magnetizatioM (H) falls off smoothl
higher fields.

present the magnetizatiotM(H) obtained from flux-
gradient-driven simulatiori$ of samples with the same pin-
ning parameters used in Fig. 2. In Fig. 3 we gRa(H), the
fraction of vortices with coordination numbd¢ obtained
from the Voronoi construction, ant(H), a useful and

y whilePg slowly increases as vortex-vortex interactions dominate at

this. Peaks in botiM (H) andP4(H) appeafFigs. 3a) and
3(b)] at the MF'sN=3, 4, 7, and 9 that produced triangular
VL's in the simulated annealing~ig. 2). From Fig. Za), the
vortex lattice would be expected to form a triangular lattice
with the pinning substrate at the first matching field, &hd

common measurement of the net critical current. For a perwould be expected to be equal to 1. In the flux-gradient-
fect triangular latticePg=1, and so any departure from this driven case shown in Figs(& and 3b), no peak inM(H)

indicates a defective lattice. A peak M(H) indicates en-
hanced pinning. In Fig.(@) we find thatM (H) is very large
for fields less than abouti, and falls off very rapidly after

or Pg at the first matching field is observed. This is due to
the fact that the largdlux gradientat low fields strongly
distorts the VL. This distortion makes it difficult to achieve



7942 C. REICHHARDT, C. J. OLSON, AND FRANCO NORI 57

commensurability throughout the entire sample. Infield-  3(j)—3(I) we plot P (H) for a sample with the same pinning
cooledsituation shown in Fig. @) there is no gradient in the parameters as in Figs(88 and 3e) except the pinning sites
vortex density to interfere with the vortex lattice ordering. are placed in a random array. It can clearly be seen that most
For the flux-gradient-driven case at higher fiel8s; 2B, of the peaks irP, andM(H) are washed away witM (H)
the gradient flattens so that the vortex lattice can becombaving a smooth falloff after the peak and the strong varia-
commensurate with the pinning substrate over a large are#ions inP, lost. The fraction ofPg gradually increases as the
We note that even for high matching fields a small flux gra-vortex-vortex interactions dominate at higher fields. At the
dient will always be present so thBt will be less than 1 as matching fields, the random array of pins has no peaks or
seen in Fig. &). For weaker pinningf,<0.3f,, the flux  enhancements iM(H) or P,. This suggests that the pres-
gradient is reduced at low fields so that a peakifH) and  ence of peaks in the periodic pinning arrays are due to the
Pg can be observed &/B ,= 1.12We find that this behavior commensurability effects with the pinning substrate.
is independent of system size. At the MRIs=5 andN=6 The maximum value of the absolute value BF(H),
the VL is highly defective withPg(H) dropping as low as |M(H)|, is 0.009%,/\? for the random pinning in Fig. 3,
0.5. No peak appears M (H) for the second MF. For sys- while it is 0.018P,/\? for the triangular array and square
tems in which we have studied up to the 28th MF we also searray. The latter value is about 1.5 times larger than that
some enhancements M(H) and P¢(H) at the MF's pre- found for the random pinning case. This enhancement of
dicted by Eq.(9), although the features are washed out atM (H) occurs only for a limited range of fields. T (H)
high fields. for the triangular pinning array falls to the same value as
In Fig. 3(e) we showM(H) for a square pinning array M(H) for the random pinning array atl~0.30Dy/\2,
with the same parameters used in Fig. 1. AgklfH) is  which is less than B,,. The M(H) for the square pinning
large for low fields and rapidly falls off after the second MF. array remains higher than tiid(H) of the random pinning
We can see a dip after the third MF and an overall enhancearray untilH~0.45b,/\2. This higher value oH at which
ment inM(H) at the second, fourth, fifth, and eighth MF's, the drop occurs for the square pinning array is due to the
although no clear enhancement is seen at the sixth and ningtrong commensurability at the second MF for the square
MF’s even though the VL's observed through simulated anpinning array, whereas for the triangular array the second
nealing at these fields also appear in this flux-gradient-driveMF is a less stable defective honeycomb lattice. For the tri-
simulation. To examine the evolution of the vortices withangular pinning array at the third MFM(3B,)
four nearest neighbors we consider a slightly modified~0.004b,/\?, while the random pinning gives
Voronoi algorithm in which the lengths of each side of aM(3B,)~0.0028b,/\% For fields higher than the fourth
Voronoi cell are compared. If the length of any side is lessMF, M(H) is of the same order for the three pinning array
than one-fourth of the average lengths of the other sides, theeometries studied here.
it is ignored.P,(H) first shows a peak at the second MF
when the vortices form the lattice shown in Figbll There
is no peak inP,4(H) at the first MF due to the large flux
gradient.Pg(H) shows a large peak at the fourth MF that Regarding finite-size effects, we would like to emphasize
corresponds to the triangular VL seen in Figd)l Pg(H) that we have conducted simulations in samples that vary in
then drops rapidly an®,(H) increases as the VL gains the size from 38 X36\ up to 72 X 72\, and we observe the
square ordering seen in Fig(el Pg(H) rises at the sixth same features in all our simulations regardless of the system
MF and peaks at the eighth. In square pinning arrays, whersize. We have also done simulations with different pinning
we have gone up to the 28th MF, small enhancements ddtrengths and observe the same peakisl {tH) and Pg(H).
M(H) are observed for most of the MF'’s that produced or-This reproducibility in the peaks in different simulations sug-
dered VL's. The results indicate that, without directly imag- gests that the peaks are not merely fluctuations but are robust
ing the VL, it could be experimentally possible to deduce theand reproducible results. To further address this issue we
existence of the ordered vortex arrays seen here, by lookingave included in Fig. 3 botM(H) andP,(H) for a system
for a specific sequence of peaksNh(H), at least up to the with the same pinning parameters as in the first two plots of
fifth matching field. Beyond the fifth matching field we ob- M(H) but with pinning placed randomly. In this plot no
serve only very small peaks M (H), which may make them peaks are visible itM(H) beyond the initial peak and nor
difficult to see experimentally. are any peaks visible iR (H). The same behavior for the
Our results are only valid for pins small enough tbaty  random array is observed for different-sized systems. If the
onevortex can be trapped in each pinning site. With trian-peaks inM(H) in systems with square and triangular pin-
gular pinning, peaks itM (H) should in principle occur for ning are due to finite-size effects such as commensurability
MF’s N that satisfy Eq(9). For square pinning arrays, we with the boundary conditions, then peaksNh(H) and Py
observe that peaks iM(H) occur for MF's given by for a system with the same size and boundary conditions but
N=n?+m?, when N<10, and byN=n?+m?—1, when with random pinning should appear as well.
N>10. This pattern of peaks differs from those already seen The absence of any peaksih(H) andP, for the system
experimentally using periodic pinning arrays with large pin-with random pinning strongly suggests that peaks in these
ning radii, as shown in Ref. 12. In experiments, peaks inguantities for the square and triangular pinning arrays are
M(H) are usually observed at every MF due naultiple  due to commensurability effects with the pinning lattice
vortices being trapped in pinning site& only. It is important to stress that in our simulations, our
To compare the effects of random pinning to square anéwnalytical results and experimentally observed vortex lattice
triangular arrays, in Fig. ® we plot M(H), and in Figs. (VL) configurations are all consistent with each other.

VIl. REMARKS ON FINITE-SIZE EFFECTS
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VIll. CONCLUSION niques and Bitter decoration techniques, and by looking for a
. . . . . specific sequence of peaks in magnetization measurements.
o e i pimaci 1 These phases shoul b sccessle o ther ysems i e
above the first MF. We have shown that this system behaver!Od!C pinning., mc[udmg charged coIIoujaI particles in pe-

. e y flodic array of optical trapsand magnetic bubble arrays in-
considerably differently from atoms on surfaces or, . .

. ) . . _ ,.. teracting with patterned substrates.

Josephson-junction arrays. A rich variety of distinct VL's
can be stabilized including several novel partially ordered
lattices. We have also derived commensurability conditions
for MF’s at which stable ordered VL's appear. For the trian- Computer services were provided by the Maui High Per-
gular pinning array these commensurability conditions are irformance Computing Center, sponsored in part by the Phil-
excellent agreement with our simulations, while for thelips Laboratory, Air Force Material Command, USAF, under
square array the commensurability conditions work for lowcooperative agreement No. F29601-93-2-0001. Computing
fields (up to the tenth matching fieldOur simulations are in  services were also provided by the University of Michigan
excellent agreement with recent imaging experimeatsd  Center for Parallel Computing, partially funded by NSF
are robust over a wide range of parameters and system sizé&srant No. CD-92-14296. C.O. acknowledges support from
Our predictions can be tested with Lorentz microscopy techthe NASA Graduate Student Researchers Program.
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