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We investigate coherent and squeezed quantum states of phonons. The latter allow the possibility of modu-
lating the quantum fluctuations of atomic displacements below the zero-point quantum noise level of coherent
states. The expectation values and quantum fluctuations of both the atomic displacement and the lattice
amplitude operators are calculated in these states—in some cases analytically. We also study the possibility of
squeezing quantum noise in the atomic displacement using a polariton-based approach.

I. INTRODUCTION

Classical phonon optics1 has succeeded in producing
many acoustic analogs ofclassical optics, such as phonon
mirrors, phonon lenses, phonon filters, and even ‘‘phonon
microscopes’’ that can generate acoustic pictures with a reso-
lution comparable to that of visible light microscopy. Most
phonon optics experiments use heat pulses or superconduct-
ing transducers to generateincoherent phonons, which
propagate ballistically in the crystal. These ballistic incoher-
ent phonons can then be manipulated by the above-
mentioned devices, just as in geometric optics.

Phonons can also be excitedphase coherently. For in-
stance, coherent acoustic waves with frequencies of up to
1010 Hz can be generated by piezoelectric oscillators. Lasers
have also been used to generate coherent acoustic and optical
phonons through stimulated Brillouin and Raman scattering
experiments. Furthermore, in recent years, it has been pos-
sible to track the phases of coherent optical phonons,2 due to
the availability of femtosecond-pulse ultrafast lasers~with a
pulse duration shorter than a phonon period!,3 and techniques
that can measure optical reflectivity with accuracy of one
part in 106.

In most situations involving phonons, aclassicaldescrip-
tion is adequate. However, at low enough temperatures,
quantumfluctuations become dominant. For example, a re-
cent study4 shows that quantum fluctuations in the atomic
positions can indeed influence observable quantities~e.g., the
Raman line shape! even when temperatures are not very low.
With these facts in mind, and prompted by the many exciting
developments inclassical phonon optics, coherent phonon
experiments, and~on the other hand! squeezed states of
light,5 we would like to explore phonon analogs ofquantum
optics. In particular, we study the dynamical and quantum
fluctuation properties of the atomic displacements, in anal-
ogy with the modulation of quantum noise in light. Specifi-
cally, we study single-mode and two-mode phonon coherent
and squeezed states, and then focus on a polariton-based ap-
proach to achieve smaller quantum noise than the zero-point
fluctuations of the atomic lattice.

The concepts of coherent and squeezed states were both
proposed in the context of quantum optics. A coherent state
is a phase-coherent sum of number states. In it, the quantum
fluctuations in any pair of conjugate variables are at the
lower limit of the Heisenberg uncertainty principle. In other

words, a coherent state is as ‘‘quiet’’ as the vacuum state.
Squeezed states5 are interesting because they can have
smaller quantum noise than the vacuum statein one of the
conjugate variables, thus having a promising future in differ-
ent applications ranging from gravitational wave detection to
optical communications. In addition, squeezed states form an
exciting group of states and can provide unique insight into
quantum mechanical fluctuations. Indeed, squeezed states are
now being explored in a variety of non-quantum-optics sys-
tems, includingclassicalsqueezed states.6

In Sec. II we introduce some quantities of interest and
study the fluctuation properties of the phonon vacuum and
number states. In Secs. III and IV we investigate phonon
coherent and squeezed states. In Sec. V we propose a way of
squeezing quantum noise in the atomic displacement opera-
tor using a polariton-based mechanism. The Appendix sum-
marizes the derivation of the time evolution of the relevant
operators in this polariton approach. Finally, Sec. VI presents
some concluding remarks.

II. PHONON OPERATORS AND THE PHONON VACUUM
AND NUMBER STATES

A phonon with quasimomentump5\q and branch sub-
script l has energyeql5\vql ; the corresponding creation
and annihilation operators satisfy the boson commutation re-
lations

@bq8l8,bql
† #5dqq8dll8, @bql ,bq8l8#50. ~1!

The atomic displacementsuia of a crystal lattice are given by

uia5
1

ANm (
ql

N

Uqa
l Qq

leiq•Ri. ~2!

Here Ri refers to the equilibrium lattice positions,a to a
particular direction, andQq

l is the normal-mode amplitude
operator

Qq
l5A \

2vql
~bql1b2ql

† !. ~3!

An experimentally observable quantity is the real part of the
Fourier transform of the atomic displacement:
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Re@ua~q!#5(
l
A \

8mvql
$Uqa

l ~bql1b2ql
† !

1Uqa
l* ~b2ql1bql

† !%. ~4!

For simplicity, hereafter we will drop the branch subscript
l, assume thatUqa is real, and define aq-mode dimension-
less lattice amplitude operator:

u~6q!5bq1b2q
† 1b2q1bq

† . ~5!

This operator contains essential information on the lattice
dynamics, including quantum fluctuations. It is the phonon
analog of the electric field in the photon case.

Let us first consider the phonon vacuum state. When no
phonon is excited, the crystal lattice is in the phonon vacuum
stateu0&. The expectation values of the atomic displacement
and the lattice amplitude are zero, but the fluctuations will be
finite:

^~Duia!2&vac[^~uia!2&vac2^uia& vac
2 ~6!

5(
q

N
\uUqau2

2Nmvqa
, ~7!

^@Du~6q!#2&vac52. ~8!

Let us now consider the phonon number states. The eigen-
states of the harmonic phonon Hamiltonian are number states
which satisfybqunq&5Anqunq21&. The phonon number and
the phase of atomic vibrations are conjugate variables. Thus,
due to the uncertainty principle, the phase is arbitrary when
the phonon number is certain, as is the case with any number
stateunq&. Thus, in a number state, the expectation values of
the atomic displacement^nquuiaunq& andq-mode lattice am-
plitude ^nquu(6q)unq& vanish due to the randomness in the
phase of the atomic displacements. The fluctuations in a
number stateunq& are

^~Duia!2&num5
\uUqau2nq
Nmvqa

1 (
q8Þq

N
\uUq8au2

2Nmvq8a
, ~9!

^@Du~6q!#2&num5212nq . ~10!

III. PHONON COHERENT STATES

A single-mode (q) phonon coherent state is an eigenstate
of a phonon annihilation operator:

bqubq&5bqubq&. ~11!

It can also be generated by applying a phonon displacement
operatorDq(bq) to the phonon vacuum state

ubq&5Dq~bq!u0&5exp~bqbq
†2bq* bq!u0& ~12!

5expS 2
ubqu2

2 D (
nq50

` bq
nq

Anq!
unq&. ~13!

Thus it can be seen that a phonon coherent state is a phase-
coherent superposition of number states. Moreover, coherent
states are a set of minimum-uncertainty states which are as

noiseless as the vacuum state. Coherent states are also the set
of quantum states that best describe the classical harmonic
oscillators.7

A single-mode phonon coherent state can be generated by
the Hamiltonian

H5\vqS bq†bq1 1

2D1lq* ~ t !bq1lq~ t !bq
† ~14!

and an appropriate initial state. Herelq(t) represents the
interaction strength between phonons and the external
source. More specifically, if the initial state is a vacuum
state,uc(0)&5u0&, then the state vector becomes a single-
mode coherent state thereafter,

uc~ t !&5uLq~ t !e
2 ivqt&, ~15!

where

Lq~ t !52
i

\E2`

t

lq~t!eivqtdt ~16!

is the coherent amplitude of modeq. If the initial state is a
single-mode coherent stateuc(0)&5uaq&, then the state vec-
tor at timet takes the form

uc~ t !&5u$Lq~ t !1aq%e
2 ivqt&, ~17!

which is still a coherent state.
In a single-mode (q) coherent stateuLq(t)e

2 ivqt&,
^uia(t)& coh and^u(6q)&coh are sinusoidal functions of time.
The fluctuation in the atomic displacements is

^~Duia!2&coh5(
q

N
\uUqau2

2Nmvqa
. ~18!

The unexcited modes are in the vacuum state and thus all
contribute to the noise in the form of zero-point fluctuations.
Furthermore,

^@Du~6q!#2&coh52. ~19!

From the expressions of the noisê(Duia)
2&coh and

^@Du(6q)#2&coh, it is impossible to know which state~if
any! has been excited, while this information is clearly
present in the expression of the expectation value of the lat-
tice amplitudê u(6q)&coh. These results can be straightfor-
wardly generalized to multimode coherent states.

IV. PHONON SQUEEZED STATES

In order to reduce quantum noise to a level below the
zero-point fluctuation level, we need to consider phonon
squeezed states. Quadrature squeezed states are generalized
coherent states.8 Here ‘‘quadrature’’ refers to the dimension-
less coordinate and momentum. Compared to coherent states,
squeezed ones can achieve smaller variances for one of the
quadratures during certain time intervals and are therefore
helpful for decreasing quantum noise. Figures 1 and 2 sche-
matically illustrate several types of phonon states, including
vacuum, number, coherent, and squeezed states. These fig-
ures are the phonon analogs of the illuminating schematic
diagrams used for photons.8

A single-mode quadrature phonon squeezed state is gen-
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erated from a vacuum state as

uaq ,j&5Dq~aq!Sq~j!u0&; ~20!

a two-mode quadrature phonon squeezed state is generated
as

uaq1
,aq2

,j&5Dq1
~aq1

!Dq2
~aq2

!Sq1 ,q2~j!u0&. ~21!

HereDq(aq) is the coherent state displacement operator with
aq5uaquei f,

Sq~j!5expS j*

2
bq
22

j

2
bq
†2D , ~22!

Sq1 ,q2~j!5exp~j* bq1bq22jbq1
† bq2

† ! ~23!

are the single- and two-mode squeezing operators, and
j5reiu is the complex squeezing factor withr>0 and
0<u,2p. The squeezing operatorSq1 ,q2(j) can be pro-
duced by the following Hamiltonian:

Hq1 ,q2
5\vq1

bq1
† bq11\vq2

bq2
† bq21z~ t !bq1

† bq2
†

1z* ~ t !bq1bq2. ~24!

The time-evolution operator has the form

U~ t !5expS 2
i

\
H0t Dexp@j* ~ t !bq1bq22j~ t !bq1

† bq2
† #,

~25!

where

H05\vq1
bq1
† bq11\vq2

bq2
† bq2 ~26!

and

j~ t !5
i

\E2`

t

z~t!ei ~vq1
1vq2

!tdt. ~27!

Herej(t) is the squeezing factor andz(t) is the strength of
the interaction between the phonon system and the external
source; this interaction allows the generation and absorption
of two phonons at a time. The two-mode phonon quadrature
operators have the form

FIG. 1. Schematic diagram of the uncertainty areas~shaded! in
the generalized coordinate and momentum„X(q,2q), P(q,2q)…
phase space of~a! the phonon vacuum state,~b! a phonon number
state,~c! a phonon coherent state, and~d! a phonon squeezed state.
HereX(q,2q… and P(q,2q… are the two-mode (6q) coordinate
and momentum operators, which are the direct generalizations of
their corresponding single-mode operators. Notice that the phonon
coherent state has the same uncertainty area as the vacuum state,
and that both areas are circular, while the squeezed state has an
elliptical uncertainty area. Therefore, in the direction parallel to the
u/2 line, the squeezed state has a smaller noise than both the
vacuum and coherent states.

FIG. 2. Schematic diagram of the time evolution of the expec-
tation value and the fluctuation of the lattice amplitude operator
u(6q) in different states. Dashed lines represent^u(6q)&, while
the solid lines represent the envelopes^u(6q)&6A^@Du(6q)#2&.
~a! The phonon vacuum stateu0&, where ^u(6q)&50 and
^@Du(6q)#2&52. ~b! A phonon number stateunq ,n2q‹, where
^u(6q)&50 and ^@Du(6q)#2&52(nq1n2q)12. ~c! A single-
mode phonon coherent stateuaq&, where ^u(6q)&52uaqucosvqt
~i.e., aq is real!, and^@Du(6q)#2&52. ~d! A single-mode phonon
squeezed stateuaqe

2 ivqt,j(t)&, with the squeezing factor
j(t)5re22ivqt and r51. Here, ^u(6q)&52uaqucosvqt, and
^@Du(6q)#2&52(e22rcos2vqt1e2rsin2vqt). ~e! A single-mode
phonon squeezed state, as in~d!; now the expectation value ofu is
^u(6q)&52uaqusinvqt ~i.e., aq is purely imaginary!, and the fluc-
tuation^@Du(6q)#2& has the same time dependence as in~d!. No-
tice that the squeezing effect now appears at the times when the
lattice amplitude^u(6q)& reaches its maxima, while in~d! the
squeezing effect is present at the times when^u(6q)& is close to
zero.

53 2421QUANTUM PHONON OPTICS: COHERENT AND SQUEEZED . . .



X~q,2q!5223/2~bq1bq
†1b2q1b2q

† ! ~28!

5223/2u~6q!, ~29!

P~q,2q!52 i223/2~bq2bq
†1b2q2b2q

† !. ~30!

We have considered two cases where squeezed states
were involved in modes6q. In the first case, the system is
in a two-mode (6q) squeezed stateuaq ,a2q ,j‹,
(j5reiu), and its fluctuation is

^@Du~6q!#2&52S e22r cos2
u

2
1e2r sin2

u

2D . ~31!

In the second case, the system is in a single-mode squeezed
stateuaq ,j& (aq5uaqueif) in the first mode and an arbitrary
coherent stateub2q‹ in the second mode. The fluctuation is
now

^@Du~6q!#2&511e2r sin2S f1
u

2D1e22r cos2S f1
u

2D .
~32!

In both of these cases,^@Du(6q)#2& can be smaller than in
coherent states~see Fig. 2!.

V. POLARITON APPROACH

Phonon squeezed states can be generated through phonon-
phonon interactions. This will be discussed elsewhere.9 Here
we focus on how to squeeze quantum noise in the atomic
displacements through phonon-photon interactions. When an
ionic crystal is illuminated by light, there can be a strong
coupling between photons and the local polarization of the
crystal in the form of phonons. Photons and phonons with
the same wave vector can thus form polaritons.10 Although
now phonons and photons are not separable in a polariton,
we can still study the quantum noise in the atomic displace-
ments. Let us consider the simplest Hamiltonian10 describing
the above scenario:

Hpolariton5(
k

$E1kak
†ak1E2kbk

†bk1E3k~ak
†bk2akbk

†

2akb2k1a2k
† bk

†!%, ~33!

where

E1k5\ck, ~34!

E2k5\v0A11x, ~35!

E3k5 i S \2ckv0x

4A11x
D 1/2. ~36!

Herek is the wave vector for both photons and phonons and
v0 is the bare phonon frequency.x is the dimensionless
dielectric susceptibility of the crystal~the strength of the
phonon-photon interaction! defined by

xv0
2«0E5P̈1v0

2P, ~37!

whereE is the electric field of the incoming light andP is the
polarization generated by optical phonons in the crystal. In

Hpolariton, the two free oscillator sums correspond to free
photons and free phonons, while the mixing terms come
from the interactionE•P between photons and phonons. The
phonon energyE2k has been corrected asv0 is substituted
by v0A11x, so that we have ‘‘dressed’’ phonons.

Our goal is to compute the fluctuations of the lattice am-
plitude operatoru(6k,t)5bk(t)1b2k

† (t)1b2k(t)1bk
†(t).

In a two-mode (6k) coherent stateuaq ,a2q&, its variance is
^@Du(6q)#2&coh52. Therefore, if at any given time we ob-
tain a value less than 2, the lattice amplitude of the relevant
mode is squeezed. In our calculation, we diagonalize the po-
lariton Hamiltonian and find the time dependence of
u(6q). The Appendix presents in more detail the derivation
of the time evolution ofu(6q).

Our results show that the fluctuation property ofu(6q)
sensitively depends on thet50 initial stateuc(0)& of both
phonons and photons. Our results are summarized in Table I,
and some numerical examples are shown in Fig. 3. These
calculations focus on the case whereck is close tov0 ~the
bare phonon frequency, which is typically;10 THz for op-
tical phonons! and thus our typical time is;0.1 ps. More
specifically, squeezing effects inu(6k) are relatively strong
for either one of the following two sets oft50 initial states:
~i! photon and phonon coherent states, or~ii ! single-mode
photon squeezed state and phonon vacuum state. For in-
stance, the maximum squeezing exponentr is 0.015 when
the incident photon state has a squeezing factor
j50.1e2ickt ~where ck is the photon frequency!. On the
other hand, with an initial two-mode photon (6k) squeezed
state and two-mode (6k) phonon vacuum state, the squeez-
ing effect inu(6k) is weak. We have also used initial con-
ditions with a single-mode photon squeezed state and ther-
mal states in the two phonon modes.

Figure 4 shows the temperature dependence of the
squeezing effect for several values of the dielectric suscepti-
bility x of the crystal. Our numerical results show that
squeezing effects are quickly overshadowed by the thermal
noise for smallx, while for large x ~e.g., x50.5) the
squeezing effect can exist up toT'250 K, as illustrated in
Fig. 4.

VI. CONCLUSIONS

In conclusion, we have investigated the dynamics and
quantum fluctuation properties of phonon coherent and

TABLE I. Different combinations oft50 initial states~modes
6k) for the polariton approach to lattice amplitude squeezing and
the corresponding effects in the fluctuations of the lattice amplitude
operatoru(6k). Here CS(k), VS(k), TS(k), SMST(k), and TMST
(6k) refer, respectively, to coherent, vacuum, thermal, single-
mode, and two-mode squeezed states in the mode inside the paren-
theses,k or6k. Ts(x) is the temperature below which squeezing is
obtained~see Fig. 4!. By squeezing we mean that the quantum noise
of the relevant variable is below its corresponding vacuum state
value.

t50 photons t50 phonons Squeezedu(6k)?

CS(6k) CS(6k) yes ~no! if x.(<) 0.1
SMST(k), VS(2k… VS(6k) yes ~no! if x.(<) 0.1
SMST(k), VS(2k… TS(6k) yes if T,Ts(x)
TMST(6k) VS(6k) weak ~no! if x.(<) 0.1
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squeezed states. In particular, we calculate the experimen-
tally observable time evolution and fluctuation of the lattice
amplitude operatoru(6q). We show that thêu(6q)& are
sinusoidal functions of time in both coherent and squeezed
states, but the fluctuation̂@Du(6q)#2& in a squeezed pho-
non state is periodically smaller than its vacuum or coherent
state value 2. Therefore phonon squeezed states are periodi-
cally quieter than the vacuum state. In the polariton approach
to squeezing, we calculate the atomic displacement part of a
polariton, and prove that the fluctuations of the associated
lattice amplitude operator can be squeezed for different com-
binations of initial photon and phonon states and large
enough (x.0.1) interaction strength.

It is difficult to generate squeezed states because they
have noise levels which are even lower than the one for the
vacuum state. Indeed, the experimental and theoretical devel-
opment of photon coherent and squeezed states took decades.
Likewise, the experimental realization of phonon squeezed
states might require years of further theoretical and experi-
mental work. Nevertheless, we believe that theoretical results
in quantum phonon optics can help the development of the
corresponding experiments. We hope that our effort9 into this
very rich problem will lead to more theoretical and experi-

mental developments in the still unexplored area of quantum
phonon optics and the manipulation of phonon quantum fluc-
tuations.
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APPENDIX: TIME EVOLUTION OF THE PHONON
OPERATORS IN A POLARITON

To derive the time evolution of the phonon operators, we
need to first diagonalize the polariton Hamiltonian
Hpolariton. For this purpose, we introduce the polariton opera-
torsa ik in terms of the phonon and photon operatorsbk and
ak :

a ik5wiak1xibk1yia2k
† 1zib2k

† , i51,2. ~A1!

If we write

a5~a1k ,a2k ,a1,2k
† ,a2,2k

† !T, ~A2!

a5~ak ,bk ,a2k
† ,b2k

† !T, ~A3!

the above relation can be written in a matrix form

FIG. 3. Calculated̂@Du(6k)#2& versus time for different com-
binations of photon and phonon initial states using a polariton
mechanism for lattice amplitude squeezing. Dashed~solid! lines
correspond to a susceptibilityx50.1(0.4). Time is measured in
units of 1/ck, whereck is the free photon frequency. These calcu-
lations focus on the case whereck is close tov0 ~the bare phonon
frequency, which is typically;10 THz for optical phonons! and
thus our typical time is;0.1 ps. The horizontal lines at
^@Du(6k)#2&52 correspond to the noise level of coherent states.
Thus, any time the fluctuation satisfies^@Du(6k)#2&,2 ~high-
lighted!, the state is squeezed. Different combinations of initial
states were considered.~a! Photon and phonon coherent states.~b!
Single-mode squeezed state in photon modek with squeezing factor
j50.1 and a vacuum state in the photon mode2k; both phonon
modes are in the vacuum state.~c! Same combination of states as in
~b!, but herej50.1e2i t .

FIG. 4. Temperature dependence of theminimum fluctuation
min$^@Du(6k)#2&% in u(6k) using a polariton mechanism for
squeezing. The phonon frequency is 10 THz. The initial states are a
single-mode squeezed state in photon modek, vacuum state in
photon mode2k, and thermal state in both (6k) phonon modes.
The squeezing factor isj50.1e2i t . Squeezing can exist up to a
temperatureTs(x). For example, whenx50.2, squeezing effects
vanish whenT*25 K. On the other hand, for stronger photon-
phonon interaction~e.g.,x50.5), the squeezing effects can be ob-
tained up toT'250 K.
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a5A•a, ~A4!

with its inversea5A21
•a. HereA is a matrix given by

A5S w1 x1 y1 z1

w2 x2 y2 z2

y1* z1* w1* x1*

y2* z2* w2* x2*
D . ~A5!

In the polariton representation, the Hamiltonian has the
diagonal form

Hpolariton8 5(
k

FEk
~1!S a1k

† a1k1
1

2D1Ek
~2!S a2k

† a2k1
1

2D G .
~A6!

The subindicesi51 ,2 specify the two polariton branches,
with different dispersion relationsEk

(1) andEk
(2). The trans-

formation matrix elementswi ,xi ,yi , andzi are determined
by requiring that thea ik’s satisfy boson commutation rela-
tions

@a ik ,a jk8
†

#5d i jdkk8, @a ik ,a jk8#50, ~A7!

so that

@a ik ,H#5Ek
~ i !a ik , ~A8!

which is true if the two different polariton branches are in-
dependent of each other.

In the polariton representation, the HamiltonianH polariton8
describes two independent harmonic oscillators. From the
Heisenberg equation

i\
dÔ

dt
5@Ô,H#, ~A9!

we obtain

a1k~ t !5a1k~0!e2 iEk
~1!t/\, ~A10a!

a2k~ t !5a2k~0!e2 iEk
~2!t/\, ~A10b!

or in a more compact form

a~ t !5Ua~ t !a~0!. ~A11!

Recall that the matrix form of the canonical transformation
from the photon and phonon operators (ak and bk) to the
polariton operators (ak) is a5A•a. Thus at timet the pho-
ton and phonon operators can be expressed as

a~ t !5A21a~ t !5A21Ua~ t !Aa~0!, ~A12!

which provides the time evolution of the photon and phonon
operators.
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