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We study quantum interference effects on the transition strength for strongly localized electrons hopping on
two-dimensional(2D) square and three-dimension@D) cubic lattices in the presence of a magnetic field.
These effects arise from the interference between phase factors associated with different electron paths con-
necting two distinct sites. For electrons confined on a square lattice, with and without disorder, we obtain
closed-formexpressions for the tunneling probability, which determines the conductivity, betweearkivo
trary sites by exactly summing the corresponding phase factowl dbrward-scattering paths connecting
them. By analytically summing paths which allow backward excursions in the forward-scattering direction, we
find that the interference patterns between the dominant winding paths are not drastically different from those
between the directed paths. Amalytic field-dependergxpression, valid irany dimensionfor the magneto-
conductancéMC) is derived. Apositive MC is clearly observed when turning on the magnetic field. In 2D,
when the strength d8 reaches a certain value, which is inversely proportional to twice the hopping length, the
MC is increased by a factor of 2 compared to that at zero field. The periodicity in the flux of the MC is found
to be equal to the superconducting flux quantucie. We also investigate transport on the much less-studied
and experimentally important 3D cubic lattice case, where it is shown how the interference patterns and the
small-field behavior of the MC vary according to the orientation of the appliedBekit very small fields, for
two sites diagonally separated a distanceve find that the MC behaves aB in quasi-1D systems,*B in
2D with B=(0,0,B), andrB (r*?B) in 3D with B parallel (perpendicularto the (1,1,1) direction. Further-
more, for a 3D sample, the effect on the low-flux MC due to the randomness of the angles between the hopping
direction and the orientation & is examined analytically.S0163-18206)04724-§

I. INTRODUCTION than the weak-localization case.
In the strongly localized regime, the major mechanism for
Electrons moving on a lattice immersed in a magnetictransport is thermally activated hopping between the local-
field have attracted much attention due to their relevance tired sites. In the VRH introduced by Mdft|ocalized elec-
many physical problems. In particular, quantum interferencerons, whose wave functions decay exponentially with a lo-
(QI) effects between different electron paths in disordere¢alization lengthg, hop a distance which is many times
electron systems have been a subject of intense study bgyger than. As a result of the balance between the prob-
cause they play an important role in quantum transport. Fogpilities for hopping and thermal activation, Mott derived

@nstance, the QI of cIose_d Iqops and their time—reverse_d patrl-ﬁat ind dimensions the hopping length changes with tem-
is central to weak-localization phenomenindeed, during perature ag(To/T)Y@* D), whereT, is a characteristic tem-

Fhe pa_lst decade and a half, many fascma_tlng phenomenasﬁarature. Therefore, the lower the temperature is, the further
including universal conductance fluctuations as well a

magnetic-field and spin-orbit scattering effects on thedWay the electron tunnels in order to find a localized site of

conductivity—observed in theveaklylocalized, metallic re- closer energy. N 11

gime have been understood in terms of the QI between dif- According to the “critical path analysis” arguments, the
ferent Feynman diffusive paths in backscattering lofgs, conductance of the sample is governed by one critical hop-
paths bringing an electron back to the starting poiRe-  Pind event. During this critical phonon-a55|§ted t'u'nnell.ng
cently, interest has grown in the effects of a magnetic field®rOCess, _the electrc_m traverses many other impurities since
on strongly localized electrorfs® with variable-range hop- the hopping length is very large at low temperatures. While
ping (VRH) where striking QI phenomena have been ob-e€ncountering these intermediate scatterers, the electron pre-
served in mesoscopic and macroscopic insulators or stronggerves its phase memory. This elastic multiple scattering is
disordered compounds: anomalous magnetoresistance, piiie origin of the QI effects associated with a single hopping
nounced conductance fluctuations, Aharonov-Bohm oscillaevent between the initiali and final ) sites. The overall
tions with periods ofhc/e and hc/2e, and the Hall effect. tunneling amplitudd;; between the siteisandf is therefore
This strongly localized reginfe® is less well understood the sum of the contributions from all possible paths connect-
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ing them?? In other words, the tunneling probability of one square lattice, instead of only diagonal sites ), (i) fo-
distant hop is determined by the interference of many eleceus on 2Dand 3D lattices, andiv) can be extended to also
tron paths betweenandf. This leads to Mott’s law for the include backwardexcursionge.g., side windingsin the di-
temperature dependence of the conductivity h rected paths.
dimensions® Exact results in this class of directed-paths problems are
valuable and can be useful when studying other systems, for
instance(1) directed polymers in a disordered substi@tee,

) To e.g., Refs. 12 and }3(2) interfaces in 20(see, for instance,
o(T)~[Tif|*exp — T Ref. 14, (3) light propagation in random medfa® and (4)

charged bosons in 15.

It is worthwhile to note that, in the limit of strong localiza- ~ T0 study the magnetic-field effects on the tunneling prob-
tion, the dominant contribution td;; comes from the short- ability of strongly localized electrons, we start from the
est paths betweeinandf (i.e., the “directed path mode);  tight-binding Hamiltonian
In other words, only interference betwefemward-scattering
paths needs to be taken into account. This is in contrast with H=W> clc;+V>, clciexpiA;) (1)
weak localization which results fronbackscatteringpro- T S e

cesses on closed paths. The focus of this paper is on the QI . . .
effects onT,, and relevant physical quantities due to the?where(u) refers to the nearest-neighbor sites and the phase

presence of an external magnetic field. We will use thedii =27[\A-dl is 2 times the line integral of the vector
model proposed in Ref. 3, which is used in most of the recen otential along the bond fromto j in units 01_‘ the ”O”T”a'
theoretical work in this area. In this model, the impurities are ux quantum hc/e. In the strongly localized regime,
arranged on a regular squdrbic) lattice in 2D(3D) and a VIW<1, the ele_ctron energy can b? set to Zef€onsider
nearest-neighbor tight-binding Anderson Hamiltonian is em{WO States localized at sitésand f which arer bonds apart.
ployed. By using a locator expansion, the transition amplitude

In this work we investigate the QI of strongly localized (Greéen’s function Ti; between these two states can be ex-

1
d+1

electrons by doingexact summations overall forward- ~ Pressed ds°

scattering paths between twabitrary sites. We derive com- - 12l

pact closed-formexpressions for various physical quantities T = 2 W( _) gr+2n )
(e.g., the transition strength which determines the conductiv- "% W '

ity) for electrons propagating on a square lattice subject to an h
external magnetic field, with and without random impurities.W ere

We also obtain an explicit formula for an experimentally

important case that has been much less studied theoretically S+ = > e'r, 3

so far: the interference between paths on a 3D cubic lattice. /ﬂgn(r{ettzi%*;}gg pathel

In the disordered case, by analytically computing the mo- )
ments for the tunneling probability and employing the rep-2nd®r is the sum over phases of the bonds on the pa
lica method, we derivanalytic results for the magnetocon- ' +2! steps connecting sitésandf. In generall’ contains
ductance (MC) in terms of sums-over-pathswhich are closed loops. In the strongly localized regimg.e.,
applicable inany dimensionOur explicit field-dependent ex- V/W<1), the dominant contribution to Tj; s
pressions for the MC provide a precise description of the MCV(V/W)'S"”, where
in terms of the magnetic flux. fpositiveMC, with a satura-
tion value slightly Iar_ger than tw?ce the MC at zero field, is sN= 2 e®r. %)
observed when turning on the fieRl In 2D, the saturated Al directed pathd”
value of the magnetic fielB, (i.e., the first field that makes of r steps on a latice
the MC become twice the value at zero field inversely  In other words, only the shortest-length pathsth no back-
proportional to twice the hopping length: the larger the sysward excursions connecting them are taken into account,
tem is, the smalleBg, will be. In other words, as soon as the namely, thedirected-path modedf Refs. 2—8. This directed-
system, with hopping distaneg is penetrated by a total flux path model provides an excellent approximatio fosince
of (r/8)(hc/e), the MC reaches the saturation value. The(V/W)? is quite small in the extremely localized regifé.
period of oscillation of the MC is found to be equal to Itisimportant to stress that thenductivity > betweeri and
hc/2e, which is the superconducting flux quantum. f is proportional to T;¢|2.

Furthermore, at very small fields, for two sites diagonally Quantum interference, contained Bi'*2), arises be-
separated a distance the MC scales as followsi) rB for  cause the phase factors of different paths connecting the ini-
quasi-1D ladder-type geometries witB=(0,0,B), (ii) tial and final sites interfere with each other. We will first
r¥2B in 2D with B=(0,0,B), (iii) rB in 3D with B parallel  focus on the computation &", which is the essential QI
to the (1,1,1) direction, an€v) r¥?B in 3D with B perpen-  quantity for electrons deep in the localized regime. In 2D, we
dicular to the (1,1,1) direction. also analytically comput&!"*2) which becomes important

The general expressions presented hgrecontain, as when electrons are not so strongly localized.
particular casesseveral QI results®derived during the past This paper is organized as follows. In Sec. I, we study QI
decade (often by using either numerical or approximate on a square lattice under a uniform potential, which is related
method$, (ii) include QI to arbitrary pointsrn,n) on a to the decay of gap states into the btlkere we derive an
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elegant, general, and very compact closed-form expressiofk,=m—-1,m-2, .. .,0) successively and usin§,,=1 for

for SI). Intriguing properties associated with the behavior ofany n, we obtain the following relation:

S on diagonal sites are discussed in detail. It will be shown m

later (in Sec. lll) that the effect of a magnetic field on the - 2 elkndl2gi(m—knndi2g (6)

MC is governed by the behavior &". As a step towards ™= nonm L

the understanding of interference between nondirected path

We_also go b_eyond the directed-path model by exactly COM(i e, on the liney=n—1). The physical meaning of E¢6)

puting analytic results f(_)s(r+2)- o _is clear: the siter,n) can be reached by moving one step
In Sec. I, we investigate the tunneling in a random im- ypward from sitesK, ,n— 1) with 0<k,<m, acquiring the

purity potential, which is relevant to the conductivity of, for phaseik, ¢/2; then traversingn—k,, steps from k,,n) to

example, lightly doped semiconductors and strongly disor{m n), each step with a phasein ¢/2. By applying Eq(6)

dered compounds.Closed-form results for the tunneling recursively (and utilizing S, o=1 for any m), S, for

probability, which determines the conductivity, are obtainedm n=1 can be written as

We then analytically compute the moments for the tunneling —imng/2

probability. From them, we derive analytic field-dependent Smn(¢)=e Lm,n(), @)

expressions, valid in any dimension, for the MC. The full where

behavior of the MC as a function of the magnetic flux—

Brere Smn is expressed as a sum of tBs one row below

m K, k
including the scaling in the low-field limit and the occur- _ 3 A Kot etk 4k
rence of saturation—is discussed in detail. The close rela- Lm’“(d’)_knzo kngzo ”'klzo el nate?
tionship between the QI quanti§" and the corresponding .
MC is illustrated. Comparison of our results with experimen- AL ik
tal observation and other theoretical work is also made. - ].1:[1 ka=o e ®)

In Sec. IV, we examine the QI on a 3D cubic lattice and )
provide a general formula f&®. We show how the inter- With Kn 3 =m. If we use the La”)dalﬂ gauge instead, the ex-
ference patterns and the small-field behavior of the MC vanpression for the sum-over-pat¥) will read Ly, ,; namely,
according to the orientation of the applied field. Furthermore>m.n €MPploys the symmetric gauge, whilg, , uses the Lan-

we investigate the effect on the low-flux MC due to the ran-dau gauge. Notice that each term in the summand corre-
domness the angles between the directions of the Critica§ponds to the overall phase factor associated with a directed
p

hops and the orientation of the applied field. ath. In the absence of the magnetic fluk£0),

In Sec. V, we conclude by addressing several relevant m K ko (m+n)!
issues and summarize our results. Snn(0)=> > o> 1= Cm“‘:TEN,
' Kn=0 kn_1=0 1=0 min!
Il. QUANTUM INTERFERENCE ) o ©)
ON A TWO-DIMENSIONAL SQUARE LATTICE which is just the total number of-step paths between
_ _ (0,0) and m,n).
A. Exact summation of forward-scattering paths: S After some calculations we obtain one of our main results,

Let (m,n) denote the site coordinates. Without loss of@ Very compact and elegant closed-form expression for

generality, we choose (0,0) to be the initial site and focus orrmn(¢):

m,n=0. For forward-scattering paths ofsteps, which ex- Frsn(d)
clude backward excursior{se., only moving upward and to Smn(P)= F(dFn(d)’
the right is alloweg ending sites if1,n) satisfy m+n=r. m n

Let Sy, (=S) be the sum over all directed pathsrafteps ~ Where

on which an electron can hop from the origin to the site m K
(m,n), each one weighted by its corresponding phase factor. Fr(d)= H sin= &. (11)
Employing the symmetric gauge k=1 2

(10

Notice that the symmetr$,, ,=S; , [apparent in Eq(10)]

A=E(—y,x), is due to the square lattice geometry. Moreover, we also
2 obtain
and denoting the flux through an elementary plaqueite, m+n
with an area corresponding to the square of the average dis- H (1—ek?)
tance, which is typically equal to or larger than the localiza- k=1
tion length ¢, between two impuritios by ¢/27, it is Lnn(#)=rm n (12
straightforward to construct the recursion relation: H (1—e'k?) {H (1—e'k?)
k=1 k=1
Sm,n:eiin(l)lzsm—l,n"_eimqslzsm,n—l- )

Previous work on QI in the VRH regime obtained particu-
This equation states that the site,fi) can be reached by lar cases, mostly numerical, of sums to diagonal points
taking therth step from neighboring sites to the left or be- S, ,;, while the general result E410) is valid for arbitrary

low. The factors in front of theS's, namely, exp{ing/2) (e.g., nondiagonalsites.

and expime /2), account for the presence of the magnetic To illustrate the quantum interference originating from
field. Enumerating the recursion relations fdﬁkn,n sums over phase factors associated with directed paths, we
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Thus we obtain the famili&harmonic shrinkage of the wave

(a) 1 function with explicit expressions for all the prefactors. This
001 result can be interpreted as follows. The effective “cigar-
’ I ) shape” area exposed to the field has an effective length
2003%+2003 # Lo
(1,3
2+2cdsd+2cps20 leif ~VMnN
22 3 (i.e., the square root of the area enclosed by the patigsan
2cos: +2°°SQ(£ effective widthwgg:
3.1
1 Weg ~VM+nN
(0,0) SR g .
’ “0) (i.e., the square root of the length of the pathBSor the
special casen=n=r/2,
(b)
22 r! 1, )
= - +
©,0) which is consistent with, and generalizes, the results in Ref.
4 since it gives the exact prefactor. Thus, the effective length
is ~r, while the effective width is- \r. Furthermore, for a
— ladder-type quasi-1D systerte.g.,m=r—1 andn=1), we
— + have
1 1 1 2 2
NS, 1.1(4) =Inr = 4 (r?= 1) $%. (15)
In this case, the effective length and width are betk.
+ + This result remains valid for small values of (narrow
stripes or multiladdeps The fourth-order contribution to
exp(io) exp(-id) INS,(¢) can also be computed exactly as
mn 10 (6m*+ 15m3n+20m?n2+ 15mn°+ 6n%)
_|_ + 103 68({
+114(m®+2m?n+2mr?+n?)
exp(2i¢) exp(-2i¢)

+29(2m?+3mn+2n?)+9 (m+n)+5 J¢*.

FIG. 1. (a) Starting from (0,0) on a square lattice, for forward-
scattering paths of four steps, electrons can end at five sites:
(4,0), (3.1), (2,2), (1,3), and (0,4). Their correspond8g, are Among theS's for an even number of steps, those located
also shown. The arrows specify the electron hopping directionglong the diagonal corners contain the richest interference
(only moving to the right and upward is allowed in the directed- effects since the number of paths ending @trq) and the

path model. Notice that the symmetr$,, ,=S, , holds.S,, has  areas they enclose are both the largest. We therefore examine
the strongest interference among them because the number of paififore closely the behavior of the quantities

ending at (2,2), and the area they enclose, are both the lathest.

Six different directed paths connecting (0,0) and (2,2) and their m+k

C. Quantum interference on diagonal sites

separate phase-factor contributions &,; the total equals m Sin——¢
1+1+e?+e '?+e?¢+e 2¢=2+2c0sp+2c0S2p. lom()=Smm(®)= 1 — (16)
' k=1 .
sinz
show the five possible ending sitam,f) for r=4 and their 7A4

correspondings, , in Fig. 1(a). In addition, the six different For irrational fluxé, it can be proved that 1<1,,<1 for

paths conngctmg (0.0) and (2,2) a'nd t.he|r separate phasdq]y m. A particular case(asymptotic behavigrof our very
factor contributions tc, , are shown in Fig. ®). compact general expression E@b) for |, is investigated

in detail by Fishman, Shapir, and Wang in Ref. 6. For
$=2ms/t (s andt are positive integers with £s<t and

s being prime tot), we obtain 6=0) for m<t

B. Low-flux limit

In the very-low-flux limit ¢<1, the logarithm ofS, ,,
calculated exactly to ordep?, is (—1)s"(2n)!
n!n!

Iom 17

|2(m+nt):

|nsm,n(¢)=|nN—imn(m+ n+1)¢2. (13

24 and
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[ '-"!lli‘u'ﬂ“ll"u"lmdlH'HHHH:'::LHI:'ﬂﬂl‘l'lm|'MH:’m'lh:ﬂh'u. I ':‘l'l'i':il:?ﬁl:dl'uIl”[Hl‘:Hfllﬁ :II\H:IINI}II: :II!I‘“::IHI::I““:i:IIIHHI‘::::}:: ] FIG. 2. Plot ofm versus¢/27 (denoted by

L 1 1 K (T i ; ; ;

15 - W ST A 0 :H:::HMI LI B ﬁ”l"i}'lIIHHIHf”H i short bars in order to visualize them beltdre-
\ it i —-n-

E S R S e 7 een 0 and 1, such thatpn(¢)=0; for
BE A L e m=1.2, .. . 20.Note that the smallest one Is al
e O AR 1 I I ”H: |”:r IH\: m\ I 1‘\ :m\ : }\‘HHHHH ways 1/2n and the number of zeros increases

i 0 ; ;

B S e rapidly whenm becomes larger. The properties

L I N - of 1, described in Eqs(19)—(22) are exhibited
5 - SR T R I R R I N R I ot ] in the figure. For instance, wheg/27=1/5,
L TR . | b S A ] lom=0 for m=3+5n and m=4+5n with
i ! ‘ | ! ' n=0 (namely,m=3,4,8,9,13,14,18,19. .).
1 | I | I 1 | L L 1 L
oo 0.2 0.4 0.6 0.8 1
¢/2m
| ( 1)Sm(Zn)i (18) | 10=40co%+ 38cosF+ 36cosH + 32cosB+ 28cosP
2nt - 1)2
(n!) +22c0s1H+18cos1P+ 14cos1B+10cos1P
Furthermore, for thosen satisfying +6c0s19+4c0s2B+ 2c052P+ 2€0S29,
t =
§$m$t—1 , (19) | 1,=58+110cos®d+ 110cos4 + 102cos@®+ 96cosd
+84cos1@+ 78cos1d+ 64cosl4+ 56cos1@
I2(m+ny=0. (20 + 440519+ 36C0S2@+ 260522 + 220524

In other words, the zeros ofi,,(¢) are given by
¢=2ms/t for

m+1 2m
<t<
n+1 t 2n+1’ @1
with
m—1
O=n=< T, (22)

and thes’s are prime to each allowetl From a physical

viewpoint, these flux values produce the complete cancella-

tion of all phase factorsi.e., fully destructive interferenge
and result in thevanishingof the tunneling probabilityand

+14cos2@+ 10cos2@+ 6 cos3@+ 4cos3D
+2c0S34+ 2c0Ss3@,

| 14=338co¥+ 332cosP+ 324cosP+ 310cosH
+292c0osP+272cos1B+ 250c0s13+ 224cos1P
+200c0s18+ 174cos19+ 150cos2B+ 126c0s28
+106c0s2%9+ 84cos2P+68cos29+ 52cos3B
+40c0s3¥+ 30c0s39+ 22c0s3 P+ 14cos39
+10cos4B+ 6cos4P+4cosdD+2cos4 @
+2c0s49.

conductivity). Indeed, we will see in Sec. lll that if we also Notice thatl ,,, depends only on the evéndd harmonics of
consider the effects of the on-site impurity scattering, thes@ whenm is even(odd). |,,(¢) obeys the following prop-

flux values lead to the largeste., saturatedvalue for the
positive MC.

In Fig. 2, we show the zeros fdr,,l4,lg, - .. 14 Ob-

tained by using Eqgs(21) and (22). Note that the smallest

value of ¢/27 satisfyingl,,(#)=0 is always 1/&n and the
number of zeros rapidly increases wharbecomes larger.

The |, can be expressed as sums of trigonometric CO1n other words. the period df,
) m

sines. For instance, the first few ones aséth 6= ¢/2)
l,=2co9,
l4=2+2cosX+2cosH,
lg=6Cco9+6Cc0sH+4cosH+2cos+2cosY,

lg=8+ 14cosP+ 14cosd+ 10cos@+ 10cosF + 6cosl@
+4cosldP+2coslé+2cosld,

erties: (i) 27 (47) periodicity in ¢ for even (odd m,
namely,

l4n(P+2m)=140(),

lgns2(p+4m)=14012().

corresponds téic/e when
m is even, and Bc/e whenm is odd. (i) With m even

lom(27— @) =lom( )

for O<¢<m. Also

m!
IZm(W):W-

(iii) With m odd
lom(2m* )= —lom( D)
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I ] . 0.2 0.4
ol {101 1 = | . |
I40
I i 0
—4x10* |- -
1 . . L o°h . I : 0 _2 L L . !
0 1 2 0 0.5 1 0.2 0.4
¢ L] ¢

FIG. 3. 1,,, for variousm as functions of the flux through each elementary plaguétte ¢/27 in their respective full period. Notice the
27 (4) periodicity in ¢ for even(odd m. In (a), we plotl,,l4, ... ,l15, I1g, @ndl,y. To show the behavior of the rapid small-magnitude
fluctuations around zero df,,(®) for 1/2m<=d<1/2 whenm is even and for 1/A<d<1/2—-1/2m whenm is odd: In(b), we plot
110 (top), I1g (Middle), andl 55 (bottom) for @ in their respective intervdll/2m,1/2]. In (c), we plotl, (top), | 5o (middle), andl 4, (bottom)
for @ in their respective intervdll/2m,1/2—1/2m]. Only some restricted ranges in the vertical axes are exhibited. From these figures, we
clearly see the general properties for the behavidr,gfdescribed in Sec. Il C.

for 0 ¢p<2m. ror symmetry with respect td=1/2 (i.e., p=m).

From the properties described above, we can draw a gen- For oddm, I, exhibits many small-magnitude fluctua-
eral picture of the behavior ofl,,. Let ®=¢/27. tions around zero for 1M@A<®d<1-1/2m. In addi-
Lom(®=0)=(2m)!/(m!)2, which is an enormous number tion, |,, always equals 0 atb=1/2 (i.e., p=m). I,y
for largem. As the magnetic field is turned oh,,, rapidly ~ then monotonically drops from 0 te-(2m)!/(m!)? for
drops to its first zero a=1/2m. |5, then shows distinct 1-1/2m<s®=<1. For 0<®<1,1,,, has inversion symmetry
behaviors depending am. with respect to® =1/2. Within the period &d=<2 (i.e.,

For evenm, |, exhibits many small-magnitude fluctua- 0<¢<4m), |, has mirror symmetry around=1 (i.e.,
tions around zero for 1A<d<1/2-1/2m. |,, then ¢=2). Recall that for anym, —1<l,,<1, for irrational
monotonically climbs from 0 to a large positive value, values of®.

Lom(m)=ml/[(m/2)!]?, for 1/2—1/2m<d<1/2. It is evi- In Fig. 3, we plotl, throughl,, 115, 15, I35, andl 4.
dent thatl, () is still very small compared td,,(0). These figures show very interesting interference patterns of
Within the period Gsd<1 (i.e., 0<¢$=<2m), I, has mir- |, and clearly reflect the general description given above. It
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is worthwhile to keep in mind that the properties embedded [-(m—p)g+(n—q)p]¢
in Sy, , described above play a central role in determining the Bp.gomn=€Xp i 2 Sm-p.n-q-
behavior of the MC obtained in Sec. Ill. (24)

D. Exact summation of the dominant winding paths:S("+? By substituting Eq(24) into Eq. (23), we derive

n |m(q 16

Up to now, we have focused on the computatiorS6? i p ¢
and presented a detailed investigation of their propertles Z p+1,n+2 e
= q=1
When the electrons are less strongly localized, the next
higher-order contribution toT;; [i.e., W(V/W)”ZS(”Z), _imng
which is the dominant ternncluding backward excursiois
becomes important. Therefore, quantum interference effects
between phase factors of paths with backward recursions im-1)q¢
(i.e., moving downward and to the left is also inclugleéed E T2 Shiig
to be taken into consideration. Notice that pathsSih™2, a=0
even though they include backscattering processes, do not m n
involve closed loops enclosing flue.g., elementary square + 2 2 S, {e"[ m-1)a-n(p-1)lél2g b+ 10—
plaquettes =1g=1
In this section we present the computation of the second- —i[m(g—1)—(n—1)p]/2
order contribution, namelg" *2), to the transition amplitude e iima el Sm-pin—q-+1}- (25)
Ti. Let P, (=S"?) denote the sums over paths of In the special cassn=n,
m+n+ 2 steps starting from (0,0) and ending at,(). We
assume that the electrons are confined on a square lattice m m(m—j)¢
with non-negativex andy coordinates. We can divide the Pmm= Z {T}Sj,m
contribution toP, , into five parts. N
(M*—mj+j)¢

Smn q+1

I(n l)p¢

m
2 pn+1

First, hopping directly to site,0), with 1<p=<m, elec- m
trons take one step back top{1,0), then hop E i{
m—p+1+n steps to (,n). Second, hopping directly to -
site (0g), with 1=<q=<n, electrons take one step back to m-1 5<j¢

o}

j,m+1

(0,g—1), then hopm+n—qg+1 steps to fn,n). Third, di- +2 C
rectly hopping to site §,n+1), with O<p=m, electrons =0
move one-step downward tg{n) gaining a phase factor m-1j-1 mkei
exp(—ip¢/2), then hopm—p steps to (,n). Fourth, di- _ M :

. . . +2 Smf],mfk co Sj,k+1
rectly hopping to site fh+1,9), with O<q=n, electrons j=1 k=0 2
move one-step downward tan(q) gaining a phase factor

co{

expiq¢ /2), then hopn—q steps to (,n). Fifth, directly +
hopping to p,q) with 1<p=<m and 1=qg=n, electrons take

one step back to eithep-1,q) or (p,q—1), accompanied . . ' :
by the phase factor exig/2) or expl-ips /2), then hop 'gie¢;32><)p||0|t expressions for the first fe®,, ,, are (with
m+n—p—q+1 steps to the ending siten(n). Therefore

Pmn can be written as P11=14co9+2cos3,

(26)

m " P, ,= 26+ 32cos¥+ 26cosH+ 4cos6)+ 2cos,
= 21 Bp71,0—>m,n+ Zl Bo,q71—>m,n
P a P33=130co9+ 124cosP+ 88cosH+ 52cosB+ 40cosP

m

+> Spns1e PHBL +8cosl¥+4cosly+2cosly,

P44=224+410cos®+ 396cos4 + 308cos@ + 282cosP
+ 2 Sne1q@ " Bngmn +1880s10+ 130c0s12+ 76c0s14+ 58c0S1®

+14cos1®+8cos2@+ 4cos2P+ 2cos24,
+E E Sp.q(€9%2By 14 .mn

=1g=1 o Pss=1446c09+ 1386cosP+ 1308cosP+ 1176cos?P
+e PRy i ) (23 +1032cos®+ 842cos1B+ 690cos18+ 542c0s18
whereB,, 4 .mn is the sum over phase factors of all directed +398cos1+264cos19+ 180cos28+ 108c0s28
paths (i.e., containihgm+n—p—q steps$ starting from +80C0S2%+ 24c0S2 D+ 14c0s29+ 8cos3 ¥

(p,q) and ending atrf,n). After some calculation we ob-
tain +4c0s33P+2co0s39,
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Ill. EFFECTS OF DISORDER
A. Average of the tunneling probability

To incorporate the effects of random impurities, we now
replace the on-site energy part in Eg) (first term inH) by
EieiCiTCi , Where thee;’s are now independent random vari-
ables. The Hamiltonian now takes the form

H= Z EiCiTCi +Vz CiTCjeXF(iAij).
[ (i)

We have studied two commonly used modéise; can take
two values:+W and —W with equal probability; andii)

€; is randomly chosen from a uniform distribution of width
W and zero mean. We found that both models yield the same
results for the MC.

We now start with the general case of the first model,
namely,e; can have two valuest W with probability x and
—W with probability v, where u+v=1. Due to disorder,
the transition amplitude becomes

VAl
Tit :W( V_V) ‘Jm,n )

mn= 2 Lre[r (_\g)

whereI" runs over all directed paths of steps connecting
sites (0,0) andr,n), andj over sites on each path. For all
directed paths ending at,n), electrons traverse=m-+n
sites[the initial site (0,0) is excludgddEach site visited now
contributes an additional multiplicative factor of eitherl
or — 1 to the phase factor. Therefore, for a given plaththe
probability for obtaining=e'®r is

with

ei (I)r

: (27)

(mtv)'=(u—v)
FIG. 4. Py (for m=1,2,...,6) asfunctions of the flux = 2 :
through each elementary plaqueties= ¢/27. .
It is then clear that

Pes=2518+ 4868c0s?+ 4808cos4 + 4514cos® (Imn(@)=(PL=P_)Syn(d)=(u—v)"Spn(d),
+4238cos®+ 3788cos10+ 3466c0s12 8
where(- - -) denotes averaging over all impurities.
By exploiting Eqgs.(7) and (8), we derive the following
general expressions valid fany u and v:

(B2 (#))=(1=P)Spn(2¢)+ P n(#), (29

+2938cos14+ 2554co0s16+2074c0s18
+1702c0s20+ 1298c0s22+ 1056c0s24

+ 736c0s2@+ 536c0528+ 3560530+ 244c0s32

+148c0s34+ 110c0s36+ 38cos38+ 24cos4@ where

N—1

+14cos4P+ 8cos4d+ 4cos4@+ 2cos4P. P P'i PN kzl Pﬁ’kP‘i(C{z‘—4 CE:12)
TheseP, s are plotted in Fig. 4. Note tha& ., ,, depends
only on the even(odd) harmonics ofé and has a period
2m (4m) for even(odd m. The expressions foPyy, are  Also, the disorder average of the tunneling probabi(its.,
obviously more complicated than the corresponding.  the transmission ratdJ|2=JJ* is
However, by comparing Figs. 3 and 4, we find that the gen-
eral features in the interference behaviors are surprisingly ([ Imn( D)D) =(1=PIN+PS, (). (31)
similar. We thus infer that the relevant physical quantities
are not significantly changed by the addition of interference The physical origin of Eq929) and(31) becomes clearer
between the dominant winding paths. by rewriting them as

=1-4P,.P_=(u—v)%. (30)
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<Jﬁ1,n(¢)>=Sm,n(2¢)+7’5m,n(¢)[5m,n(¢)—cm,n(¢)] in (|Im.nl?). The second terms in Eq&S2) and(33) account

(32)  for contributions from pairs of distinct paths. Note that
Smn(0)=N andC, ,(0)=1, when¢$=0. We then have in

and the absence of magnetic flux
J 2y=N+P[S? —N], 33
where (oD =N Ao 7] () (Fon(0)=(Pma(O)=N+PN(N-1). (34
mn Furthermore, in the special cage=v=1/2, sinceP=0 we
k then obtain
kﬂl co%d)
Conn( )= 77 , (Imn())=0,
' k k
(kﬂl C“i"’)(kﬂl Cosi‘f’) (32,0(6)=Smal20),
and we have used (|3mn()|?=N.

Sm,n(2¢) = Smn(d’)cmn(d))

The first terms in Eqs(32) and (33) account for contribu-
tions from pairs of identical paths:

B. Higher-order moments and general expressions
for the first few leading terms

For u=v=1/2 (the most studied case so fawe can

; (+e®r)(+el®r)= ; e r=g, (2¢) obtain analytical expressions for the mome(nlé?n(q’:)) and

in (J3, ), and

{|Imn(9)|?P) for any value ofp. Only a few of these will be
presented here. From now ai(¢) stands ford, ,(¢) and
S(¢) stands foIS,, ,(¢). The derivation of these moments is

AT SEORNT S _ given in Appendix A.
;(_e r)(+e'®r) ; 1=N
|
(I4(¢))=3S%(2¢) —2 S(49), (359
(3%(¢))=15S%(2¢)—30S(2¢)S(4¢) +16S(6¢), (35b)
(38(¢))=105S%(2¢) —4205%(2¢)S(4p) + 448S(2$)S(6 ) + 140S%(4$) —272S(8¢), (350

(3% ¢))=9455>(2¢) —6300S%(2¢)S(4 ) + 10 08CB*(2¢$)S(6 ¢)
+6300S(2¢) S (4¢p) —12 240(2 ) S(8¢p) —6720S(4 ) S(6 ) + 79365(10¢), (35d)

(34 ¢))=10395°%(2¢) —103 956*(2¢)S(4¢) + 221 763(2¢)S(6¢)

+207 908%(2¢)S?(4¢p) —403 92(5*(2¢)S(8¢) —443 52(B(2¢h)S(44)S(6 ) —46 2083(4 )
+523 776(2¢)S(10¢) + 269 28®(4¢)S(8¢) + 118 27B%(6¢) —353 795(12¢), (350

(I¥%(¢))=13513B"(2¢) —1 891 89%°(2¢)S(4¢) +5 045 04B*(2¢) S(6 ) + 6 306 30@3(2¢)S*(4 )

and

—12 252 248%(2¢)S(8¢) —20 180 16@%(2¢)S(4 ) S(6p) —4 204 20B(2¢)S3(4¢h)
+23 831 808%(2¢p) S(10¢) + 24 504 48&(2 ) S(44)S(8¢) +10 762 758(2) S?(6 )
+6 726 728(4¢)S(6¢4) —32 195 075(2 ) S(12¢4) —15 887 875(4 ) S(10¢)

—13 069 056(6¢)S(8¢) + 22 368 256(144), (35f)
(J3(H)]*)=2N(N-1)+S*(2¢), (369
(|3(¢)|®)=2N(3N?>—9N+8)+ 3 (3N—4)S?*(24¢), (36h)

(|3(¢)|B)y=8 N(3N3—18N2+4IN—34) + 8 (ON2—33N+32)S?(2¢) + 9 S*(2¢) —12S*(2¢)S(4 ) + 4 S*(4¢),

(360
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(|3()|*% =8 N(15N*—150N3+ 625N?— 125N + 992) + 40 (15N3—105N2+ 260N —216)S*(2¢) + 75 (3N—8)S*(2¢)
—20(15N—44)S%(2¢)S(4¢$)+20(5N—16)S*(4¢), (360
{|3($)|*?) =16 N(45N°—67IN*+ 442N3—15 529N?+ 28 700N —2212 +120(45N*—510N>+ 2295N2— 470N
+3552S%(2¢)+30(135N?—854N + 1440 S*(2 ¢+ 225S%(2¢p) —120(45N2—309N + 556)S?(2 ) S(4 )
—900S*(2¢p)S(4¢p) + 24 (75N> —555N + 1064 S?(4 ) + 900S*(2¢) S?(4 )
+480S%(2¢))S(6¢h) —960S(2¢h) S(4¢h) S(6¢p) + 256 SX(6.¢h), (360
(|3(¢)|** =16 N(315N5—661N°+ 62 47N*—334 4233+ 1 057 32N?—1854 160+ 1 398 016+ 56 (945N°—1575N*
+110 77N3—401 730N?+ 732 530N —518 464 S%(2¢) + 1470(45N3—495N?+ 192N — 2576 S*(2 )
+11 023N —4)S%(2¢)—840(10N3—123N>+ 509N — 7192 S?(2 ) S(4 ) —2940( 15N —64)S*(2$) S(4¢h)
+2940(15N—68)S?(2¢) S?(4¢h) +3360(7N—31)S3(2¢)S(6¢) + 56 (525N —6619\2
+28 78N —42 688 S*(4¢) —448 (109N —493)S(2¢)S(4¢)S(6 ) +1792(7TN—34)S%(6 ). (36f)

These moments satisfy the consistency check
(J%P(0))=(|3(0)|?") and odd moments vanish by symme- {|J(0)[*")= QOD(P 1)(p—2)(5p+1)[(2p—1)!H NP2,
try.

The moments provide an analytical view of the structure 4
of the QI in the tunneling process. Sing#?=JJ*, each 1
|J|2 represent\N forward paths to (,n), each one with its (|3(¢)|?P)= =5P(p—1)(p—2)(9p+ 5)(p!)NP~2,
correspondingreversed path back to the origin. Also, 42)
{|3(4)|?") averages over the contributions NP such pairs
of paths. In generak|J(¢)|?P) consist of terms involving The above general expressions for the moments are of value

NX(k=1, ... p). The above explicit expressions for the mo- since they enable us tmalytically obtain the dominant con-
ments will allow us to deduce general formulas for the firsttributions to the quantity we are interested in: the magneto-
few leading(i.e., dominant terms in the moments. conductance.
We first focus on the leading terms<KP), since they
provide the most significant contribution to the moments C. Analytical results for the magnetoconductance
whenN is large. Recall thaS(0)=N, therefore we need to . )
consider all terms involving?“(2#)NP~2< in (|J($)|%P). We now use the replica method:
We derive(see Appendix B for more detajls (3($)?) -1
(Inl3(¢)[?) = lim ————— (43
(13(0)[?P)=(2p—1)!! NP, (37) p—0 P

w | D oK to compute the log-averaged MC with respect to the zero-
<|J(¢)|Zp>=ple[ > (Zk)-CZK{S(ZQZs)} J (39) field log-averaged MGdenoted byl ,c), defined as

=, (2% | N
) . ) - o Luc=(In[3(¢)[?) = (In3(0)|?)
Furthermore, by considering all the second leading terms
(och*l), we obtain —lim <|J(¢)|2p>_<|3(0)|2p>

p—0 p

(44)

1
(13(0)[P) = 3 p(p—L[(2p—DMINP~L, (39  Taking into account only the first leading terms in the mo-
ments, shown in Eq$37) and (38), we derive thd_y,c as

pINP~ L[ & (2k+1)! K 2K
(13(¢)*P) =~ |ZO Fyz | (3p+2k=3)Chiy Lyo=In2— E%kk.i))zl[sﬁcﬁ) | 45
2k
2k02k+28<i|¢> S(iﬂ } g “where we have
“(2k—1)!
Also, when S(2p#)=0 with p=1 [e.g., at ¢=7/m, k=1 W:mz' (46)

Smm(2p¢)=0], the third leading terms{(NP~?) in the mo-
ments are Exploiting the following identity® for 0<x<1:
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2 (2k—1)! value, which is zero, a$/27=1/4m. At the same time, the
cosh’ 1 2 E"k'_x MC rapidly increases to thiargestvalue 2G(0).

The physical implication of this is clear: fully constructive
which reduces to Eq(46) for x=1, we thus obtain a very interference in the case without disorder leads to the smallest
concise exact expression for thgc as hopping conduction in the presence of disorder. While fully

destructive interference in the case without disorder yields
the largest hopping conduction in the presence of disorder.
B N N Moreover, whenm (the system size isnxm) is large,
_J cosh l|g(2¢)|_|n|3(2¢)| whenS(2¢)#0 G(¢)/G(0) remains in the close vicinity of 2 for
Me @l27w>1/4m in spite of the strong very-small-magnitude
In2 when3(2¢)=0 fluctuations ofl ,,(2¢)/N around zero.
The saturated value of the magnetic fi@lg,[i.e., the first
field that makes5(¢)=2G(0)] is inversely proportional to

o)\ 2 twice the hopping length: the larger the system is, the smaller
1+ 3\ /1_(¥) } (48) B¢, Will be. In other words, as soon as the system, with

=In
hopping distanca =2m, is penetrated by a total flux of
(1/2r)x (r/2)2=r/8 (in units of the flux quantunhc/e), the
The typical MC of a sample MC reaches the saturation valu&g).
Defining the relative MCAG(¢), as
G(¢)=exp(In[I(4)]?)) G(¢)—G(0)
e N

is then given by, normalized by the zero-field M&0), o
and utilizing Eq.(49), we showAG(¢) versusg for several

different hopping lengths in Fig. 5. The behavior of
S(2¢)]? AG(¢) described above can be clearly observed in these
=exp(Lyc)=1+ 1_[T} : (49 figures.
Now let us examine the behavior of the MC in the low-
flux limit. From Eqgs.(14) and (15), it follows then that, for
very small fields, in 2D

G(¢)
G(0)

Equation(49) is one of our main results. It provides a con-
cise closed-form expression for the MC, asexplicit func-
tion of the magnetic flux. From Ed49) it becomes evident \/§

that a magnetic field leads to an increase ingbsitiveMC: AG(¢)= r3/2¢ (50)
G(¢)/G(0) increases from 1 to a saturated valug¢sthce

S(2¢) decreases froN to 0] when the flux is turned on and 4nqd in ladder- -type quasi-1D structures

increased. G(¢)=2G(0) at the field ¢ that satisfies

S(2¢)=0. Furthermore, it is clear that the MC varipsri-

odically with the magnetic field and the periodicity in the AG(¢)=—3Tr¢. (51)

flux is equal to the superconducting flux quanttici2e.

It is important to point out that Eq¥48) and (49) are  In Fig. 6, we plotAG(¢) computed directly from Eq(49),
valid in any dimension as long as we use the correspondinfpr various small values of¢, versus r¥2¢, with
D-dimensional sung". r=2,4,...1000, in (@ and versus r¢, with

It is illuminating to draw attention to the close relation- r=2,3, ... 500, in (b), respectively, for 2D and quasi-1D
ship between the behaviors bf,(2¢) =S, m(2<;5) and the  systems. It is seen that, both(& and(b), all the data nicely

correspondingG(¢). When ¢=0, [1,,(0)/N]?=1, which  collapse into a straight line, which verifies the scaling of the
is thelargestvalue of[l2m(2¢)/N]2 as a function ofp, and  low-flux MC in Egs.(50) and (51).
the MC is equal to themallestvalue G(0). When the mag- If we consider the second leading terms in the moments,
netic field is increased from zerpl,,m(2¢4)/N]? quickly ap-  namely Eqs(39) and (40), the second-order contribution to
proaches(more rapidly asm becomes largérits smallest the Ly is

0 whenS(2¢)/IN==1
Lyc= “lek+1)r(2k—=3  k S(4¢)|[S(2¢)| %
" l 2 (2%NZ | 2k+1  k+1 N )( N ” whenS(2¢)/N# =1
0 whenA =0
B %| —Asl(;i\A) —S(ilqs) (1+2A)—A2(2+3A)” whenA #0, (52
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0 - 01 °~2¢/2 0.3 0.4 0.5 r=2,3,...500, for various small values &. All the data nicely
T

collapse into a straight line, which verifies the scaling behavior of
the small-fieldA G: (1/3/6)r¥?¢ in 2D and (y3/3)r ¢ for quasi-1D

FIG. 5. The relative magnetoconductank&(¢) versus¢/2 Is_ysterr;Is. Thi dlsta;]ce t;/e_tvve_en thesz 33“& _anclj) the solid reference
for hopping between (0,0) and/@,r/2) for several system sizes. ine reflects the prefactor'3/6 in (a) and y3/3 in (b).
From (a) to (d), the hopping length corresponds to 4, 10, 20, and

50, respectively. Insets showG(¢) for ¢ between 0 and the » I N
corresponding saturated fielfl/27=1/2r. It is observed that for 2 (ik)'ZXZk: L 17X
large systemsi.e., r large, AG(¢) rapidly approaches the satura- k=1 (2°k!) J1—x2
tion value 1 even a/27, which is less than 112
where
= (2k)! X2
2k x2= ,
& Xy T
S(2¢)\?
A=nf1- (<T¢>) |
= (2k)! o x?
Xr= .
and we have used &1 (k+1)(2%!)? (1-J1—-x?)2



53 ANALYTICAL RESULTS ON QUANTUM INTERFERENCE AND ... 15555

The principal features in the behavior of the MC are not IV. QUANTUM INTERFERENCE

significantly modified by the addition of the contribution AND THE SMALL-FIELD MAGNETOCONDUCTANCE

from Lyc in Eq. (52): while the magnitude oAG(¢) is ON A THREE-DIMENSIONAL CUBIC LATTICE

3Ir|]%hhi);éréc(:jreased forp# 0, the period of the MC remains A. Sums over forward-scattering paths

For a 2D system and in the low-flux limit, we derive from  LetSpn; (=S in 3D) be the sum over all phase factors
Eq. (52) for diagonal sitesr(/2,r/2): associated with directed paths wf+n+1(=r) steps along
which an electron may hop from0,0,0 to the site

AG(¢)=(\/§/24N)r3’2¢. (m,n,l). Again we assumen, n, andl=0. In other words,

electrons can now also hop in the positwelirection. The

Comparing this result with Eq50), we see that the depen- VEctor potential of a general magnetic fiel,(B, ,B,) can
dence of the small-field MC on the hopping length and theP€ written as
field is the same except for different prefactors. Summing up

P 1
both contributions, we have for sma#l A= E(ZBy—yBZ,xBZ—ZBX,yBX—xBy).
AG(¢)=\/—§ 1+ ——|r32¢ (53) Also, a/2m, b/2w, and c/2w represent the three fluxes
6 4N ' through the respective elementary plaquettes onythe

zx-, and xy-planes. To computs,, |, we start from the

In addition, whenS(2p¢) =0, we have from Eqs37)—  following recursion relation:
(42
1 7 1 Sm,n,lzpzo qZO Ap,q,lﬂm,n,lex%lT) Sp,q,l—li
LMC:|n2+6—N+W+O<m) (54) (55)

whereA; 41—.mn, iS the sum over all directed paths starting
from (p,q,l) and ending atrf,n,l). The physical meaning
of Eq. (55) is as follows. The siterfi,n,l) is reached by
taking one step fromg,q,l—1) to (p,q,l), acquiring the
phase i(qa—pb)/2, then traversing from [,q,l) to

This indicates that the magnitude of the positive MC is
gradually increase(k.g., the saturation value AfG is raised
above )} when contributions from higher-order ternise.,
terms o 1/NK with k=1) are included, though they are neg-

ligibly small. (m,n,l) on thez=I plane. After some calculation, we find
that
D. Discussion
Our results for the MC are in good agreement with ex- Apgl-mn
perimental measuremerf&_. For instance, a positive MC is [(m=p)(Ib—qgc)+(n—q)(pc—la)
observed in the VRH regime of both macroscopically large =exp i 5

In,0;_, samplet’ and compensaten-type CdSe&° More-
over, saturation in the MC as the field is increased is also X Si—pn—q(C), (56)
reported in Ref. 20. '

The results folAG(¢) presented in this work are consis- WhereS,,_, ,_4(c) is defined as shown in E¢10). By ap-
tent with theoretical studies based on an independenglying Eq. (56) | times, we obtain a general formula of
directed-path formalisfhand a random matrix theory of the Spn, for m,n,1=1 in terms of the fluxes, b, andc as
transition strength®.The advantages of our results include
(i) they provide explicit expressions for the first two domi- S b o= r
nant contributions to the MC, as a function of the magnetic mn,i(a,b,c)=exp —i
field; (ii) they provide straightforward determination of the
period of the oscillation of the MQjii ) they provide explicit
scaling behavior.e., the dependence on the hopping lengthVhere
and the orientation and strength of the fijetd the low-flux |
MC in quasi-1D, 2D, and 3D systems; afid) they allow us r b )= 1—[
to make quantitative comparison with experimental data. Fi- min,(,0,6)= =1
nally, it is important to emphasize that our analytic results
[Egs.(48), (49), and(52)] for the MC are equally applicable
to any dimensionsince the essential ingredient in our ex- +pj(jra—aclily -, ,qjﬂ—qj(C)H
pressions is the QI quantity"”, which takes into account
the dimensionality. X Lplyql(c), (58

In Appendix B, we outline the computational scheme us-
ing the second model of disorder, i.e; is randomly chosen with p;,.;=m, q;;=n, and thel; ,(c)’s are defined as in
from the interval[ —W/2,W/2]. The moments obtained in Eg. (12).
this case are the same as those presented in(B@sand It is clear that Spno=Smn(C): Smoi1=Sm(b), and
(38). Therefore, the result for the MC remains unchanged. Spp =S, ,(a). Also, the following symmetries hold:

nla+lmb+mnc)
2

Em,n,l(alb!c)l

Pj+1 Gj+1

> > expli[gja+(m—p)b

pj:O qJ:O



15 556

Sm,n,l(arbyc) :Sn,m,l(byauc) :Sm,l,n(auc-b) :Sl,m,n(b’cna)
:Sl,n,m(cab1a):Sn,l,m(Qa-b)- (59

When there is no magnetic flux,
(m+n+1)!

Smni(000= o

=N

gives the total number ofnf+n+1)-step paths connecting
(0,0,0) and (n,n,1).

We have obtained explicit expressions for masyy, |,
and here we explicitly present only the first feéfy sinceS
have long expressions for larger, n, andl.

a+b—c b+c—a ct+a—b
S111=2| cos 5 +cos 5 +cos 5 ,
a a a a
82’1'1:2 CO%"‘CO E_b +co E—C +Cco zib_g_c

+ ab
cog ;—b—c

Sp01=2+ 2> @ cosz+4coga—b)+2coga—c)

+2cogb—c)+2coga—2c)+2cogb—2c)
+2coga—b+c)+2coga+b—2c)

+2coga—b=+2c),

Sy2=6+ Y [4cosy+2cosa]+ >, 'Y [4coga—p)

+4cosda—B)+2coga—2B)+2co32a—B)]

+2> @ [coga+ B—y)+cosAa+ B—7)
+coja+B—2y)+codar2BF2y)].

Here =0  denote  sums  over a=a,b,c;
(aB)=(ab),(bc),(ca); and (@Bvy)=(abc),(bca),(cab);
fori=1, 2, and 3, respectively; and, for instance, the term
cos@/2tb¥*c) means cos{2+b—c)+cos@/2—b+c).

B. Low-flux limit

In the very-low-flux limit, and calculated exactly to
second-order in the flux, we obtain the logarithmf,, |,

YEONG-LIEH LIN AND FRANCO NORI
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InS —|ﬁr! 122b22r3b
NSmmm= n[(r/S)!] ~ 216 re(a+ +c)+§[(

—c)?+(c—a)’+(a—b)?]}. (61)

These results generalize to 3D the 2D results obtained in Sec.
Il B.

C. Interference patterns on diagonal sites

In order to see how the interference patterns vary
according to the orientation of the applied field, we fo-
cus onSy mm (i.e., S on the body diagonalsWe now exa-
mine two special case8 =B|/(1,1,1)=(¢,¢,¢)/2m and
B, =BL(1,1,1)=(¢/2,6/2,— ¢)/27w, namely fields parallel
and perpendicular to the (1,1,1) direction, respectively. Their
Smm,m’'S are denoted, respectively, ﬂﬁgm andZs,, and have
been computed to high orders. Here we only present the first
few:

Z*‘L, =6c09Y,
7}=36+42cosP+ 12cos4,
7),=864c09+528c0sP + 216c0sH+ 54cos W+ 18c0SY,

14‘12= 7308+ 12 504cos?+ 8082cos4+ 4032cos@
+1740cos®+672cos1@+ 216cos1B+ 72cosld
+24c0s1@;

and

T3 =4co9+2cos,

T =14+ 12co9+ 16cosP+ 12cosF + 12cosH+ 8cosH

+ 10cos@+ 4cos79+ 2cos8),

T =76+ 204c0o®9+ 176c0sd+ 180cosP+ 156c0s4)
+156c0s%+ 136c0os@+ 128cosH+ 102cosd
+84cos¥+ 68cos1@+ 64cos1lB+48coslP
+40c0s13+ 26cos14+ 20cos1P+ 10cos1ld
+4cosld+2cosly,

T;,= 1372+ 2464c09+ 2606c0SD+ 2420c0SP
+ 2502cos4+ 2288cosH + 2288cos@+ 2068cos P
+2046cos®+ 1788cosP+ 1758co0s1@

the 3D analog of the harmonic shrinkage of the wave func-

tion, as

1
InSm,nJ=In/\/—ﬂ[nla2+lmb2+mnc’-+ m(lb—nc)?

+n(mc—la)?+I(na—mb)?]. (60)

+1532cos18+ 1498cos12+ 1264cos18
+1174cos14+964cos1%+ 894cos1@+ 724cosld
+642c0s18+ 512co0s19+450c0s2@+ 340cos2®
+296c0s22+ 228c0s28+ 178cos24+ 128cos29
+94c0s2@+ 56c0s28+ 40c0s28+ 20c0s29

This generalizes the 2D harmonic-shrinkage of the wave

function obtained in Eq(13). Whenm=n=1=r/3, we have

+10c0s3@+4cos3¥V+2co0s32),
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where #= ¢/2. It can be seen théi‘gm andZs,, exhibit quite  similar situation occurs classicallfe.g., multiply-scattered
different behaviors as shown in Fig. 7 where we pl§t light in a random mediuf*9.

through 7}, and 75 throughZi,. Notice that the period in

¢ for 7, is 27 (4) for even(odd) m, while the period for D. Small-field magnetoconductance

T3, is 4 for anym. Therefore, the periodicity for the MC For a 3D system, the relative MGG(a,b,c), now reads
in 3D is identical to that in 2D.

We have also computéd‘Sm andZ3,, (m=1,2,...,300) Sm.ni(2a,2b,2c)
for ¢/2m=3/5 and (/5—1)/2 and find that their behaviors AG(a,b.c)=\1-|——%— -
are insensitive to the commensurability ®f unlike the case
on a square lattice. Physically, this can be understood beFhe above general expression is valid for any ending site as
cause two randomly chosen paths have a higher probabilitywell as arbitrary orientation and strength of the magnetic
of crossing(and thus interferingin 2D than in 3D; thus field. From Eq.(61), in the small-field limit and at ending
making QI effects less pronounced in 3D than in 2D. Asite (r/3,r/3,r/3), we have

2
(62)

AG= i\/rz(aZJr b2+ c2)+f[(b—c)2+(c—a)2+(a—b)2], (63)
3.3 3

which is applicable for any orientation of the field. Below we E. Average of the magnetoconductance over angles
focus on two special orientations of the fiell; andB .

In a macroscopic sample, the conductance may be deter-
For very small¢, we have from Eq(61)

mined bya few(instead of one, as considered bejaretical
hopping events. As a result of this, the observed MC of the

r! 1 .
INZ- =In 1+ 1)¢2 64) Whole sample should be the average of the MC associated
TR 144 (r+d)é (64 with these critical hops. Thus, in 3D systems it is also im-
and portant to take into account the randomness of the angles
between the hopping direction and the orientation of the ap-
[ 1 plied magnetic field?
T =Ny — =232 heoretically investi he effect of th
InZ} In[(r/3)']3 =l >, (65) To theoretically investigate the effect of the average over

angles on the MC, we consider all possible relative hopping
The 3D behavior of the low-flux MC thus becomes clear: fordirections with respect to that of the magnetic field, or
B, equivalently, the continuously-varying orientation of the
field with respect to a fixed hopping direction. We adopt the

\/5 latter below: the ending site of all hopping evefgth the
AG(qﬁ):?rwcﬁ, (66) same hopping length) is located at the diagonal point
(r/3,r/3,r/3) and the magnetic field can be adjusted between
and forB; the parallel and perpendicular directions with respect to the

vectord=(1,1,1). Our interest here is in the MC averaged

1 over angles, denoted h¥G, in the low-field limit. Recall
AG(¢)= §r¢. (67) that the magnetic field iB=(a,b,c)/2#, and from Eq(63),
we have

These results can be interpreted as follows: the effective area
A®" exposed tdB, is larger,

21
eff .32 AG=——rB\1+rsirfo, (68)
AL~ 3.3

5

similar to the 2D case wher&G(¢)x=r¥%¢; while the ef-

fective areaAﬁff exposed td) is smaller, whereB= \a?+ b%+ c?/2w is the magnitude of the field and
. w is the angle betweel andd. By averaging over the angle
A‘T ~T, ®, we obtain

thus closer to our quasi-1D ladder case WAt (p)ocr ¢b.

As a numerical test of Eq$66) and (67), in Fig. 8 we 4 2
showAG calculated directly from Eq(62), versusr®?¢ in AG(B)= —rBf J1+rsirfe do
(@ and versus ¢ in (b), respectively, for several values of 3\5 0

B, and B with hopping lengthr=3,6, ... 600. The col- 4 Jr
lapse of all the data into a straight line verifies the scaling of = — rJr+1BE Z,_) , (69)
the low-flux AG presented above. 33 2" Jr+1
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FIG. 7. Sums over forward-scattering paths between two
diagonally-separated sites on a 3D cubic lattiBgthroughZ\, for
for B=(¢/2,¢/2,— ¢), as func-
has the 2r (47) periodicity for

B=(¢,$,¢) andZ; through
tions of ¢/27r. Note that whil
even(odd m, T, always has a period#.

whereE(7/2,r/\r +1) is the complete elliptic integral of
the second kind. Whenis large,E(7/2,\/r/\f +1)=1 and

we therefore have

- 4
AG(B)=—=r¥®s.

D

e

3m

3V3

o [

¢1/21T

)
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FIG. 8. (a) AG versusr®2B for B, =B(1/2,1/2-1), and(b)
AG versusrB for Bj=B(1,1,1) for several values & and hop-
ping lengthr=3,6, ... 600. The collapse of all the data into a
straight line verifies the scaling of small-fieldG: (\2/6)r¥2¢ for
B, and (1/3)y ¢ for B|. The distance between these data and the
solid reference line reflects the prefactg®/6 in (a) and 1/3 in(b).

Equation(70) means that the dominant contribution to the
MC stems from the critical hop which gerpendicularto the
field. This is understandable through our earlier observation
that the effective area enclosed by the electron is largest
when B is perpendicular tal. From the above analysis, we
conclude that in 3D macroscopic samples the low-field MC
should in principle behave as’’B.

V. CONCLUDING REMARKS AND SUMMARY
OF RESULTS

In closing we briefly address four issues. First, although
relevant measurable quantities such|&g,|? and|Sy n.|?
are gauge-invariant, the transition amplitudes are gauge de-



53 ANALYTICAL RESULTS ON QUANTUM INTERFERENCE AND ... 15559

pendent. As an illustration, the transition amplitude will be APPENDIX A: DERIVATION OF THE MOMENTS
Lmn [EQ. (12] if we use the Landau gauge=(0,Bx) on a (I ()Y AND (|3 n(0)|?P)

square lattice. The notatid®, , (L, ,) refers the use of the
symmetric(Landay gauge. Similarly, the transition ampli-
tude will read £, ,, [Eq. (58)] if we use the gauge
A=(Byz,B,x,B,y) on a cubic lattice.

Second, returns to the origisee, e.g., Refs. 1 and 229524
become important for less strongly localized electrons, an
their QI effecté®?®can be incorporated in our approach.

Third, the main limitations of our study in the case with N N
impurities are the following: no inclusion of spin-orbit scat- J2= ( E %Si) ( E %Si)
tering effects(for this see, e.g., Refs. 7—9 and references =1 =1
therein, and no explicit inclusion of the correlations between
crossing paths, as discussed in Refs. 4 and 7. However, these
correlations are negligible when spin-orbit scattering is N N 1
present. |J|2:<2 7’@)(2 '}’i__),

Fourth, besides analytical closed-form results in 2D, this =1 =1 S
work present exact results for 3D systems, MG \where y,=+1 with probability P.. If the number of
=(2m/3\3)rB(1+r sifw)?[Eq. (68)]. These results can ., — 1" is k, the overall probability isPN " P and there
provide further tests of the quantum interference effects. Thi%recl’z‘ combinations among; (i=1, ... N). Fork=0 and
can be done by measuring the MC of bulk samplekich k=N, there is only one combination producing
are.small gnough thatfo?lly?i;ngel’e %rit_ical Epp Is aIIoWedh S(2¢,)+22i¢jsisj for J? and also only one combination
various orientations of the field. By doing this, one can the ; e 2 e N
determinethe values of and w (and, hence, also the direc- IE’EOd‘tﬁgr'g N;é'*,\'ls' /:S'Z ég;:rl_'lz‘]l .cc\)/::t])ei!r?at?;nks\ Nproléu]g;g
tion of this critical hop. Therefore, the small-field behaviors S(24)-25,,,55 and N+=CE—2 CE—]Z combinations

of the MC with fields parallel and perpendicular to the direc- .
tion of this critical hop can be measured and compared to Ol{r)roducmgS(Zda) +2%4;8S; . Also, when J=k<N-—1, for

predictions. This could potentially be very useful. J|? there areN_ combinations producind—2;;s; /s; and
In summary, we present an investigation of quantum inN+ combinations producindi+Z;,;s;/s;. In N_, the fac-

terference phenomena and the magnetic-field effects on tH8" 2 comes from two possible waysits—s; and

MC resulting from sums over directed paths on resistor net—SitSj- Ck—i comes from arrangingk(-1)’s minus signs

works in 2D and 3D. The principal results includ®) an  among the i—2) s’s left (I#i#]). Therefore, the overall

exact and explicit closed-form expression for the sum oveAverage s~ P=PY+PN+ SN, —N_)PYHPX

forward-scattering path§®" to any site on a square lattice, = (s~ »)?'. We thus have

which is the essential QI quantity in both uniform and disor-

dereq cases(2) an expligit formula forS™) for eleptrons (JZ)ZS(2¢)+P

hopping on a cubic lattice(3) the low-flux behaviors of

S in both 2D and 3D,(4) the exact summation of the

dominant winding paths in 20(5) compact, analytic results

for the positive MC as explicit functions of the magnetic flux

which are valid in any dimensiorn6) the small-field behav- s

iors of the MC in quasi-1D, 2D, and 3D, arid) an analytic (32)= N+PD —.

result for the small-field MC in 3D incorporating the ran- i Sj

domness in the relative angles between the hops and t o

applied field. They provide analytical and explicit closed—rEy exploiting

form results concerning the hopping transport of strongly

localized electrons subject to an external magnetic field in 22 sisj=82(¢)—8(2¢)

the macroscopic regime. We hope that our results stimulate 1]

further work (e.g., inclusion of spin-orbit effects on lattice gng

path integralson exact results in 2D and 3D systems.

In this appendix, we outline the derivation of the moments
shown in Eqs(32), (33), (35), and(36). First, let us derive
Egs. (32) and (33). Let s;=exp(®;), where®; is the sum
over all phases along pattandi=1,2, ... N. Note that for

very path, the probability for obtaining the overall phase
actor £s; is P, . Now

22 SiSj>,
i

where we have used the relatio} ,CNPY *Pk
=(P,.+P_)N=1. Similarly,

n

=S4(4)—N,

i
i

n
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either+1 or — 1 with equal probability. Among the 2im- N N p
purity configurations, there asways2'/2N producing a set (J%P) = ZNE {(E yisi) (E yisi)

of y;s; for everypossible set ofy;s; . For instanceT=3 and - =1

N=2 in the simplest cas8; ;. Among 2=8 impurity con-
figurations, two of them give +s;+s,, +S;—5,
—s;+5S,, and—s;s,. We thus have

and similarly,
|

18]

(131%)=> 2

The summation i y;} is over all possible configuration sets @f. In other words, the average &f over disorder(i.e.,
(A)) means to sum over all possibje= =1 for the desired quantitp, and then divide the sum by"2 We thus obtain

<J4> S(4¢)+ 2|)22 s| J!

6!
<J6>:S(6¢)+WIZ¢J S|4$]2 (2|)

8!
<‘]8>:S(8¢) 6! 2[2 S |)2; Si4 4|(2|)2 E S4 2 2 (2| 4 2 SZSZSESIZ’

i#j#k J#k
<J1°>=S(10¢)+ 2 s’s; +—E s’s > sPstst+ > sisisi+ 1o > stsPsls?
8! 2177 6! 4177 Tl 2')2|¢ *k 4')2 20 fTxx 4'(2')3|¢J¢k¢| Kl
10!
+— S{STSES S
(2!)5i¢j¢%ﬂ¢m k=l
and
S
(IH=NE2N-1)+>, = 2 (|3]8)=N(6N?—9N+4) + 3(3N—4)2 et
1#] j 1#] J'

4 2.2 2.2
S S S S, S
(]3|B)=N(24N3—72N2+82N—33) + 4(18N2— 57N+49)2—2 2—4 2 (2'2 2K+ >,
i#] Sj %] § #]#k | SjSy Si i#]#k#l S
2 S4
(|3]*% =N(120N*—600N3+ 1250N2— 122N + 456) + 20(30N>— 165N+ 325N — 224; —'2 +5(5N—8) 23
l ]

4 2.2 2.2

S ShiS 525

+ 10(15N—-32) >, ( o+ X 4 3003N-8) > 5.

i#j#k | SjS Si i#]#k#l S5

Noticing that=] ;s"=3N | 1/s"=S(m¢), it can be derived that

1 1
; s’sf=5[%(2)— S(49)], 2 s's=S(2¢)S(4¢) - S(64), ; s'sj=5[S*(49)—S(84)],
; 'S’ =S(2¢)S(6) —S(84), ; S's’=S(2¢)S(8¢) — S(104), 2 sPst=5(44)S(6¢)—S(104),

s7s’s =—S3(2¢)——S(2¢)S(4¢>)+ 35(6¢),

i£]#k

H

- s
=N
~N

(2</>)S(4¢)—S(2¢)S(6¢)——32(4¢)+S(8¢>)

n
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1
2,8 ssi=y 55(26)S(64) ~ S(2¢)S(8¢) —5 S(4¢)S(6) +S(106),
i;ﬁksﬁs:‘ Se= <2¢)82(4¢>——S<2¢>S<8¢> S(44)S(6¢)+S(10¢),
D sisistsi= s4(z¢>—fsz(z¢)3(4¢)+35(2¢>5(6¢)+152(4¢>—35(8¢>
i+ FkI kI 24 4 3 8 4 ’

sisisisi = s3<2¢>8<4¢>—%sz<2¢>5<6¢>—%S<2¢>sz<4¢>,

i %] Z kI

5
+5(2¢)S(8¢)+ £S(4¢)S(6¢) — S(104),

SsPsPses{sp= 12055(2¢)— S(2¢4)S(4¢) + = Sz(2¢)8(6¢)+ S(2¢)82(4¢)——S(2¢)S(8¢)

i#]£KEl£m
1 1
—53(4¢)S(6¢)+§S(10¢),
s? s
2 2=524)-N, = =S%4¢)-N,
i#] S i#] S
st ss

= 152(2911)5(4<f>)_52(2@_}52(447)"‘
|¢]¢kSS H&]#k S|4 2 2

2.2
sis; 1 ) 1, 1., 1
v —84(2¢)—(N—2)S (2¢)—5S(2¢)S(4¢) + 7 S(4¢) + FN(N=3).
i#]#k#| SkS| 2 4 2
|
By utilizing the above relations, we have obtained the results N 2p 2p N
for the moments presented in E¢35.1)—(35.4 and(36.1)— |3(0)|?P= ( > m) = H ( > ﬂ.k)
=1 k= Ik_

(36.4.
It is found that the leading term i013(0)|2P) comes from all
APPENDIX B: A DIFFERENT MODEL OF DISORDER terms having the fornil’_, 7 and there areC} distinct

terms of this type, each term having a coefficienp)22P.

In this appendix, we study another model of diagonal dis-
Therefore, we obtain for the leading term

order:¢; uniformly distributed between W/2 andwW/2. Our
focus is on the analytical computation of the leading terms

(terms=NP) in the momentg|J(0)|??) and{|J(¢)|?"). In- (J3(0)|2Py =" (2p)t N —(2p 1)1 NP,
deed, the scheme presented below applies equally to our first 2P
model of disorder, where; can take two values+ W and
—W, with equal probability. For ¢+ 0, we have now
Let us write N 0/ N o N
1
N |J(¢)|2p:(i21 ﬂisi) (IEl ﬂig) :kll [(21 Wiksik>
=2 nisi, ' ‘
i=1 N
where for each path ( 2 ';S—>
’7 |
=1

r
=11 ( _V_V) The contributions to the leading terms involve different fac-
j=1

€j tors, as shown below. There e@%‘ terms like

It is reasonable to choosg from a Gaussian distribution of P P
zero mean and unit standard deviation. We therefore have (H 7]_5_> ( H n 1)
(7?™=1 and(5*"*1)=0. For =0, we have Es TR 's
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and they contribute

p

(p!>2%=p!N".

2 terms like

I

There areC}~

p—1

771r_2_1_[ 7i
l’|_2

p—1
2.2
(Wlsliﬂz 7iSi

and they contribute
NP~2 S?(2¢) 21CH

p!\?2
?> o=z a e

Similarly, there areCN 4 terms like

sl 77)(

and they contribute

)

;)

PT2S%(24).

)

P-4s4(24).

1 1 P2

771'_2_772r_2_1_[ 7
82,|—3

NP~4 s'(2¢)  4lC]
(p—4)! (2)°

_p|(22 2|)2N
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In general, there ar@N Sk K terms of the following type:

Iz

each one with a coefficienp{/2¥)2. The contribution to the
moment is therefore
p| 2 Np72k SZk(2¢)
=npl
(27) (P20 (k)7 P (2

Notice that we have utilized the fact that

k g2
o
i=13ﬁ

always contain$s?(2¢)/(k!)2. Totally, we thus obtain for
the leading terms
rk]

(H st Fi_[k 7S

2k)!1C5,
( k)kl)z NP~ 2k32k(2¢)

All different j; andl; (

S(2¢)
N

(2k)1CB, {

<|‘](¢)|2p> p|Np[ 20 ( kk!)Z
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