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We study quantum interference effects on the transition strength for strongly localized electrons hopping on
two-dimensional~2D! square and three-dimensional~3D! cubic lattices in the presence of a magnetic field.
These effects arise from the interference between phase factors associated with different electron paths con-
necting two distinct sites. For electrons confined on a square lattice, with and without disorder, we obtain
closed-formexpressions for the tunneling probability, which determines the conductivity, between twoarbi-
trary sites by exactly summing the corresponding phase factors ofall forward-scattering paths connecting
them. By analytically summing paths which allow backward excursions in the forward-scattering direction, we
find that the interference patterns between the dominant winding paths are not drastically different from those
between the directed paths. Ananalytic field-dependentexpression, valid inany dimension, for the magneto-
conductance~MC! is derived. ApositiveMC is clearly observed when turning on the magnetic field. In 2D,
when the strength ofB reaches a certain value, which is inversely proportional to twice the hopping length, the
MC is increased by a factor of 2 compared to that at zero field. The periodicity in the flux of the MC is found
to be equal to the superconducting flux quantumhc/2e. We also investigate transport on the much less-studied
and experimentally important 3D cubic lattice case, where it is shown how the interference patterns and the
small-field behavior of the MC vary according to the orientation of the applied fieldB. At very small fields, for
two sites diagonally separated a distancer , we find that the MC behaves asrB in quasi-1D systems,r 3/2B in
2D with B5(0,0,B), and rB (r 3/2B) in 3D with B parallel ~perpendicular! to the (1,1,1) direction. Further-
more, for a 3D sample, the effect on the low-flux MC due to the randomness of the angles between the hopping
direction and the orientation ofB is examined analytically.@S0163-1829~96!04724-8#

I. INTRODUCTION

Electrons moving on a lattice immersed in a magnetic
field have attracted much attention due to their relevance to
many physical problems. In particular, quantum interference
~QI! effects between different electron paths in disordered
electron systems have been a subject of intense study be-
cause they play an important role in quantum transport. For
instance, the QI of closed loops and their time-reversed paths
is central to weak-localization phenomena.1 Indeed, during
the past decade and a half, many fascinating phenomena—
including universal conductance fluctuations as well as
magnetic-field and spin-orbit scattering effects on the
conductivity—observed in theweaklylocalized, metallic re-
gime have been understood in terms of the QI between dif-
ferent Feynman diffusive paths in backscattering loops~i.e.,
paths bringing an electron back to the starting point!. Re-
cently, interest has grown in the effects of a magnetic field
on strongly localized electrons2–9 with variable-range hop-
ping ~VRH! where striking QI phenomena have been ob-
served in mesoscopic and macroscopic insulators or strongly
disordered compounds: anomalous magnetoresistance, pro-
nounced conductance fluctuations, Aharonov-Bohm oscilla-
tions with periods ofhc/e and hc/2e, and the Hall effect.
This strongly localized regime2–9 is less well understood

than the weak-localization case.
In the strongly localized regime, the major mechanism for

transport is thermally activated hopping between the local-
ized sites. In the VRH introduced by Mott,10 localized elec-
trons, whose wave functions decay exponentially with a lo-
calization lengthj, hop a distance which is many times
larger thanj. As a result of the balance between the prob-
abilities for hopping and thermal activation, Mott derived
that in d dimensions the hopping length changes with tem-
perature asj(T0 /T)

1/(d11), whereT0 is a characteristic tem-
perature. Therefore, the lower the temperature is, the further
away the electron tunnels in order to find a localized site of
closer energy.

According to the ‘‘critical path analysis’’11 arguments, the
conductance of the sample is governed by one critical hop-
ping event. During this critical phonon-assisted tunneling
process, the electron traverses many other impurities since
the hopping length is very large at low temperatures. While
encountering these intermediate scatterers, the electron pre-
serves its phase memory. This elastic multiple scattering is
the origin of the QI effects associated with a single hopping
event between the initial (i ) and final (f ) sites. The overall
tunneling amplitudeTi f between the sitesi and f is therefore
the sum of the contributions from all possible paths connect-

PHYSICAL REVIEW B 15 JUNE 1996-IVOLUME 53, NUMBER 23

530163-1829/96/53~23!/15543~20!/$10.00 15 543 © 1996 The American Physical Society



ing them.2,3 In other words, the tunneling probability of one
distant hop is determined by the interference of many elec-
tron paths betweeni and f . This leads to Mott’s law for the
temperature dependence of the conductivity ind
dimensions:10

s~T!;uTi f u2expF2S T0
T
D

1
d11G .

It is worthwhile to note that, in the limit of strong localiza-
tion, the dominant contribution toTi f comes from the short-
est paths betweeni and f ~i.e., the ‘‘directed path model’’!.
In other words, only interference betweenforward-scattering
paths needs to be taken into account. This is in contrast with
weak localization which results frombackscatteringpro-
cesses on closed paths. The focus of this paper is on the QI
effects onTi f and relevant physical quantities due to the
presence of an external magnetic field. We will use the
model proposed in Ref. 3, which is used in most of the recent
theoretical work in this area. In this model, the impurities are
arranged on a regular square~cubic! lattice in 2D~3D! and a
nearest-neighbor tight-binding Anderson Hamiltonian is em-
ployed.

In this work we investigate the QI of strongly localized
electrons by doingexact summations overall forward-
scattering paths between twoarbitrary sites. We derive com-
pactclosed-formexpressions for various physical quantities
~e.g., the transition strength which determines the conductiv-
ity! for electrons propagating on a square lattice subject to an
external magnetic field, with and without random impurities.
We also obtain an explicit formula for an experimentally
important case that has been much less studied theoretically
so far: the interference between paths on a 3D cubic lattice.

In the disordered case, by analytically computing the mo-
ments for the tunneling probability and employing the rep-
lica method, we deriveanalytic results for the magnetocon-
ductance ~MC! in terms of sums-over-paths, which are
applicable inany dimension. Our explicit field-dependent ex-
pressions for the MC provide a precise description of the MC
in terms of the magnetic flux. ApositiveMC, with a satura-
tion value slightly larger than twice the MC at zero field, is
observed when turning on the fieldB. In 2D, the saturated
value of the magnetic fieldBsa ~i.e., the first field that makes
the MC become twice the value at zero field! is inversely
proportional to twice the hopping length: the larger the sys-
tem is, the smallerBsawill be. In other words, as soon as the
system, with hopping distancer , is penetrated by a total flux
of (r /8)(hc/e), the MC reaches the saturation value. The
period of oscillation of the MC is found to be equal to
hc/2e, which is the superconducting flux quantum.

Furthermore, at very small fields, for two sites diagonally
separated a distancer , the MC scales as follows:~i! rB for
quasi-1D ladder-type geometries withB5(0,0,B), ~ii !
r 3/2B in 2D with B5(0,0,B), ~iii ! rB in 3D with B parallel
to the (1,1,1) direction, and~iv! r 3/2B in 3D with B perpen-
dicular to the (1,1,1) direction.

The general expressions presented here~i! contain, as
particular cases, several QI results2–8derived during the past
decade~often by using either numerical or approximate
methods!, ~ii ! include QI to arbitrary points (m,n) on a

square lattice, instead of only diagonal sites (m,m), ~iii ! fo-
cus on 2Dand3D lattices, and~iv! can be extended to also
includebackwardexcursions~e.g., side windings! in the di-
rected paths.

Exact results in this class of directed-paths problems are
valuable and can be useful when studying other systems, for
instance,~1! directed polymers in a disordered substrate~see,
e.g., Refs. 12 and 13!, ~2! interfaces in 2D~see, for instance,
Ref. 14!, ~3! light propagation in random media,15,16 and~4!
charged bosons in 1D.17

To study the magnetic-field effects on the tunneling prob-
ability of strongly localized electrons, we start from the
tight-binding Hamiltonian

H5W(
i
ci
†ci1V(̂

i j &
ci
†cjexp~ iAi j !, ~1!

where^ i j & refers to the nearest-neighbor sites and the phase
Ai j52p* i

jA•dl is 2p times the line integral of the vector
potential along the bond fromi to j in units of the normal
flux quantum hc/e. In the strongly localized regime,
V/W!1, the electron energy can be set to zero.4,6 Consider
two states localized at sitesi and f which arer bonds apart.
By using a locator expansion, the transition amplitude
~Green’s function! Ti f between these two states can be ex-
pressed as2–8

Ti f5(
l50

`

WS VWD r12l

S~r12l !, ~2!

where

S~r12l !5 (
All ~r12l !2step pathsG
connecting sitesi and f

eiFG, ~3!

andFG is the sum over phases of the bonds on the pathG of
r12l steps connecting sitesi and f . In general,G contains
closed loops. In the strongly localized regime~i.e.,
V/W!1), the dominant contribution to Ti f is
W(V/W) rS(r ), where

S~r !5 (
All directed pathsG

of r steps on a lattice

eiFG. ~4!

In other words, only the shortest-length paths~with no back-
ward excursions! connecting them are taken into account,
namely, thedirected-path modelof Refs. 2–8. This directed-
path model provides an excellent approximation toTi f since
(V/W)2 is quite small in the extremely localized regime.2–8

It is important to stress that theconductivity2–5betweeni and
f is proportional touTi f u2.
Quantum interference, contained inS(r12l ), arises be-

cause the phase factors of different paths connecting the ini-
tial and final sites interfere with each other. We will first
focus on the computation ofS(r ), which is the essential QI
quantity for electrons deep in the localized regime. In 2D, we
also analytically computeS(r12) which becomes important
when electrons are not so strongly localized.

This paper is organized as follows. In Sec. II, we study QI
on a square lattice under a uniform potential, which is related
to the decay of gap states into the bulk.2 Here we derive an
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elegant, general, and very compact closed-form expression
for S(r ). Intriguing properties associated with the behavior of
S(r ) on diagonal sites are discussed in detail. It will be shown
later ~in Sec. III! that the effect of a magnetic field on the
MC is governed by the behavior ofS(r ). As a step towards
the understanding of interference between nondirected paths,
we also go beyond the directed-path model by exactly com-
puting analytic results forS(r12).

In Sec. III, we investigate the tunneling in a random im-
purity potential, which is relevant to the conductivity of, for
example, lightly doped semiconductors and strongly disor-
dered compounds.2 Closed-form results for the tunneling
probability, which determines the conductivity, are obtained.
We then analytically compute the moments for the tunneling
probability. From them, we derive analytic field-dependent
expressions, valid in any dimension, for the MC. The full
behavior of the MC as a function of the magnetic flux—
including the scaling in the low-field limit and the occur-
rence of saturation—is discussed in detail. The close rela-
tionship between the QI quantityS(r ) and the corresponding
MC is illustrated. Comparison of our results with experimen-
tal observation and other theoretical work is also made.

In Sec. IV, we examine the QI on a 3D cubic lattice and
provide a general formula forS(r ). We show how the inter-
ference patterns and the small-field behavior of the MC vary
according to the orientation of the applied field. Furthermore,
we investigate the effect on the low-flux MC due to the ran-
domness the angles between the directions of the critical
hops and the orientation of the applied field.

In Sec. V, we conclude by addressing several relevant
issues and summarize our results.

II. QUANTUM INTERFERENCE
ON A TWO-DIMENSIONAL SQUARE LATTICE

A. Exact summation of forward-scattering paths:S„r …

Let (m,n) denote the site coordinates. Without loss of
generality, we choose (0,0) to be the initial site and focus on
m,n>0. For forward-scattering paths ofr steps, which ex-
clude backward excursions~i.e., only moving upward and to
the right is allowed!, ending sites (m,n) satisfym1n5r .
Let Sm,n ~5S(r )) be the sum over all directed paths ofr steps
on which an electron can hop from the origin to the site
(m,n), each one weighted by its corresponding phase factor.
Employing the symmetric gauge

A5
B

2
~2y,x!,

and denoting the flux through an elementary plaquette~i.e.,
with an area corresponding to the square of the average dis-
tance, which is typically equal to or larger than the localiza-
tion length j, between two impurities! by f/2p, it is
straightforward to construct the recursion relation:

Sm,n5e2 inf/2Sm21,n1eimf/2Sm,n21 . ~5!

This equation states that the site (m,n) can be reached by
taking ther th step from neighboring sites to the left or be-
low. The factors in front of theS’s, namely, exp(2inf /2)
and exp(imf /2), account for the presence of the magnetic
field. Enumerating the recursion relations forSkn ,n

(kn5m21,m22, . . . ,0) successively and usingS0,n51 for
anyn, we obtain the following relation:

Sm,n5 (
kn50

m

eiknf/2e2 i ~m2kn!nf/2Skn ,n21 . ~6!

HereSm,n is expressed as a sum of theS’s one row below
~i.e., on the liney5n21). The physical meaning of Eq.~6!
is clear: the site (m,n) can be reached by moving one step
upward from sites (kn ,n21) with 0<kn<m, acquiring the
phaseiknf/2; then traversingm2kn steps from (kn ,n) to
(m,n), each step with a phase2 inf/2. By applying Eq.~6!
recursively ~and utilizing Sm,051 for any m), Sm,n for
m,n>1 can be written as

Sm,n~f!5e2 imnf/2Lm,n~f!, ~7!

where

Lm,n~f!5 (
kn50

m

(
kn2150

kn

••• (
k150

k2

ei ~k11•••1kn211kn!f

5)
j51

n

(
kj50

kj11

eik jf, ~8!

with kn11[m. If we use the Landau gauge instead, the ex-
pression for the sum-over-pathsS(r ) will read Lm,n ; namely,
Sm,n employs the symmetric gauge, whileLm,n uses the Lan-
dau gauge. Notice that each term in the summand corre-
sponds to the overall phase factor associated with a directed
path. In the absence of the magnetic flux (f50),

Sm,n~0!5 (
kn50

m

(
kn2150

kn

••• (
k150

k2

15Cm
m1n5

~m1n!!

m!n!
[N,

~9!

which is just the total number ofr -step paths between
(0,0) and (m,n).

After some calculations we obtain one of our main results,
a very compact and elegant closed-form expression for
Sm,n(f):

Sm,n~f!5
Fm1n~f!

Fm~f!Fn~f!
, ~10!

where

Fm~f!5)
k51

m

sin
k

2
f. ~11!

Notice that the symmetrySm,n5Sn,m @apparent in Eq.~10!#
is due to the square lattice geometry. Moreover, we also
obtain

Lm,n~f!5

)
k51

m1n

~12eikf!

F )
k51

m

~12eikf!GF )
k51

n

~12eikf!G . ~12!

Previous work on QI in the VRH regime obtained particu-
lar cases, mostly numerical, of sums to diagonal points
Sm,m , while the general result Eq.~10! is valid for arbitrary
~e.g., nondiagonal! sites.

To illustrate the quantum interference originating from
sums over phase factors associated with directed paths, we
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show the five possible ending sites (m,n) for r54 and their
correspondingSm,n in Fig. 1~a!. In addition, the six different
paths connecting (0,0) and (2,2) and their separate phase
factor contributions toS2,2 are shown in Fig. 1~b!.

B. Low-flux limit

In the very-low-flux limit f!1, the logarithm ofSm,n ,
calculated exactly to orderf2, is

lnSm,n~f!5 lnN2
1

24
mn~m1n11!f2. ~13!

Thus we obtain the familiar2 harmonic shrinkage of the wave
function withexplicit expressions for all the prefactors. This
result can be interpreted as follows. The effective ‘‘cigar-
shape’’ area exposed to the field has an effective length
l eff :

l eff ;Amn

~i.e., the square root of the area enclosed by the paths! and an
effective widthweff :

weff ;Am1n

~i.e., the square root of the length of the paths!. For the
special casem5n5r /2,

lnSm,m~f!5 ln
r !

@~r /2!! #2
2
1

96
r 2~r11!f2, ~14!

which is consistent with, and generalizes, the results in Ref.
4 since it gives the exact prefactor. Thus, the effective length
is ;r , while the effective width is;Ar . Furthermore, for a
ladder-type quasi-1D system,~e.g.,m5r21 andn51), we
have

lnSr21,1~f!5 lnr2
1

24
~r 221!f2. ~15!

In this case, the effective length and width are both;Ar .
This result remains valid for small values ofn ~narrow
stripes or multiladders!. The fourth-order contribution to
lnSm,n(f) can also be computed exactly as

mn

103 680
@10 ~6m4115m3n120m2n2115mn316n4!

1114~m312m2n12mn21n3!

129 ~2m213mn12n2!19 ~m1n!15 #f4.

C. Quantum interference on diagonal sites

Among theS’s for an even number of steps, those located
along the diagonal corners contain the richest interference
effects since the number of paths ending at (m,m) and the
areas they enclose are both the largest. We therefore examine
more closely the behavior of the quantities

I 2m~f![Sm,m~f!5)
k51

m sin
m1k

2
f

sin
k

2
f

. ~16!

For irrational fluxf, it can be proved that21,I 2m,1 for
anym. A particular case~asymptotic behavior! of our very
compact general expression Eq.~16! for I 2m is investigated
in detail by Fishman, Shapir, and Wang in Ref. 6. For
f52ps/t (s and t are positive integers with 1<s,t and
s being prime tot), we obtain (n>0) for m,t

I 2~m1nt!5
~21!stn~2n!!

n!n!
I 2m ~17!

and

FIG. 1. ~a! Starting from (0,0) on a square lattice, for forward-
scattering paths of four steps, electrons can end at five sites:
(4,0), (3,1), (2,2), (1,3), and (0,4). Their correspondingSm,n are
also shown. The arrows specify the electron hopping directions
~only moving to the right and upward is allowed in the directed-
path model!. Notice that the symmetrySm,n5Sn,m holds.S2,2 has
the strongest interference among them because the number of paths
ending at (2,2), and the area they enclose, are both the largest.~b!
Six different directed paths connecting (0,0) and (2,2) and their
separate phase-factor contributions toS2,2; the total equals
1111eif1e2 if1e2if1e22if5212cosf12cos2f.
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I 2nt5~21!stn
~2n!!

~n! !2
. ~18!

Furthermore, for thosem satisfying

t

2
<m<t21 , ~19!

I 2~m1nt!50 . ~20!

In other words, the zeros ofI 2m(f) are given by
f52ps/t for

m11

n11
<t<

2m

2n11
, ~21!

with

0<n<
m21

2
, ~22!

and thes’s are prime to each allowedt. From a physical
viewpoint, these flux values produce the complete cancella-
tion of all phase factors~i.e., fully destructive interference!
and result in thevanishingof the tunneling probability~and
conductivity!. Indeed, we will see in Sec. III that if we also
consider the effects of the on-site impurity scattering, these
flux values lead to the largest~i.e., saturated! value for the
positive MC.

In Fig. 2, we show the zeros forI 2 ,I 4 ,I 6 , . . . ,I 40 ob-
tained by using Eqs.~21! and ~22!. Note that the smallest
value off/2p satisfyingI 2m(f)50 is always 1/2m and the
number of zeros rapidly increases whenm becomes larger.

The I 2m can be expressed as sums of trigonometric co-
sines. For instance, the first few ones are~with u[f/2)

I 252cosu,

I 45212cos2u12cos4u,

I 656cosu16cos3u14cos5u12cos7u12cos9u,

I 858114cos2u114cos4u110cos6u110cos8u16cos10u

14cos12u12cos14u12cos16u,

I 10540cosu138cos3u136cos5u132cos7u128cos9u

122cos11u118cos13u114cos15u110cos17u

16cos19u14cos21u12cos23u12cos25u,

I 125581110cos2u1110cos4u1102cos6u196cos8u

184cos10u178cos12u164cos14u156cos16u

144cos18u136cos20u126cos22u122cos24u

114cos26u110cos28u16cos30u14cos32u

12cos34u12cos36u,

I 145338cosu1332cos3u1324cos5u1310cos7u

1292cos9u1272cos11u1250cos13u1224cos15u

1200cos17u1174cos19u1150cos21u1126cos23u

1106cos25u184cos27u168cos29u152cos31u

140cos33u130cos35u122cos37u114cos39u

110cos41u16cos43u14cos45u12cos47u

12cos49u.

Notice thatI 2m depends only on the even~odd! harmonics of
u whenm is even~odd!. I 2m(f) obeys the following prop-
erties: ~i! 2p (4p) periodicity in f for even ~odd! m,
namely,

I 4n~f12p!5I 4n~f!,

I 4n12~f14p!5I 4n12~f!.

In other words, the period ofI 2m corresponds tohc/e when
m is even, and 2hc/e whenm is odd.~ii ! With m even

I 2m~2p2f!5I 2m~f!

for 0<f<p. Also

I 2m~p!5
m!

@~m/2!! #2
.

~iii ! With m odd

I 2m~2p6f!52I 2m~f!

FIG. 2. Plot ofm versusf/2p ~denoted by
short bars in order to visualize them better!, be-
tween 0 and 1, such thatI 2m(f)50; for
m51,2, . . . ,20.Note that the smallest one is al-
ways 1/2m and the number of zeros increases
rapidly whenm becomes larger. The properties
of I 2m described in Eqs.~19!–~22! are exhibited
in the figure. For instance, whenf/2p51/5,
I 2m50 for m5315n and m5415n with
n>0 ~namely,m53,4,8,9,13,14,18,19, . . . ).
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for 0<f<2p.
From the properties described above, we can draw a gen-

eral picture of the behavior ofI 2m . Let F[f/2p.
I 2m(F50)5(2m)!/(m!) 2, which is an enormous number
for largem. As the magnetic field is turned on,I 2m rapidly
drops to its first zero atF51/2m. I 2m then shows distinct
behaviors depending onm.

For evenm, I 2m exhibits many small-magnitude fluctua-
tions around zero for 1/2m,F,1/221/2m. I 2m then
monotonically climbs from 0 to a large positive value,
I 2m(p)5m!/ @(m/2)!#2, for 1/221/2m<F<1/2. It is evi-
dent that I 2m(p) is still very small compared toI 2m(0).
Within the period 0<F<1 ~i.e., 0<f<2p), I 2m has mir-

ror symmetry with respect toF51/2 ~i.e.,f5p).
For oddm, I 2m exhibits many small-magnitude fluctua-

tions around zero for 1/2m,F,121/2m. In addi-
tion, I 2m always equals 0 atF51/2 ~i.e., f5p). I 2m
then monotonically drops from 0 to2(2m)!/(m!) 2 for
121/2m<F<1. For 0<F<1, I 2m has inversion symmetry
with respect toF51/2. Within the period 0<F<2 ~i.e.,
0<f<4p), I 2m has mirror symmetry aroundF51 ~i.e.,
f52p). Recall that for anym, 21,I 2m,1, for irrational
values ofF.

In Fig. 3, we plotI 2 throughI 12, I 18, I 20, I 38, and I 40.
These figures show very interesting interference patterns of
I 2m and clearly reflect the general description given above. It

FIG. 3. I 2m for variousm as functions of the flux through each elementary plaquette,F5f/2p in their respective full period. Notice the
2p (4p) periodicity inf for even~odd! m. In ~a!, we plotI 2 ,I 4 , . . . ,I 12, I 18, andI 20. To show the behavior of the rapid small-magnitude
fluctuations around zero ofI 2m(F) for 1/2m<F<1/2 whenm is even and for 1/2m<F<1/221/2m whenm is odd: In ~b!, we plot
I 10 ~top!, I 18 ~middle!, andI 38 ~bottom! for F in their respective interval@1/2m,1/2]. In ~c!, we plot I 12 ~top!, I 20 ~middle!, andI 40 ~bottom!
for F in their respective interval@1/2m,1/221/2m#. Only some restricted ranges in the vertical axes are exhibited. From these figures, we
clearly see the general properties for the behavior ofI 2m described in Sec. II C.
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is worthwhile to keep in mind that the properties embedded
in Sm,n described above play a central role in determining the
behavior of the MC obtained in Sec. III.

D. Exact summation of the dominant winding paths:S„r12…

Up to now, we have focused on the computation ofS(r )

and presented a detailed investigation of their properties.
When the electrons are less strongly localized, the next
higher-order contribution toTi f @i.e., W(V/W) r12S(r12),
which is the dominant termincluding backward excursions#
becomes important. Therefore, quantum interference effects
between phase factors of paths with backward recursions
~i.e., moving downward and to the left is also included! need
to be taken into consideration. Notice that paths inS(r12),
even though they include backscattering processes, do not
involve closed loops enclosing flux~e.g., elementary square
plaquettes!.

In this section we present the computation of the second-
order contribution, namelyS(r12), to the transition amplitude
Ti f . Let Pm,n (5S(r12)) denote the sums over paths of
m1n12 steps starting from (0,0) and ending at (m,n). We
assume that the electrons are confined on a square lattice
with non-negativex and y coordinates. We can divide the
contribution toPm,n into five parts.

First, hopping directly to site (p,0), with 1<p<m, elec-
trons take one step back to (p21,0), then hop
m2p111n steps to (m,n). Second, hopping directly to
site (0,q), with 1<q<n, electrons take one step back to
(0,q21), then hopm1n2q11 steps to (m,n). Third, di-
rectly hopping to site (p,n11), with 0<p<m, electrons
move one-step downward to (p,n) gaining a phase factor
exp(2ipf /2), then hopm2p steps to (m,n). Fourth, di-
rectly hopping to site (m11,q), with 0<q<n, electrons
move one-step downward to (m,q) gaining a phase factor
exp(iqf /2), then hopn2q steps to (m,n). Fifth, directly
hopping to (p,q) with 1<p<m and 1<q<n, electrons take
one step back to either (p21,q) or (p,q21), accompanied
by the phase factor exp(iqf /2) or exp(2ipf /2), then hop
m1n2p2q11 steps to the ending site (m,n). Therefore
Pm,n can be written as

Pm,n5 (
p51

m

Bp21,0→m,n1 (
q51

n

B0,q21→m,n

1 (
p50

m

Sp,n11e
2 ipf/2Bp,n→m,n

1 (
q50

n

Sm11,qe
iqf/2Bm,q→m,n

1 (
p51

m

(
q51

n

Sp,q~e
iqf/2Bp21,q→m,n

1e2 ipf/2Bp,q21→m,n!, ~23!

whereBp,q→m,n is the sum over phase factors of all directed
paths ~i.e., containingm1n2p2q steps! starting from
(p,q) and ending at (m,n). After some calculation we ob-
tain

Bp,q→m,n5expH i @2~m2p!q1~n2q!p#f

2 JSm2p,n2q .

~24!

By substituting Eq.~24! into Eq. ~23!, we derive

Pm,n5 (
p51

m

e
in~p21!f

2 Sm2p11,n1 (
q51

n

e2
im~q21!f

2 Sm,n2q11

1e2
imnf
2 (

p50

m

e
i ~n21!pf

2 Sp,n11

1e
imnf
2 (

q50

n

e2
i ~m21!qf

2 Sm11,q

1 (
p51

m

(
q51

n

Sp,q$e
2 i @~m21!q2n~p21!#f/2Sm2p11,n2q

1e2 i @m~q21!2~n21!p#f/2Sm2p,n2q11%. ~25!

In the special casem5n,

Pm,m52 (
j51

m

cosFm~m2 j !f

2 GSj ,m
12 (

j50

m

cosF ~m22mj1 j !f

2 GSj ,m11

12 (
j50

m21

cosS jf2 DSm2 j ,m2 jSj , j11

12 (
j51

m21

(
k50

j21

Sm2 j ,m2kH cosF ~mj2mk2 j !f

2 GSj ,k11

1cosF ~mj2mk1k!f

2 GSk, j11J . ~26!

The explicit expressions for the first fewPm,m are ~with
u5f/2)

P1,1514cosu12cos3u,

P2,2526132cos2u126cos4u14cos6u12cos8u,

P3,35130cosu1124cos3u188cos5u152cos7u140cos9u

18cos11u14cos13u12cos15u,

P4,452241410cos2u1396cos4u1308cos6u1282cos8u

1188cos10u1130cos12u176cos14u158cos16u

114cos18u18cos20u14cos22u12cos24u,

P5,551446cosu11386cos3u11308cos5u11176cos7u

11032cos9u1842cos11u1690cos13u1542cos15u

1398cos17u1264cos19u1180cos21u1108cos23u

180cos25u124cos27u114cos29u18cos31u

14cos33u12cos35u,
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P6,65251814868cos2u14808cos4u14514cos6u

14238cos8u13788cos10u13466cos12u

12938cos14u12554cos16u12074cos18u

11702cos20u11298cos22u11056cos24u

1736cos26u1536cos28u1356cos30u1244cos32u

1148cos34u1110cos36u138cos38u124cos40u

114cos42u18cos44u14cos46u12cos48u.

ThesePm,m’s are plotted in Fig. 4. Note thatPm,m depends
only on the even~odd! harmonics ofu and has a period
2p (4p) for even ~odd! m. The expressions forPm,m are
obviously more complicated than the correspondingI 2m .
However, by comparing Figs. 3 and 4, we find that the gen-
eral features in the interference behaviors are surprisingly
similar. We thus infer that the relevant physical quantities
are not significantly changed by the addition of interference
between the dominant winding paths.

III. EFFECTS OF DISORDER

A. Average of the tunneling probability

To incorporate the effects of random impurities, we now
replace the on-site energy part in Eq.~1! ~first term inH) by
( ie ici

†ci , where thee i ’s are now independent random vari-
ables. The Hamiltonian now takes the form

H5(
i

e ici
†ci1V(̂

i j &
ci
†cjexp~ iAi j !.

We have studied two commonly used models:~i! e i can take
two values:1W and 2W with equal probability; and~ii !
e i is randomly chosen from a uniform distribution of width
W and zero mean. We found that both models yield the same
results for the MC.

We now start with the general case of the first model,
namely,e i can have two values:1W with probabilitym and
2W with probability n, wherem1n51. Due to disorder,
the transition amplitude becomes

Ti f5WS VWD rJm,n ,
with

Jm,n5(
G

F )
jPG

S 2
W

e j
D GeiFG, ~27!

whereG runs over all directed paths ofr steps connecting
sites (0,0) and (m,n), and j over sites on each path. For all
directed paths ending at (m,n), electrons traverser5m1n
sites@the initial site (0,0) is excluded#. Each site visited now
contributes an additional multiplicative factor of either11
or 21 to the phase factor. Therefore, for a given pathG, the
probability for obtaining6eiFG is

P65
~m1n!r6~m2n!r

2
.

It is then clear that

^Jm,n~f!&5~P12P2!Sm,n~f!5~m2n!rSm,n~f!,
~28!

where^•••& denotes averaging over all impurities.
By exploiting Eqs.~7! and ~8!, we derive the following

general expressions valid foranym andn:

^Jm,n
2 ~f!&5~11P!Sm,n~2f!1PSm,n2 ~f!, ~29!

where

P5P1
N1P2

N1 (
k51

N21

P1
N2kP2

k ~Ck
N24Ck21

N22!

5124 P1P25~m2n!2r . ~30!

Also, the disorder average of the tunneling probability~i.e.,
the transmission rate! uJu25JJ* is

^uJm,n~f!u2&5~12P!N1PSm,n2 ~f!. ~31!

The physical origin of Eqs.~29! and~31! becomes clearer
by rewriting them as

FIG. 4. Pm,m ~for m51,2, . . . ,6) asfunctions of the flux
through each elementary plaquette,F5f/2p.
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^Jm,n
2 ~f!&5Sm,n~2f!1PSm,n~f!@Sm,n~f!2Cm,n~f!#

~32!

and

^uJm,n~f!u2&5N1P@Sm,n
2 ~f!2N#, ~33!

where

Cm,n~f!5

)
k51

m1n

cos
k

2
f

S )
k51

m

cos
k

2
f D S )

k51

n

cos
k

2
f D ,

and we have used

Sm,n~2f!5Sm,n~f!Cm,n~f!.

The first terms in Eqs.~32! and ~33! account for contribu-
tions from pairs of identical paths:

(
G

~6eiFG!~6eiFG!5(
G

e2iFG5Sm,n~2f!

in ^Jm,n
2 &, and

(
G

~6eiFG!~6eiFG!5(
G

15N

in ^uJm,nu2&. The second terms in Eqs.~32! and~33! account
for contributions from pairs of distinct paths. Note that
Sm,n(0)5N andCm,n(0)51, whenf50. We then have in
the absence of magnetic flux

^Jm,n
2 ~0!&5^uJm,n~0!u2&5N1PN~N21!. ~34!

Furthermore, in the special casem5n51/2, sinceP50 we
then obtain

^Jm,n~f!&50,

^Jm,n
2 ~f!&5Sm,n~2f!,

^uJm,n~f!u2&5N.

B. Higher-order moments and general expressions
for the first few leading terms

For m5n51/2 ~the most studied case so far!, we can
obtain analytical expressions for the moments^Jm,n

2p (f)& and
^uJm,n(f)u2p& for any value ofp. Only a few of these will be
presented here. From now on,J(f) stands forJm,n(f) and
S(f) stands forSm,n(f). The derivation of these moments is
given in Appendix A.

^J4~f!&53S2~2f!22S~4f!, ~35a!

^J6~f!&515S3~2f!230S~2f!S~4f!116S~6f!, ~35b!

^J8~f!&5105S4~2f!2420S2~2f!S~4f!1448S~2f!S~6f!1140S2~4f!2272S~8f!, ~35c!

^J10~f!&5945S5~2f!26300S3~2f!S~4f!110 080S2~2f!S~6f!

16300S~2f!S2~4f!212 240S~2f!S~8f!26720S~4f!S~6f!17936S~10f!, ~35d!

^J12~f!&510 395S6~2f!2103 950S4~2f!S~4f!1221 760S3~2f!S~6f!

1207 900S2~2f!S2~4f!2403 920S2~2f!S~8f!2443 520S~2f!S~4f!S~6f!246 200S3~4f!

1523 776S~2f!S~10f!1269 280S~4f!S~8f!1118 272S2~6f!2353 792S~12f!, ~35e!

^J14~f!&5135 135S7~2f!21 891 890S5~2f!S~4f!15 045 040S4~2f!S~6f!16 306 300S3~2f!S2~4f!

212 252 240S3~2f!S~8f!220 180 160S2~2f!S~4f!S~6f!24 204 200S~2f!S3~4f!

123 831 808S2~2f!S~10f!124 504 480S~2f!S~4f!S~8f!110 762 752S~2f!S2~6f!

16 726 720S2~4f!S~6f!232 195 072S~2f!S~12f!215 887 872S~4f!S~10f!

213 069 056S~6f!S~8f!122 368 256S~14f!, ~35f!

and

^uJ~f!u4&52N~N21!1S2~2f!, ~36a!

^uJ~f!u6&52N~3N229N18!13 ~3N24!S2~2f!, ~36b!

^uJ~f!u8&58N~3N3218N2141N234!18 ~9N2233N132!S2~2f!19S4~2f!212S2~2f!S~4f!14S2~4f!,
~36c!
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^uJ~f!u10&58N~15N42150N31625N221250N1992!140 ~15N32105N21260N2216!S2~2f!175 ~3N28!S4~2f!

220 ~15N244!S2~2f!S~4f!120 ~5N216!S2~4f!, ~36d!

^uJ~f!u12&516N~45N52675N414425N3215 525N2128 706N22212!1120~45N42510N312295N224702N

13552!S2~2f!130 ~135N22854N11440!S4~2f1225S6~2f!2120~45N22309N1556!S2~2f!S~4f!

2900S4~2f!S~4f!124 ~75N22555N11064!S2~4f!1900S2~2f!S2~4f!

1480S3~2f!S~6f!2960S~2f!S~4f!S~6f!1256S2~6f!, ~36e!

^uJ~f!u14&516N~315N626615N5162 475N42334 425N311 057 322N221854 160N11 398016!156 ~945N521575N4

1110 775N32401 730N21732 536N2518 464!S2~2f!11470~45N32495N211920N22576!S4~2f!

111 025~N24!S6~2f!2840~105N321239N215096N27192!S2~2f!S~4f!22940~15N264!S4~2f!S~4f!

12940~15N268!S2~2f!S2~4f!13360~7N231!S3~2f!S~6f!156 ~525N326615N2

128 784N242 688!S2~4f!2448~105N2493!S~2f!S~4f!S~6f!11792~7N234!S2~6f!. ~36f!

These moments satisfy the consistency check
^J2p(0)&5^uJ(0)u2p& and odd moments vanish by symme-
try.

The moments provide an analytical view of the structure
of the QI in the tunneling process. SinceuJu25JJ* , each
uJu2 representsN forwardpaths to (m,n), each one with its
correspondingreversed path back to the origin. Also,
^uJ(f)u2p& averages over the contributions ofNp such pairs
of paths. In general,̂uJ(f)u2p& consist of terms involving
Nk(k51, . . . ,p). The above explicit expressions for the mo-
ments will allow us to deduce general formulas for the first
few leading~i.e., dominant! terms in the moments.

We first focus on the leading terms (}Np), since they
provide the most significant contribution to the moments
whenN is large. Recall thatS(0)5N, therefore we need to
consider all terms involvingS2k(2f)Np22k in ^uJ(f)u2p&.
We derive~see Appendix B for more details!

^uJ~0!u2p&5~2p21!!!Np, ~37!

^uJ~f!u2p&5p!NpH (
k50

`
~2k!!C2k

p

~2kk! !2 FS~2f!

N G2kJ . ~38!

Furthermore, by considering all the second leading terms
(}Np21), we obtain

^uJ~0!u2p&52
1

3
p~p21!@~2p21!!! #Np21, ~39!

^uJ~f!u2p&52
p!Np21

6 H (
k50

`
~2k11!!

~2kk! !2 F ~3p12k23!C2k11
p

12kC2k12
p S~4f!

N GFS~2f!

N G2kJ . ~40!

Also, when S(2pf)50 with p>1 @e.g., at f5p/m,
Sm,m(2pf)50#, the third leading terms (}Np22) in the mo-
ments are

^uJ~0!u2p&5
1

90
p~p21!~p22!~5p11!@~2p21!!! #Np22,

~41!

^uJ~f!u2p&5
1

72
p~p21!~p22!~9p15!~p! !Np22.

~42!

The above general expressions for the moments are of value
since they enable us toanalyticallyobtain the dominant con-
tributions to the quantity we are interested in: the magneto-
conductance.

C. Analytical results for the magnetoconductance

We now use the replica method:

^ lnuJ~f!u2&5 lim
p→0

^uJ~f!u2p&21

p
~43!

to compute the log-averaged MC with respect to the zero-
field log-averaged MC~denoted byLMC), defined as

LMC[^ lnuJ~f!u2&2^ lnuJ~0!u2&

5 lim
p→0

^uJ~f!u2p&2^uJ~0!u2p&
p

. ~44!

Taking into account only the first leading terms in the mo-
ments, shown in Eqs.~37! and ~38!, we derive theLMC as

LMC5 ln22 (
k51

`
~2k21!!

~2kk! !2 FS~2f!

N G2k, ~45!

where we have

(
k51

`
~2k21!!

~2kk! !2
5 ln2 . ~46!

Exploiting the following identity18 for 0,x<1:
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cosh21
1

x
5 ln

2

x
2 (

k51

`
~2k21!!

~2kk! !2
x2k,

which reduces to Eq.~46! for x51, we thus obtain a very
concise exact expression for theLMC as

LMC5H cosh21
N

uS~2f!u
2 ln

N

uS~2f!u
whenS~2f!Þ0

ln2 whenS~2f!50
~47!

5 lnF11A12SS~2f!

N D 2 G . ~48!

The typical MC of a sample

G~f!5exp„^ lnuJ~f!u2&…

is then given by, normalized by the zero-field MCG(0),

G~f!

G~0!
5exp~LMC!511A12FS~2f!

N G2. ~49!

Equation~49! is one of our main results. It provides a con-
cise closed-form expression for the MC, as anexplicit func-
tion of the magnetic flux. From Eq.~49! it becomes evident
that a magnetic field leads to an increase in thepositiveMC:
G(f)/G(0) increases from 1 to a saturated value 2@since
S(2f) decreases fromN to 0# when the flux is turned on and
increased.G(f)52G(0) at the field f that satisfies
S(2f)50. Furthermore, it is clear that the MC variesperi-
odically with the magnetic field and the periodicity in the
flux is equal to the superconducting flux quantumhc/2e.

It is important to point out that Eqs.~48! and ~49! are
valid in any dimension as long as we use the corresponding
D-dimensional sumS(r ).

It is illuminating to draw attention to the close relation-
ship between the behaviors ofI 2m(2f)5Sm,m(2f) and the
correspondingG(f). Whenf50, @ I 2m(0)/N#251, which
is thelargestvalue of@ I 2m(2f)/N#2 as a function off, and
the MC is equal to thesmallestvalueG(0). When the mag-
netic field is increased from zero,@ I 2m(2f)/N#2 quickly ap-
proaches~more rapidly asm becomes larger! its smallest

value, which is zero, atf/2p51/4m. At the same time, the
MC rapidly increases to thelargestvalue 2G(0).

The physical implication of this is clear: fully constructive
interference in the case without disorder leads to the smallest
hopping conduction in the presence of disorder. While fully
destructive interference in the case without disorder yields
the largest hopping conduction in the presence of disorder.
Moreover, whenm ~the system size ism3m) is large,
G(f)/G(0) remains in the close vicinity of 2 for
f/2p.1/4m in spite of the strong very-small-magnitude
fluctuations ofI 2m(2f)/N around zero.

The saturated value of the magnetic fieldBsa @i.e., the first
field that makesG(f)52G(0)# is inversely proportional to
twice the hopping length: the larger the system is, the smaller
Bsa will be. In other words, as soon as the system, with
hopping distancer52m, is penetrated by a total flux of
(1/2r )3(r /2)25r /8 ~in units of the flux quantumhc/e), the
MC reaches the saturation value 2G(0).

Defining the relative MC,DG(f), as

DG~f![
G~f!2G~0!

G~0!
,

and utilizing Eq.~49!, we showDG(f) versusf for several
different hopping lengths in Fig. 5. The behavior of
DG(f) described above can be clearly observed in these
figures.

Now let us examine the behavior of the MC in the low-
flux limit. From Eqs.~14! and ~15!, it follows then that, for
very small fields, in 2D

DG~f!.
A3
6
r 3/2f, ~50!

and in ladder-type quasi-1D structures

DG~f!.
A3
3
rf. ~51!

In Fig. 6, we plotDG(f) computed directly from Eq.~49!,
for various small values off, versus r 3/2f, with
r52,4, . . . ,1000, in ~a! and versus rf, with
r52,3, . . . ,500, in ~b!, respectively, for 2D and quasi-1D
systems. It is seen that, both in~a! and~b!, all the data nicely
collapse into a straight line, which verifies the scaling of the
low-flux MC in Eqs.~50! and ~51!.

If we consider the second leading terms in the moments,
namely Eqs.~39! and ~40!, the second-order contribution to
theLMC is

LMC5H 0 whenS~2f!/N561

1

6N H 12 (
k51

` F ~2k11!!

~2kk! !2 S 2k23

2k11
2

k

k11

S~4f!

N D S S~2f!

N D 2kG J whenS~2f!/NÞ61

5H 0 whenL50

1

6N H 12
12L

L3~11L! F S 12
S~4f!

N D ~112L!2L2~213L!G J whenLÞ0,
~52!
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where

L5A12SS~2f!

N D 2,
and we have used

(
k51

`
~2k!!

~2kk! !2
x2k5

12A12x2

A12x2
,

(
k51

`

2k
~2k!!

~2kk! !2
x2k5

x2

~12x2!3/2
,

(
k51

`
~2k!!

~k11!~2kk! !2
x2k5

x2

~ 12A12x2!2
.

FIG. 5. The relative magnetoconductanceDG(f) versusf/2p
for hopping between (0,0) and (r /2,r /2) for several system sizes.
From ~a! to ~d!, the hopping lengthr corresponds to 4, 10, 20, and
50, respectively. Insets showDG(f) for f between 0 and the
corresponding saturated fieldf/2p51/2r . It is observed that for
large systems~i.e., r large!, DG(f) rapidly approaches the satura-
tion value 1 even atf/2p, which is less than 1/2r .

FIG. 6. ~a! DG versusr 3/2B in 2D with the hopping length
r52,4, . . . ,1000, and ~b! DG versus rB in quasi-1D with
r52,3, . . . ,500, for various small values ofB. All the data nicely
collapse into a straight line, which verifies the scaling behavior of
the small-fieldDG: (A3/6)r 3/2f in 2D and (A3/3)rf for quasi-1D
systems. The distance between these data and the solid reference
line reflects the prefactor:A3/6 in ~a! andA3/3 in ~b!.
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The principal features in the behavior of the MC are not
significantly modified by the addition of the contribution
from LMC in Eq. ~52!: while the magnitude ofDG(f) is
slightly increased forfÞ0, the period of the MC remains
unchanged.

For a 2D system and in the low-flux limit, we derive from
Eq. ~52! for diagonal sites (r /2,r /2):

DG~f!5~A3/24N!r 3/2f.

Comparing this result with Eq.~50!, we see that the depen-
dence of the small-field MC on the hopping length and the
field is the same except for different prefactors. Summing up
both contributions, we have for smallf

DG~f!5
A3
6 S 11

1

4ND r 3/2f. ~53!

In addition, whenS(2pf)50, we have from Eqs.~37!–
~42!

LMC5 ln21
1

6N
1

7

60N2 1OS 1N3D . ~54!

This indicates that the magnitude of the positive MC is
gradually increased~e.g., the saturation value ofDG is raised
above 1! when contributions from higher-order terms~i.e.,
terms}1/Nk with k>1) are included, though they are neg-
ligibly small.

D. Discussion

Our results for the MC are in good agreement with ex-
perimental measurements.19,20For instance, a positive MC is
observed in the VRH regime of both macroscopically large
In2O32x samples

19 and compensatedn-type CdSe.20 More-
over, saturation in the MC as the field is increased is also
reported in Ref. 20.

The results forDG(f) presented in this work are consis-
tent with theoretical studies based on an independent-
directed-path formalism8 and a random matrix theory of the
transition strengths.9 The advantages of our results include
~i! they provide explicit expressions for the first two domi-
nant contributions to the MC, as a function of the magnetic
field; ~ii ! they provide straightforward determination of the
period of the oscillation of the MC;~iii ! they provide explicit
scaling behaviors~i.e., the dependence on the hopping length
and the orientation and strength of the field! of the low-flux
MC in quasi-1D, 2D, and 3D systems; and~iv! they allow us
to make quantitative comparison with experimental data. Fi-
nally, it is important to emphasize that our analytic results
@Eqs.~48!, ~49!, and~52!# for the MC are equally applicable
to any dimension, since the essential ingredient in our ex-
pressions is the QI quantityS(r ), which takes into account
the dimensionality.

In Appendix B, we outline the computational scheme us-
ing the second model of disorder, i.e.,e i is randomly chosen
from the interval@2W/2,W/2#. The moments obtained in
this case are the same as those presented in Eqs.~37! and
~38!. Therefore, the result for the MC remains unchanged.

IV. QUANTUM INTERFERENCE
AND THE SMALL-FIELD MAGNETOCONDUCTANCE

ON A THREE-DIMENSIONAL CUBIC LATTICE

A. Sums over forward-scattering paths

Let Sm,n,l (5S(r ) in 3D! be the sum over all phase factors
associated with directed paths ofm1n1 l (5r ) steps along
which an electron may hop from~0,0,0! to the site
(m,n,l ). Again we assumem, n, and l>0. In other words,
electrons can now also hop in the positivez direction. The
vector potential of a general magnetic field (Bx ,By ,Bz) can
be written as

A5
1

2
~zBy2yBz ,xBz2zBx ,yBx2xBy!.

Also, a/2p, b/2p, and c/2p represent the three fluxes
through the respective elementary plaquettes on theyz-,
zx-, and xy-planes. To computeSm,n,l , we start from the
following recursion relation:

Sm,n,l5 (
p50

m

(
q50

n

Ap,q,l→m,n,lexpS i qa2pb

2 DSp,q,l21 ,

~55!

whereAp,q,l→m,n,l is the sum over all directed paths starting
from (p,q,l ) and ending at (m,n,l ). The physical meaning
of Eq. ~55! is as follows. The site (m,n,l ) is reached by
taking one step from (p,q,l21) to (p,q,l ), acquiring the
phase i (qa2pb)/2, then traversing from (p,q,l ) to
(m,n,l ) on thez5 l plane. After some calculation, we find
that

Ap,q,l→m,n,l

5expH i F ~m2p!~ lb2qc!1~n2q!~pc2 la !

2 G J
3Sm2p,n2q~c!, ~56!

whereSm2p,n2q(c) is defined as shown in Eq.~10!. By ap-
plying Eq. ~56! l times, we obtain a general formula of
Sm,n,l for m,n,l>1 in terms of the fluxesa, b, andc as

Sm,n,l~a,b,c!5expF2 i S nla1 lmb1mnc

2 D GLm,n,l~a,b,c!,

~57!

where

Lm,n,l~a,b,c!5H )
j51

l F (
pj50

pj11

(
qj50

qj11

exp$ i @qja1~m2pj !b

1pj~qj112qj !c#%Lpj112pj ,qj112qj
~c!G J

3Lp1 ,q1~c!, ~58!

with pl11[m, ql11[n, and theLp,q(c)’s are defined as in
Eq. ~12!.

It is clear that Sm,n,05Sm,n(c), Sm,0,l5Sm,l(b), and
S0,n,l5Sn,l(a). Also, the following symmetries hold:
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Sm,n,l~a,b,c!5Sn,m,l~b,a,c!5Sm,l ,n~a,c,b!5Sl ,m,n~b,c,a!

5Sl ,n,m~c,b,a!5Sn,l ,m~c,a,b!. ~59!

When there is no magnetic flux,

Sm,n,l~0,0,0!5
~m1n1 l !!

m!n! l !
[N

gives the total number of (m1n1 l )-step paths connecting
(0,0,0) and (m,n,l ).

We have obtained explicit expressions for manySm,n,l ,
and here we explicitly present only the first fewS, sinceS
have long expressions for largerm, n, and l .

S1,1,152Fcosa1b2c

2
1cos

b1c2a

2
1cos

c1a2b

2 G ,
S2,1,152Fcosa21cosS a22bD1cosS a22cD1cosS a26b7cD

1cosS a22b2cD G ,
S2,2,15212(~1!

cosa14cos~a2b!12cos~a2c!

12cos~b2c!12cos~a22c!12cos~b22c!

12cos~a2b6c!12cos~a1b22c!

12cos~a2b62c!,

S2,2,2561(~1!
@4cosa12cos2a#1(~2!

@4cos~a2b!

14cos2~a2b!12cos~a22b!12cos~2a2b!#

12(~3!
@cos~a1b2g!1cos2~a1b2g!

1cos~a1b22g!1cos~a62b72g!#.

Here ( ( i ) denote sums over a5a,b,c;
(ab)5(ab),(bc),(ca); and (abg)5(abc),(bca),(cab);
for i51, 2, and 3, respectively; and, for instance, the term
cos(a/26b7c) means cos(a/21b2c)1cos(a/22b1c).

B. Low-flux limit

In the very-low-flux limit, and calculated exactly to
second-order in the flux, we obtain the logarithm ofSm,n,l ,
the 3D analog of the harmonic shrinkage of the wave func-
tion, as

lnSm,n,l5 lnN2
1

24
@nla21 lmb21mnc21m~ lb2nc!2

1n~mc2 la !21 l ~na2mb!2#. ~60!

This generalizes the 2D harmonic-shrinkage of the wave
function obtained in Eq.~13!. Whenm5n5 l5r /3, we have

lnSm,m,m5 ln
r !

@~r /3!! #3
2

1

216H r 2~a21b21c2!1
r 3

3
@~b

2c!21~c2a!21~a2b!2#J . ~61!

These results generalize to 3D the 2D results obtained in Sec.
II B.

C. Interference patterns on diagonal sites

In order to see how the interference patterns vary
according to the orientation of the applied field, we fo-
cus onSm,m,m ~i.e., S on the body diagonals!. We now exa-
mine two special cases:Bi[Bi(1,1,1)5(f,f,f)/2p and
B'[B'(1,1,1)5(f/2,f/2,2f)/2p, namely fields parallel
and perpendicular to the (1,1,1) direction, respectively. Their
Sm,m,m’s are denoted, respectively, byI3mi andI3m' and have
been computed to high orders. Here we only present the first
few:

I3i 56cosu,

I6i 536142cos2u112cos4u,

I9i 5864cosu1528cos3u1216cos5u154cos7u118cos9u,

I12i 57308112 504cos2u18082cos4u14032cos6u

11740cos8u1672cos10u1216cos12u172cos14u

124cos16u;

and

I3'54cosu12cos2u,

I6'514112cosu116cos2u112cos3u112cos4u18cos5u

110cos6u14cos7u12cos8u,

I9'5761204cosu1176cos2u1180cos3u1156cos4u

1156cos5u1136cos6u1128cos7u1102cos8u

184cos9u168cos10u164cos11u148cos12u

140cos13u126cos14u120cos15u110cos16u

14cos17u12cos18u,

I12' 5137212464cosu12606cos2u12420cos3u

12502cos4u12288cos5u12288cos6u12068cos7u

12046cos8u11788cos9u11758cos10u

11532cos11u11498cos12u11264cos13u

11174cos14u1964cos15u1894cos16u1724cos17u

1642cos18u1512cos19u1450cos20u1340cos21u

1296cos22u1228cos23u1178cos24u1128cos25u

194cos26u156cos27u140cos28u120cos29u

110cos30u14cos31u12cos32u,
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whereu5f/2. It can be seen thatI3mi andI3m' exhibit quite
different behaviors as shown in Fig. 7 where we plotI3i
throughI12i and I3' throughI12' . Notice that the period in
f for I3mi is 2p (4p) for even~odd! m, while the period for
I3m' is 4p for anym. Therefore, the periodicity for the MC
in 3D is identical to that in 2D.

We have also computedI3mi andI3m' (m51,2, . . . ,300)
for f/2p53/5 and (A521)/2 and find that their behaviors
are insensitive to the commensurability off, unlike the case
on a square lattice. Physically, this can be understood be-
cause two randomly chosen paths have a higher probability
of crossing~and thus interfering! in 2D than in 3D; thus
making QI effects less pronounced in 3D than in 2D. A

similar situation occurs classically~e.g., multiply-scattered
light in a random medium15,16!.

D. Small-field magnetoconductance

For a 3D system, the relative MC,DG(a,b,c), now reads

DG~a,b,c!5A12FSm,n,l~2a,2b,2c!

N G2. ~62!

The above general expression is valid for any ending site as
well as arbitrary orientation and strength of the magnetic
field. From Eq.~61!, in the small-field limit and at ending
site (r /3,r /3,r /3), we have

DG5
1

3A3
Ar 2~a21b21c2!1

r 3

3
@~b2c!21~c2a!21~a2b!2#, ~63!

which is applicable for any orientation of the field. Below we
focus on two special orientations of the field:B' andBi .

For very smallf, we have from Eq.~61!

lnIr'. ln
r !

@~r /3!! #3
2

1

144
r 2~r11!f2, ~64!

and

lnIri. ln
r !

@~r /3!! #3
2

1

72
r 2f2. ~65!

The 3D behavior of the low-flux MC thus becomes clear: for
B'

DG~f!.
A2
6
r 3/2f, ~66!

and forBi

DG~f!.
1

3
rf. ~67!

These results can be interpreted as follows: the effective area
A'
eff exposed toB' is larger,

A'
eff;r 3/2,

similar to the 2D case whereDG(f)}r 3/2f; while the ef-
fective areaAi

eff exposed toBi is smaller,

Ai
eff;r ,

thus closer to our quasi-1D ladder case withDG(f)}rf.
As a numerical test of Eqs.~66! and ~67!, in Fig. 8 we

showDG calculated directly from Eq.~62!, versusr 3/2f in
~a! and versusrf in ~b!, respectively, for several values of
B' and Bi with hopping lengthr53,6, . . . ,600. The col-
lapse of all the data into a straight line verifies the scaling of
the low-fluxDG presented above.

E. Average of the magnetoconductance over angles

In a macroscopic sample, the conductance may be deter-
mined bya few~instead of one, as considered before! critical
hopping events. As a result of this, the observed MC of the
whole sample should be the average of the MC associated
with these critical hops. Thus, in 3D systems it is also im-
portant to take into account the randomness of the angles
between the hopping direction and the orientation of the ap-
plied magnetic field.21

To theoretically investigate the effect of the average over
angles on the MC, we consider all possible relative hopping
directions with respect to that of the magnetic field, or
equivalently, the continuously-varying orientation of the
field with respect to a fixed hopping direction. We adopt the
latter below: the ending site of all hopping events~with the
same hopping lengthr ) is located at the diagonal point
(r /3,r /3,r /3) and the magnetic field can be adjusted between
the parallel and perpendicular directions with respect to the
vectord5(1,1,1). Our interest here is in the MC averaged
over angles, denoted byDG, in the low-field limit. Recall
that the magnetic field isB5(a,b,c)/2p, and from Eq.~63!,
we have

DG5
2p

3A3
rBA11rsin2v, ~68!

whereB5Aa21b21c2/2p is the magnitude of the field and
v is the angle betweenB andd. By averaging over the angle
v, we obtain

DG~B!5
4

3A3
rBE

0

p/2
A11rsin2v dv

5
4

3A3
rAr11BES p

2
,

Ar
Ar11

D , ~69!
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whereE(p/2,Ar /Ar11) is the complete elliptic integral of
the second kind. Whenr is large,E(p/2,Ar /Ar11).1 and
we therefore have

DG~B!.
4

3A3
r 3/2B. ~70!

Equation~70! means that the dominant contribution to the
MC stems from the critical hop which isperpendicularto the
field. This is understandable through our earlier observation
that the effective area enclosed by the electron is largest
whenB is perpendicular tod. From the above analysis, we
conclude that in 3D macroscopic samples the low-field MC
should in principle behave asr 3/2B.

V. CONCLUDING REMARKS AND SUMMARY
OF RESULTS

In closing we briefly address four issues. First, although
relevant measurable quantities such asuSm,nu2 and uSm,n,l u2
are gauge-invariant, the transition amplitudes are gauge de-

FIG. 7. Sums over forward-scattering paths between two
diagonally-separated sites on a 3D cubic lattice:I3i throughI12i for
B5(f,f,f) andI3' throughI12' for B5(f/2,f/2,2f), as func-
tions off/2p. Note that whileI3mi has the 2p (4p) periodicity for
even~odd! m, I3m' always has a period 4p.

FIG. 8. ~a! DG versusr 3/2B for B'5B(1/2,1/2,21), and ~b!
DG versusrB for Bi5B(1,1,1) for several values ofB and hop-
ping length r53,6, . . . ,600. The collapse of all the data into a
straight line verifies the scaling of small-fieldDG:(A2/6)r 3/2f for
B' and (1/3)rf for Bi . The distance between these data and the
solid reference line reflects the prefactor:A2/6 in ~a! and 1/3 in~b!.
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pendent. As an illustration, the transition amplitude will be
Lm,n @Eq. ~12!# if we use the Landau gaugeA5(0,Bx) on a
square lattice. The notationSm,n (Lm,n) refers the use of the
symmetric~Landau! gauge. Similarly, the transition ampli-
tude will read Lm,n,l @Eq. ~58!# if we use the gauge
A5(Byz,Bzx,Bxy) on a cubic lattice.

Second, returns to the origin~see, e.g., Refs. 1 and 22–24!
become important for less strongly localized electrons, and
their QI effects22,23 can be incorporated in our approach.

Third, the main limitations of our study in the case with
impurities are the following: no inclusion of spin-orbit scat-
tering effects~for this see, e.g., Refs. 7–9 and references
therein!, and no explicit inclusion of the correlations between
crossing paths, as discussed in Refs. 4 and 7. However, these
correlations are negligible when spin-orbit scattering is
present.7

Fourth, besides analytical closed-form results in 2D, this
work present exact results for 3D systems, e.g,DG
5(2p/3A3)rB(11r sin2v)1/2 @Eq. ~68!#. These results can
provide further tests of the quantum interference effects. This
can be done by measuring the MC of bulk samples~which
are small enough that only a single critical hop is allowed! in
various orientations of the field. By doing this, one can then
determinethe values ofr andv ~and, hence, also the direc-
tion of this critical hop!. Therefore, the small-field behaviors
of the MC with fields parallel and perpendicular to the direc-
tion of this critical hop can be measured and compared to our
predictions. This could potentially be very useful.

In summary, we present an investigation of quantum in-
terference phenomena and the magnetic-field effects on the
MC resulting from sums over directed paths on resistor net-
works in 2D and 3D. The principal results include~1! an
exact and explicit closed-form expression for the sum over
forward-scattering pathsS(r ) to any site on a square lattice,
which is the essential QI quantity in both uniform and disor-
dered cases,~2! an explicit formula forS(r ) for electrons
hopping on a cubic lattice,~3! the low-flux behaviors of
S(r ) in both 2D and 3D,~4! the exact summation of the
dominant winding paths in 2D,~5! compact, analytic results
for the positive MC as explicit functions of the magnetic flux
which are valid in any dimension,~6! the small-field behav-
iors of the MC in quasi-1D, 2D, and 3D, and~7! an analytic
result for the small-field MC in 3D incorporating the ran-
domness in the relative angles between the hops and the
applied field. They provide analytical and explicit closed-
form results concerning the hopping transport of strongly
localized electrons subject to an external magnetic field in
the macroscopic regime. We hope that our results stimulate
further work ~e.g., inclusion of spin-orbit effects on lattice
path integrals! on exact results in 2D and 3D systems.
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APPENDIX A: DERIVATION OF THE MOMENTS
ŠJm,n

2p
„f…‹ AND ŠzJm,n„f…z2p‹

In this appendix, we outline the derivation of the moments
shown in Eqs.~32!, ~33!, ~35!, and ~36!. First, let us derive
Eqs. ~32! and ~33!. Let si5exp(iFi), whereF i is the sum
over all phases along pathi andi51,2, . . . ,N. Note that for
every path, the probability for obtaining the overall phase
factor6si is P6 . Now

J25S (
i51

N

g isi D S (
i51

N

g isi D
and

uJu25S (
i51

N

g isi D S (
i51

N

g i

1

si
D ,

where g i561 with probability P6 . If the number of
g i521 is k, the overall probability isP1

N2kP2
k and there

areCk
N combinations amongg i ( i51, . . . ,N). For k50 and

k5N, there is only one combination producing
S(2f)12( iÞ j sisj for J

2 and also only one combination
producingN1( iÞ j si /sj for uJu2. When 1<k<N21, for
J2 there are N252Ck21

N22 combinations producing
S(2f)22( iÞ j sisj and N15Ck

N22Ck21
N22 combinations

producingS(2f)12( iÞ j sisj . Also, when 1<k<N21, for
uJu2 there areN2 combinations producingN2( iÞ j si /sj and
N1 combinations producingN1( iÞ j si /sj . In N2, the fac-
tor 2 comes from two possible ways:1si2sj and
2si1sj . Ck21

N22 comes from arranging (k21)’s minus signs
among the (N22) sl ’s left ( lÞ iÞ j ). Therefore, the overall
average is P5P1

N1P2
N1(k51

N21(N12N2)P1
N2kP2

k

5(m2n)2r . We thus have

^J2&5S~2f!1PS 2(
iÞ j

sisj D ,
where we have used the relation(k50

N Ck
NP1

N2kP2
k

5(P11P2)
N51. Similarly,

^uJu2&5N1P(
iÞ j

si
sj
.

By exploiting

2(
iÞ j

sisj5S2~f!2S~2f!

and

(
iÞ j

si
sj

5S2~f!2N,

we thus obtain Eqs.~32! and ~33!.
For m5n51/2 ~namely, each site contributes either

11 or 21 with equal probability!, P651/2 for everypath
i . The total number of sites that can be visited is
T5(m11)(n11)21 ~the initial site is not counted!. There-
fore, the total number of all possible impurity configurations
is 2T. Let us now focus on theg isi with i51,2, . . . ,N. The
total number of configuration sets is 2N since eachg i can be
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either11 or 21 with equal probability. Among the 2T im-
purity configurations, there arealways2T/2N producing a set
of g isi for everypossible set ofg isi . For instance,T53 and
N52 in the simplest caseS1,1. Among 2

358 impurity con-
figurations, two of them give 1s11s2 , 1s12s2 ,
2s11s2 , and2s1s2 . We thus have

^J2p&5
1

2N($g i % F S (
i51

N

g isi D pS (
i51

N

g isi D pG ,
and similarly,

^uJu2p&5
1

2N($g i % F S (
i51

N

g isi D pS (
i51

N

g i

1

si
D pG .

The summation in$g i% is over all possible configuration sets ofg i . In other words, the average ofA over disorder~i.e.,
^A&) means to sum over all possibleg i561 for the desired quantityA, and then divide the sum by 2N. We thus obtain

^J4&5S~4f!1
4!

~2! !2(iÞ j
si
2sj

2 ,

^J6&5S~6f!1
6!

4! 2!(iÞ j
si
4sj

21
6!

~2! !3 (
iÞ jÞk

si
2sj

2sk
2 ,

^J8&5S~8f!1
8!

6! 2!(iÞ j
si
6sj

21
8!

~4! !2(iÞ j
si
4sj

41
8!

4!~2! !2 (
iÞ jÞk

si
4sj

2sk
21

8!

~2! !4 (
iÞ jÞkÞ l

si
2sj

2sk
2sl

2 ,

^J10&5S~10f!1
10!

8! 2!(iÞ j
si
8sj

21
10!

6! 4!(iÞ j
si
6sj

41
10!

6!~2! !2 (
iÞ jÞk

si
6sj

2sk
21

10!

~4! !2 2! (
iÞ jÞk

si
4sj

4sk
21

10!

4!~2! !3 (
iÞ jÞkÞ l

si
4sj

2sk
2sl

2

1
10!

~2! !5 (
iÞ jÞkÞ lÞm

si
2sj

2sk
2sl

2sm
2 ;

and

^uJu4&5N~2N21!1(
iÞ j

si
2

sj
2 , ^uJu6&5N~6N229N14!1 3~3N24!(

iÞ j

si
2

sj
2 ,

^uJu8&5N~24N3272N2182N233!1 4~18N2257N149!(
iÞ j

si
2

sj
2 1(

iÞ j

si
4

sj
4 16 (

iÞ jÞk
S si

4

sj
2sk

2 1
sj
2sk

2

si
4 D 1 (

iÞ jÞkÞ l

sk
2sl

2

si
2sj

2 ,

^uJu10&5N~120N42600N311250N221225N1456!1 20~30N32165N21325N2224!(
iÞ j

si
2

sj
2 15 ~5N28!(

iÞ j

si
4

sj
4

1 10~15N232! (
iÞ jÞk

S si
4

sj
2sk

2 1
sj
2sk

2

si
4 D 1 300~3N28! (

iÞ jÞkÞ l

si
2sj

2

sk
2sl

2 .

Noticing that( i51
N si

m5( i51
N 1/si

m5S(mf), it can be derived that

(
iÞ j

si
2sj

25
1

2
@S2~2f!2S~4f!#, (

iÞ j
si
4sj

25S~2f!S~4f!2S~6f!, (
iÞ j

si
4sj

45
1

2
@S2~4f!2S~8f!#,

(
iÞ j

si
6sj

25S~2f!S~6f!2S~8f!, (
iÞ j

si
8sj

25S~2f!S~8f!2S~10f!, (
iÞ j

si
6sj

45S~4f!S~6f!2S~10f!,

(
iÞ jÞk

si
2sj

2sk
25

1

6
S3~2f!2

1

2
S~2f!S~4f!1

1

3
S~6f!,

(
iÞ jÞk

si
4sj

2sk
25

1

2
S2~2f!S~4f!2S~2f!S~6f!2

1

2
S2~4f!1S~8f!,
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(
iÞ jÞk

si
6sj

2sk
25

1

2
S2~2f!S~6f!2S~2f!S~8f!2

1

2
S~4f!S~6f!1S~10f!,

(
iÞ jÞk

si
4sj

4sk
25

1

2
S~2f!S2~4f!2

1

2
S~2f!S~8f!2S~4f!S~6f!1S~10f!,

(
iÞ jÞkÞ l

si
2sj

2sk
2sl

25
1

24
S4~2f!2

1

4
S2~2f!S~4f!1

1

3
S~2f!S~6f!1

1

8
S2~4f!2

1

4
S~8f!,

(
iÞ jÞkÞ l

si
4sj

2sk
2sl

25
1

6
S3~2f!S~4f!2

1

2
S2~2f!S~6f!2

1

2
S~2f!S2~4f!,

1S~2f!S~8f!1
5

6
S~4f!S~6f!2S~10f!,

(
iÞ jÞkÞ lÞm

si
2sj

2sk
2sl

2sm
2 5

1

120
S5~2f!2

1

12
S3~2f!S~4f!1

1

6
S2~2f!S~6f!1

1

8
S~2f!S2~4f!2

1

4
S~2f!S~8f!

2
1

6
S~4f!S~6f!1

1

5
S~10f!,

(
iÞ j

si
2

sj
2 5S2~2f!2N, (

iÞ j

si
4

sj
4 5S2~4f!2N,

(
iÞ jÞk

si
4

sj
2sk

2 5 (
iÞ jÞk

sj
2sk

2

si
4 5

1

2
S2~2f!S~4f!2S2~2f!2

1

2
S2~4f!1N,

(
iÞ jÞkÞ l

si
2sj

2

sk
2sl

2 5
1

4
S4~2f!2~N22!S2~2f!2

1

2
S2~2f!S~4f!1

1

4
S2~4f!1

1

2
N~N23!.

By utilizing the above relations, we have obtained the results
for the moments presented in Eqs.~35.1!–~35.4! and~36.1!–
~36.4!.

APPENDIX B: A DIFFERENT MODEL OF DISORDER

In this appendix, we study another model of diagonal dis-
order:e i uniformly distributed between2W/2 andW/2. Our
focus is on the analytical computation of the leading terms
~terms}Np) in the momentŝ uJ(0)u2p& and^uJ(f)u2p&. In-
deed, the scheme presented below applies equally to our first
model of disorder, wheree i can take two values,1W and
2W, with equal probability.

Let us write

J~f!5(
i51

N

h isi ,

where for each pathi

h i5)
j51

r S 2
W

e j
D .

It is reasonable to chooseh i from a Gaussian distribution of
zero mean and unit standard deviation. We therefore have
^h i

2n&51 and^h i
2n11&50. Forf50, we have

uJ~0!u2p5S (
i51

N

h i D 2p5)
k51

2p S (
i k51

N

h i kD .
It is found that the leading term in̂uJ(0)u2p& comes from all
terms having the form) i51

p h i
2 and there areCp

N distinct
terms of this type, each term having a coefficient (2p)!/2p.
Therefore, we obtain for the leading term

^uJ~0!u2p&5
~2p!!

2p
Np

p!
5~2p21!!!Np.

For fÞ0, we have now

uJ~f!u2p5S (
i51

N

h isi D pS (
i51

N

h i

1

si D p

5)
k51

p F S (
i k51

N

h i k
si kD

3S (
i k851

N

h i
k8
1

si
k8
D G .

The contributions to the leading terms involve different fac-
tors, as shown below. There areCp

N terms like

S )
i51

p

h isi D S )
i51

p

h i

1

si
D ,
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and they contribute

~p! !2
Np

p!
5p!Np.

There areCp22
N22 terms like

S h1
2s1

2)
i52

p21

h isi D S h18
2 1

s18
2 )

i52

p21

h i

1

si
D ,

and they contribute

S p!2 D 2 Np22

~p22!!

S2~2f!

~1! !2
5p!

2!C2
p

~2•1! !2
Np22S2~2f!.

Similarly, there areCp24
N24 terms like

S h1
2s1

2h2
2s2

2)
i53

p22

h isi D S h18
2 1

s18
2 h28

2 1

s28
2 )

i53

p22

h i

1

si
D ,

and they contribute

S p!22D
2 Np24

~p24!!

S4~2f!

~2! !2
5p!

4!C4
p

~22•2! !2
Np24S4~2f!.

In general, there areCp22k
N22k terms of the following type:

S )
i51

k

h i
2si

2 )
i5k11

p2k

h isi D S )
i51

k

h i 8
2 1

si 8
2 )
i5k11

p2k

h i

1

si
D ,

each one with a coefficient (p!/2k)2. The contribution to the
moment is therefore

S p!2kD
2 Np22k

~p22k!!

S2k~2f!

~k! !2
5p!

~2k!!C2k
p

~2kk! !2
Np22kS2k~2f!.

Notice that we have utilized the fact that

(
All different j i and l i

S )
i51

k sj i
2

sl i
2 D

always containsS2k(2f)/(k!) 2. Totally, we thus obtain for
the leading terms

^uJ~f!u2p&5p!NpH (
k50

`
~2k!!C2k

p

~2kk! !2 FS~2f!

N G2kJ .
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