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We consider an exact state transmission, where a density matrix in one information processor A at time t
=0 is exactly equal to that in another processor B at a later time. We demonstrate that there always exists a
complete set of orthogonal states, which can be employed to perform the exact state transmission. Our result
is very general in the sense that it holds for arbitrary media between the two processors and for any time
interval. We illustrate our results in terms of models of spin, fermionic, and bosonic chains. This complete set
can be used as a basis to study the perfect state transfer which is associated with degenerate subspaces of this
set of states. Interestingly, this formalism leads to a proposal of perfect state transfer via adiabatic passage,
which does not depend on the specific form of the driving Hamiltonian.
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I. INTRODUCTION

One of the central missions in quantum information
theory is to transmit known or unknown quantum states from
one region to another, for instance, from one information
processor A to another B. The transmission may be a two
quantum state swap, short-distance communications between
components of a quantum device, or long-distance quantum
communications through optical fibers. The simplest form of
short-distance transmission, two-state swap between spin qu-
bits, may be conveniently processed in terms of local spin
couplings such as the direct Heisenberg interaction. In this
case, interactions play the role of information carriers. In-
deed, quantum state transmissions through interaction-linked
chains �1,2�, such as spin chains and bosonic lattices, have
been investigated extensively �see, e.g., �3� and references
therein�. Early works �1� concentrated on the transmitting
abilities of the naturally available interactions of spin chains,
but in most cases it failed to perfectly transmit a quantum
state. Afterward �2–5� interactions were proposed where per-
fect quantum state transfer was possible.

In spite of many works in this area, a central question
remains open: given an evolution operator U���, governed by
a time-independent or time-dependent Hamiltonian H�t�
linking the two processors A and B, is it possible that there
exist states, during an arbitrary time interval �, being trans-
mitted exactly from region �or processor� A at time t=0 to
region �processor� B at t=�? Here we first define an exact
state transmission in the sense that a pure or mixed density
matrix in region �or processor� A and at time t=0 is trans-
mitted exactly to another region �processor� B �with the same
internal structure as A� at the time �. We can thus show that
there always exists a complete set ��k�0�� of orthogonal
states, which can be used to perform the exact state transmis-
sion. The �k�0�’s are states of the entire system, which refers

to two processors and also the media between them.
Throughout this paper, the phrase exact state transmission
refers specifically to the fact that the density matrices of two
processors are equal because of the use of the set ��k�0��.
Our result is very general in the sense that it holds for arbi-
trary media between the two processors and for an arbitrary
time � �where, of course, � is inside the light cone�. We
illustrate the set ��k�0�� for models of spin, as well as spin-
less fermionic and bosonic chains. Indeed, the perfect state
transfer �PST� in �2� occurs in a degenerate subspace of
��k�0��. Based on this result, we propose an approach for
perfect state transfer via adiabatic passage, which does not
rely on the specific form of the driving Hamiltonian.

II. UNIVERSAL EXISTENCE OF EXACT
STATE TRANSMISSION

We consider an M-dimensional system �M can be infi-
nite�, e.g., M =2K for K qubits, located in processor A,
spanned by the bases �����. A pure or mixed quantum state in
this processor can be generically characterized by a reduced
density matrix

�A�0� = TrB����0��	��0��� ,

where the trace is taken over both processor B and media
degrees of freedom. We want to transmit this state to another
processor B at a given time interval �. The exact state trans-
mission is defined by

���
A �0� = ���

B ��� . �1�

Here

�B��� = TrA�������	������,

where the trace is taken over both processor A and media
degrees of freedom, describes the quantum state of processor
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B at the given time �. Assume that the entire system �com-
posed of processors A, B, and also the media� is initially in
the state ��0�. We show below that there exists a complete
orthogonal set ��k�0���, which depends on �, such that an
exact state transmission described by Eq. �1� occurs if the
initial state is one of the states in this set.

Proof. For the initial state ��0�, the matrix elements of
�A�0� in processor A at time t=0 are

���
A �0� = 	�A�TrB����0��	��0�����A�

= 	�A��A�0���A�

= 	��0���A�	�A���0�� , �2�

where � ,�=1,2 , . . . ,M, and ��A�B�� refers to a state ��� in
processor A �B�. At a given time t=�, the matrix elements of
�B��� in processor B are

���
B ��� = 	��0��U†�����B�	�B�U������0��

= 	��0��U†���P��A�	�A�PU������0��

= 	�������A�	�A������� , �3�

where U��� is the evolution operator of the entire system
�two processors and the media�. Here we also introduce the
A⇔B exchange operator P satisfying

P��A�	�A�P = ��B�	�B�

and P2=1. The exchange operator P swaps all the states of
two processors. It can be expressed explicitly by

P = 

��

���A�	�A�� � ���B�	�B�� �4�

and changes its form with different bases. The state �����
=G�����0�, where we introduce the operator G���=PU���.
This operator G behaves similar �but not equal� to an evolu-
tion operator and here will be called a quasievolution opera-
tor. It is significant to note that the operator G��� is unitary
and satisfies

G†���G��� = U†���PPU��� = 1. �5�

As any unitary operator, the operator G��� can be diagonal-
ized and has a complete set of orthonormal eigenvectors
��k�0��� and exponential eigenvalues �exp�i�k���. A vector
�k�0� in the set obeys the eigenequation

G����k�0� = exp�i�k��k�0� . �6�

Comparing the expressions of ���
A �0� in Eq. �2� with ���

B ���
in Eq. �3�, it is easy to conclude that if the initial state ��0�
is one of the �k�0�’s, the equality ���

A �0�=���
B ��� or Eq. �1�

holds. In other words, an exact state transmission occurs. �
The above statement or proposition could be very useful

in investigating state transmissions. Generically, for an arbi-
trary Hamiltonian and at an arbitrary time �, we can numeri-
cally diagonalize G��� to obtain its eigenstates and eigenval-
ues especially for small systems. In fact, studies on short-
distance transmission in small systems are more significant
for information exchange between the components of a
quantum computing device. Below we will illustrate several
eigenproblems of the operator G��� using analytical models.

However, we emphasize that the proposition is universal and
only results from the fact that a unitary operator possesses a
complete set of orthogonal eigenvectors.

III. FULLY CONTROLLABLE MODELS

We first consider a one-dimensional lattice �a chain� with
N local units �particles�; each has the same �could be infinite�
dimensional eigenspace spanned by the basis ��s��, e.g., s
=0,1 for a spin chain. Assume that we are able to control the
interactions between nearest-neighbor sites �j−1� and j. We
then turn on/off the permutation operators Ej,j−1 in chrono-
logical order such that

Uf��� = EN,N−1, . . . ,E32E21, �7�

where

Ejj−1 = 

s,r

��sj�	rj�� � ��rj−1�	sj−1�� , �8�

which, e.g., in a spin chain, can be represented by the XY or
Heisenberg interactions �6�. An arbitrary state ���1�R�, at the
first site as processor A, is an eigenstate of Gf���, where �R�
is an arbitrary symmetric state for the rest of the chain
�j=2, . . . ,N�.

Let us now consider the simple, but general, problem of a
system with symmetry. If �U��� ,P�=0, e.g., in a time-
independent system Hamiltonian with U���=e−iH� leading to
�H ,P�=0, the eigenproblem of G��� becomes that of U���
and P. Specially, the common eigenstates of the time-
independent Hamiltonian H and P may be those of G��� as
well.

IV. ADIABATIC EIGENSTATES

The adiabatic approximation is usually applied to describe
systems under slowly varying time-dependent Hamiltonians.
The adiabatic quantum state transfer for spin chains was
studied in �7,8�. We now consider a time-dependent
Hubbard-type Hamiltonian �9�,

H�t� = − J���Th + ����hs + HU, �9�

where

Th = 
 �aj
†aj+1 + aj+1

† aj� �10�

is the hopping term. nj =aj
†aj is the number operator at site j.

The creation operator aj
† satisfies the standard commutation

relations for bosons aj =bj and anticommutation relations for
spinless fermions aj =cj. This model is equivalent to a gen-
eral XY model in spin chains through the Jordan-Wigner
transformation �6�. The parameter �= �

2 − t; and HU
=U
 jnj�nj −1� is the on-site repulsion �HU�0 for fermions�.
The single-particle energy hs=
 j	 jnj is designed such that
	 j 
	 j+1 for all j’s and �� �

2 ��0. We also require that
J��������� is an even �odd� function of � and J��� /2�=0
when t=0�+� /2� and ��−� /2�. Also,

H�0� = �� �

2

hs + HU

and
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H��� = − �� �

2

hs + HU.

In this case processor A �B� is at the first �last� site. An initial
state a1

†�0� is the lowest eigenstate of H�0� when the total
particle number is 1, where �0� is the bosonic or fermionic
vacuum state. If we control the evolution of H�t� adiabati-
cally from time 0 to �, the final state will be e−i����aN

† �0�,
where ���� is the sum of the dynamic phase angle and geo-
metric phase angle. The state a1

†�0� satisfies

Gad���a1
†�0� = e−i����a1

†�0� , �11�

which is an eigenstate of the quasievolution operator Gad���.
Another trivial eigenstate of Gad��� is the vacuum state �0�.
For spin or spinless fermionic chains and total particle num-
ber larger than 1, the n-particle product states of c1

†c2
† . . .cn

†�0�
are also eigenstates of Gad���. However, if the total boson
number is larger than 1, there are two situations due to the
relative strength of �� �

2 � and U. In the limit when HU=0, the
eigenstates of Gad��� will be condensed to c1

†n�0�. When the
on-site repulsion is strong, the eigenstates have the same
form as those of fermionic chains if the total boson number
is not large.

It is important to note that the hopping term Th does not
affect the above formalism, as long as it drives the system
within the adiabatic regime. In other words, this adiabatic
protocol is insensitive to the driving Hamiltonian, which
makes it a promising candidate in state transmission. This
approach is applicable to higher dimensional systems.

V. LINEAR MODEL

We now consider a linear Hamiltonian with the same
notations for operators as in Eq. �9�,

H = 

j

Jj�ei
aj
†aj+1 + e−i
aj+1

† aj� + 

j

	 jnj , �12�

where 
 is a phase angle. It may be a linearly coupled
bosonic Hamiltonian which is equivalent to that of the on-
chip coupled cavities �e.g., in Refs. �10–12�� or a generalized
Bose-Hubbard model without on-site repulsion �9�. The de-
sired parameters 	 j and Jj can be realized by experimental
methods such as tunable transmission line resonators, super-
conducting quantum interference device couplers �13�, and
external magnetic traps �9�. The Hamiltonian may also rep-
resent a general XY model of a spin chain.

A recent work �14� discussed the mapping between a rank
l irreducible spherical tensor bosonic operator Alm

† and the
creation operator ak

† at site k=m+ N+1
2 . Those results can be

used directly to the spinless fermionic and spin cases mod-
eled by Eq. �12�. The three components of the angular mo-
mentum vector L may be expressed by creation and annihi-
lation operators of fermions or bosons,

Lx = 

j

Dj�aj
†aj+1 + aj+1

† aj� ,

Ly = i

j

Dj�aj
†aj+1 − aj+1

† aj� ,

Lz = 

j
� j −

N + 1

2

nj ,

where

Dj =
�j�N − j�

2
.

If we select Jj and 	 j in Hamiltonian �12� such that Jj =JDj

�2� and 	 j =0 �the case 	 j =	�j− N+1
2 � will be considered in the

next section�, the time-evolution operator of the Hamiltonian
becomes

U��� = exp�− iJ�Lx� . �13�

The evolution operator U��� corresponds to a rotation opera-
tor R���. The irreducible tensor operator Alm

† in the Heisen-
berg representation evolves as

Alm
† ��� = 


m�

�− �i��/2��m�−m�dm�m
l �− J��Alm�

† �0� , �14�

where Alm�
† �0�=Alm

† . When �=� /J, the expression is reduced
to a simple form

U†�t0�ai
†U�t0� = raN−i+1

† , �15�

where the factor

r = exp�i�
N − 1

2

 ,

and its interesting effect has been discussed in �14�. It is easy
to show that, in this case, we can use

P = r� exp�i�Lx�

as an exchange operator, which is equivalent to the exchange
operator within the two processors and mirror exchanging
the site indices. The quasievolution operator G��� now
becomes

Gl��� = r� exp�− i�J� − ��Lx� . �16�

An eigenstate �k�0� may be expressed by the product of the
operators

Ãlm
† = exp�− i

�

2
Ly
Alm

† exp�i
�

2
Ly
 �17�

acting on the vacuum state �0�. At the time �=� /J, the op-
erator Gl�� /J�=r� is a constant. All product states of ai

† act-
ing on the vacuum state are the eigenstates of Gl�� /J�.

VI. GENERALIZATION USING THE DRESSING
TRANSFORMATION

The time-independent dressing transformations W pre-
serve the commutation relation �14� among the angular mo-
mentum components but introduce new effects. The whole
family of Hamiltonians generated �15� by dressing transfor-
mations W can behave as the linear cases studied in the last
section. We obtain the quasievolution operators and their
eigenstates of two models via individual dressing transfor-
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mations. As an example, under the transformation

Wj = exp�− 
� j −
N + 1

2

nj� , �18�

the Hamiltonian Hl=JLx in Ref. �2� becomes

Hl� = J�cos 
Lx + sin 
Ly� . �19�

The eigenstates of Hl� and the set ��k�0�� can be expressed
by a product of the tensor operators

Alm
† �
� = exp�i
Lz�Alm

† exp�− i
Lz� �20�

acting on the vacuum state. The quasievolution operator is

Gr��� = r� exp�− i�J� − ���cos 
Lx + sin 
Ly�� . �21�

At the time �=� /J, the quasievolution operator Gr�� /J�
=r� is a constant. Again, all product states of Alm

† �
� acting
on the vacuum state are the eigenstates of Gr�� /J�.

Another example is the one-mode squeezing transforma-
tion

Wj = exp� �

2
�bj

2 − bj
†2�� , �22�

where the transformed Hamiltonian reads as

Hl� = J�cosh �Lx + sinh �Lx�� , �23�

with

Lx� = 

j

Dj�bj
†bj+1

† + bj+1bj� . �24�

In this case, the quasievolution operator is

Gs��� = r� exp�− i�J� − ���cosh �Lx + sinh �Lx��� . �25�

At the time �=� /J, again Gs�� /J�=r� is a constant.

VII. PERFECT STATE TRANSFER

Perfect state transfer was found �2–5� by designing spe-
cific strengths of the coupling constants in spin chains. Inter-
esting studies of generic properties of perfect state transfer
have been carried out in the last few years �see, e.g.,
�16–19��. Recently, it has also drawn experimentalist’s atten-
tion �20�. Below we will look into PST in terms of the com-
plete orthogonal set ��k�0��.

Although exact state transmissions exist universally, not
all of them are significant for PST. For instance, the vacuum
state �0� is an eigenstate of G��� in the above example, such
that ���

A �0�=���
B ���, but there is no actual information trans-

mitted in the process since the two processors share the same
information on this state. A significant exact state transmis-
sion for the PST requires that at least some of the eigenstates
of G��� in the set ��k�0�� are biased to occupy processors A
and B. Ideally, if an eigenstate of G��� is localized at pro-
cessor A then that state can be perfectly transferred. Here,
localization means that the targeted density matrix �A�0� is a
state that does not entangle other states outside processor A.

In quantum information theory, quantum state transfer of-
ten refers to transferring an unknown state. Since the set

��k�0�� is a complete orthogonal set, a known or unknown
initial state can be expanded as ��0�=
k=1

M Ck�k�0�, which is
usually not an eigenstate of G��� because

G�����0� = 

k=1

M

Cke
i�k�k�0� . �26�

At a specific time ��, ����� may again become an eigenstate
of G���� such that

����� = ei�������0� . �27�

The condition to satisfy this equation is

Ck�exp�i�k� − exp�i������� = 0. �28�

Therefore, for Ck�0, one obtains the condition �����=�k
+2�Kk, where Kk are arbitrary integers. This is a very re-
strictive condition if there are many coefficients Ck�0,
which may only happen for particular systems with symme-
try. As examples, in the above linear system �when ��=� /J,
because Gl�� /J�, Gs�� /J�, and Gr�� /J� are constants� any
state in processor A is an eigenstate of G����. However, if
there are few nonzero Ck’s, the perfect state transfer still
happens even without symmetry. In the cases of two nonzero
Ck’s, the perfect state transfer will always happen. This in-
teresting result appears directly from the theoretical frame-
work presented above.

The adiabatic process is an example. Assume that we are
initially in a superposition state ��0�=C1�0�+C2a1

†�0�, then

G�����0� = C1�0� + C2e−i����a1
†�0�

is not an eigenstate of G��� but becomes an eigenstate at a
given time �� when �����=2�. Thus, ����� is an eigenstate
of G����. The state evolves from time 0 to �� such that

C1�0� + C2a1
†�0� → C1�0� + C2aN

† �0� .

This is a perfect adiabatic state transfer. When the on-site
repulsion is small, an arbitrary function f�b1

†� can also be
perfectly transferred. As a specific example, here we set Th
=Lx, hs=Lz, and HU=0 in Eq. �9�, so that the Hamiltonian

H�t� = G exp�i����Ly�Lz exp�− i����Ly� , �29�

where

G = �J���2 + ����2 �30�

and

���� = arctan� J���
����


 . �31�

If G is a constant, the ground state becomes
exp�i����Ly�a1

†�0�, with a time-independent eigenvalue
−G�N−1� /2. Thus, one can easily obtain the adiabatic con-
dition for the ground state

�1

2

d�

dt
�N − 1� � 1, �32�

which can be satisfied by controlling the ratio J��� /����.
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VIII. PERFECT MIXED-STATE TRANSFER

If the eigenstate ����� is not completely localized at pro-
cessor A, a reduced density matrix at processor A with matrix
elements,

���
A = 	�������A�	�A������� , �33�

can be perfectly transferred from processor A to B. As an
example, we will consider a collective dressing transforma-
tion. Equation �13� with 	�0 can be regarded as an evolu-
tion operator via a dressing transformation W=exp�i�Ly�,
where �=arctan�	 /J�, for which we have

H = JLx + 	Lz = �J2 + 	2WLxW
†. �34�

At the time

�� =
�

�J2 + 	2
, �35�

a dressed tensor is

Alm
† ��� = WAlm

† W† = 

m�

dmm�
l ���Alm�

† . �36�

Products of tensors Alm
† �
� acting on the vacuum state, for

example, Alm
† �
��0�, are eigenstates of G����. A state

��0� = C1�0� + C2Al−l
† ����0� �37�

cannot be prepared at processor A located at the first site. The
reduced density matrix at site 1 now becomes

�A = � �C1�2 C1C2
��cos

�

2

N−1

C2C1
��cos

�

2

N−1

�C2�2�cos
�

2

2N−2� , �38�

where we have used

d−l−l
l ��� = �cos

�

2

N−1

.

However, this mixed state can still be perfectly transferred
from site 1 to site N during the time interval ��. Density
matrix �38� becomes a pure state when N goes to infinity or
� is small �i.e., when 	 is small, as in experiments �21��. In
that case, it becomes a perfect pure-state transfer. We empha-
size here that although we transfer a mixed state, our transfer
is still perfect. Our result is different from previous ones
where the fidelity is less than 100% �see, e.g., Ref. �22� and
references therein�.

IX. CONCLUSION

We have shown the general existence of a set of initial
states such that exact state transmissions can take place. The
result is universal in the sense that it holds for arbitrary in-
teractions, through any media between the two processors
and at any given evolution time. The existence of such a set
is essentially based on the properties of a unitary operator.
We have shown a unitary operator, called the quasievolution
operator, whose complete orthogonal set of eigenstates can
perform the exact state transmission. We illustrate the “broad
applicability” of this set of eigenstates through analytical
models. Generally the quasievolution operator can be nu-
merically diagonalized especially for small systems. The
ability to transfer unknown states is essential to quantum
information processing. The set can be used as a basis to
perform perfect state transfer in its degenerate subspaces. In
addition, the present formalism leads us to propose an adia-
batic perfect state transfer protocol, which is insensitive to
the Hamiltonian driving the transfer.
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