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We show how to perfectly transfer, without state initialization and remote collaboration, arbitrary functions
in interacting boson lattices. We describe a possible implementation of state transfer through bosonic atoms
trapped in optical lattices or polaritons in on-chip coupled cavities. Significantly, a family of Hamiltonians,
both linear and nonlinear, is found which are related to the Bose-Hubbard model and that enable the perfect
transfer of arbitrary functions. It is shown that the state transfer between two sites in two-dimensional lattices
can result in quantum interference due to the different numbers of intermediate sites in different paths. The
signature factor in nuclear physics can be useful to characterize this quantum interference.
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I. INTRODUCTION

Quantum information processing �QIP� often needs to
transfer a quantum state from one site to another �1�. For
example, in optical quantum communications, one may di-
rectly transmit flying photons. However, in many other tasks,
e.g., solid-state-based quantum computation, quantum state
transmission is not a trivial task. Completing such a task is
often needed in QIP, e.g., the quantum information exchange
between two separate processors. Therefore, it is very impor-
tant to find physical systems that provide robust quantum
state transmission lines linking different QIP processors.

In recent years, extensive investigations have been done
on quantum state transfer. In particular, many results have
been obtained on qubit-state transfer through spin chains
with various types of neighbor couplings. The original idea
of quantum state transfer through a system of interacting spin
1/2 was introduced by Bose �2�. Afterward, Christandl et al.
�3� and independently Nikolopoulos et al. �4� found that per-
fect state transfer �PST� is possible �5� in spin-1/2 networks
without any additional actions from senders and receivers,
including not requiring switching on and off qubit couplings.
These results have triggered much interest in demonstrating
and optimizing reliable state transfer in different models of
interacting spin chains �see, e.g., �6–8� and references
therein�. For example, Di Franco et al. �9� clarified that PST
can be realized in spin-1/2 chains with neither state initial-
ization of the medium nor fine-tuned control pulses. Re-
cently, this scheme �9� was further simplified �10� by not
using remote collaboration of senders and receivers. Thus,
the PST of qubit states only requires access to two spins at
each end of the spin-1/2 chain.

Here, we show how to achieve PST of any function
through bosonic lattices. Earlier schemes often assume that

all the spins �besides the edge spins� are in the ground state.
Here, we do not assume this.

So far, only a few works �11–14� investigated the perfect
transmission of an arbitrary continuous-variable quantum
state. As it is well known, many important quantum states
belong to this class, e.g., squeezed and coherent states. Also
it is possible to make QIP with such states for many impor-
tant tasks. Here, we propose a protocol to perfectly transfer
an unknown n-variable function from a processor at one end
of a boson chain to another processor at the other end �see
Fig. 1�. In the former schemes, exponential-type states �e.g.,
coherent or squeezed states� cannot be perfectly transferred
through spin networks. It is important to emphasize that our
proposal can do this. By using continuous-variable states,
our protocol can be designed directly, since there is a one-
to-one correspondence between continuous variables and
bosonic operators.

The interaction required for perfect state transfer in our
model can be implemented using the Bose-Hubbard
model—a paradigm for studying correlated bosonic systems,
such as optical lattices, Josephson junction arrays, topologi-
cal excitations, and so on �see, e.g., �15� and references
therein�.

We stress that there is a family of Hamiltonians that can
perform the same tasks. We derive this family via the so-

FIG. 1. �Color online� Our protocol enables a perfect mirror
transfer of any n-variable function f from processor A to processor
B through a bosonic chain initially in an arbitrary state.
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called dressing transformations, which will be described be-
low. Moreover, we show that the state transfer between two
sites in two-dimensional lattices can produce quantum inter-
ference that can be characterized by the signature factor used
in nuclear theory spectroscopy �16�.

II. BOSE-HUBBARD MODEL

Let us now consider dynamics of bosons, in a system with
N sites, governed by the Bose-Hubbard Hamiltonian
�15,17–19�

H = − �
k=1

N−1

Jk�bk
†bk+1 + bk+1

† bk� + �
k=1

N

�knk + HU, �1�

where nk=bk
†bk is the number operator for the bosons located

at the kth site, bk
† �bk� is the bosonic creation �annihilation�

operator. For simplicity, we set �=1 and, hereafter, we drop
the lower and the upper bounds of summation. Equation �1�
describes hopping bosons in the presence of the on-site re-
pulsion given by

HU = U � nk�nk − 1� . �2�

The hopping �tunneling� matrix element between nearest-
neighbor sites is given by

Jk =� d3r w��r − rk��T + Vlat�r��w�r − rk+1� , �3�

where w�r−rk� is a single-atom Wannier function at lattice
site k, Vlat�r� denotes the optical lattice potential, and T is the
kinetic energy of a single atom. The parameter

�k =� d3r VT�r��w�r − rk��2 � VT�rk� , �4�

where VT�r� characterizes an additional external trapping po-
tential. The parameters in an optical lattice are controllable.
For instance, the well depth, V0=max�Vlat�r��, of the optical
lattice can be tuned in real time by changing the power of the
lasers. The parameters VT�rk� and V0 can be controlled to
obtain desired values of �k and Jk.

The model described by Eq. �1� can, e.g., be implemented
in a system of interacting polaritons in periodic arrays of
coupled optical resonators with strong atom-photon coupling
�20� �for a review, see �18��. Large-scale �N�100� arrays
of ultrahigh-finesse �Q	1�106� coupled photonic-crystal
nanocavities have been realized experimentally �21� demon-
strating a relatively long photon lifetime �	1 ns� with low
propagation and coupling losses. Also ultrahigh-finesse tor-
oidal fiber-coupled microresonators have been proposed
�20�, for which the observed coupling between fundamental
modes of a fiber and a microresonator much exceeds losses
into other modes; specifically, the experimental ideality fac-
tor was reported to be 99.97% �22�. Alternative implementa-
tions of Eq. �1� include arrays of Josephson junctions �e.g.,
�23,24�� and ultracold atoms trapped in optical lattices �as
suggested in �17� and first experimentally realized in �25��.
For a review on the Bose-Hubbard model and its physical
implementations, see �15�. We note that, in the latter systems,

it is more difficult, in comparison to coupled arrays of cavi-
ties, to access and to control individual lattice sites due to the
small distances between the sites �18�.

We note that when the nonlinear term HU in Eq. �1� is
negligibly small, Eq. �1� becomes a linearly coupled bosonic
Hamiltonian, which is equivalent to that of the on-chip
coupled cavities �e.g., as theoretically described in Refs.
�20,26,27��. The controllable parameter �k of these cavities
can be realized by, e.g., tunable transmission line resonators
�e.g., Refs. �28,29��, while the tunable coupling Jk between
each pair of resonators can be realized by superconducting
quantum interference device couplers. Recent progress in
manufacturing ultrahigh-finesse microcavities on a chip
�30–33� indicates the experimental feasibility of state trans-
fers in such systems with current or soon-to-be-available
technology.

III. ANGULAR MOMENTUM AND ENGINEERED
BOSE-HUBBARD MODEL

The angular momentum vector L is a single-particle op-
erator that can have either a fermionic or a bosonic represen-
tation. The bosonic representation of L can be written �34� as

L = �
m,m�


lm�L�lm��Alm
† Alm�, �5�

where �lm� are eigenstates of the total angular momentum L2

and Lz. Here, we define bosonic creation operators Alm
† such

that, under rotation, they map or transfer among themselves
as a rank-l irreducible spherical tensor operator.

Reference �3� maps the indices of the site numbers of
a one-dimensional chain into the magnetic quantum number
m of the total angular momentum l, such that l= N−1

2 and m
=− N−1

2 +k−1. For instance, the magnetic number for the first
site is m=−l=− N−1

2 . With this mapping, the rank-l irreducible
spherical tensor bosonic operator Alm

† corresponds to the
bosonic operator bk

† at site k=m+ N+1
2 , which obeys the tensor

transformation �34�

R���Alm
† R−1��� = �

m�

Dm�m
l ���Alm�

† , �6�

where R��� is a rotation operator with Euler angles �
= �� ,� ,�� and

Dm�m
l ��� = exp�− im���dm�m

l ���exp�− im�� �7�

given in terms of Wigner’s d matrix �35�, dm�m
l ���. The three

components of the angular momentum vector may be ex-
pressed by atomic creation and annihilation operators as

Lx = � Ck�bk
†bk+1 + bk+1

† bk� ,

Ly = i � Ck�bk
†bk+1 − bk+1

† bk� ,

Lz = � nk�k − 1
2 �N + 1�� , �8�

where Ck= 1
2
�k�N−k�. The term �nk in Lz is the total boson

number and commutes with other operators. If we engineer
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Jk and �k in Eq. �1� such that �3� Jk=JCk and �k=�� N+1
2 −k�,

then its time evolution becomes

U�t� = exp�i�JLx + �Lz − HU�t� . �9�

The on-site repulsion HU can be adjusted by varying the
strength U.

IV. LINEAR CASE

Let us first consider the case when J is so large that we
can ignore HU, so the Bose-Hubbard model becomes linear
and the evolution operator U�t� corresponds to a rotation
operator R���. Additionally, by assuming that �=0, the evo-
lution is described by

U†�t�Alm
† U�t� = � ei�	/2��m�−m�dm�m

l �Jt�Alm�
† . �10�

When t0=	 /J, this expression reduces to a simple form

U†�t0�bi
†U�t0� = rbN−i+1

† , �11�

where the factor

r = exp− i	
N − 1

2
� �12�

is analogous to the so-called signature in nuclear-structure
theory �16�. Below, we will discuss the interference induced
by this signature factor. There exist observable effects for
different signatures in nuclear spectroscopy. For instance, the
lowest �so-called bandhead �16�� energy differs for the two
cases r=−i and r= i, for the same spin K=1 /2. Here, r=1
when the total number of sites N=5,9 ,13, . . .. In this case

U†�t0�bi
†U�t0� = bN−i+1

† . �13�

Moreover, these results are valid for a general linear Hamil-
tonian Hl=v ·L, with constant vector v= �−J ,0 ,−��.

V. PERFECT STATE TRANSFER FOR THE LINEAR CASE

The following results can be applied to various linear op-
tical or atomic systems. Now, let us assume that a multivari-
able function f is encoded in an n-site processor A, such that
f�x1 , . . . ,xn� is mapped into the state f�b1

† , . . . ,bn
†��0� as fol-

lows:

f�x1, . . . ,xn� → f�b1
†, . . . ,bn

†��0� , �14�

where �0�= �0��N. For instance, a function �x1
2+�xn

2, with
unknown coefficients � and �, is mapped into the state
��b1

†b1
†+�bn

†bn
†��0�. Thus, any general function f can be per-

fectly transferred as

U�t0�f�b1
†, . . . ,bn

†��0�

= f„U�t0�b1
†U†�t0�, . . . ,U�t0�bn

†U†�t0�…�0�

= f�bN
† , . . . ,bN−n+1

† ��0� . �15�

The function f operates sequentially from 1 to n in processor
A and reads in the opposite order in processor B. We empha-
size that the central subset part of the chain �Fig. 1� should
not be necessarily in the ground state and can be in an arbi-

trary state. However, for simplicity and without loss of gen-
erality, here, we work with the state �0�.

VI. PERFECT STATE TRANSFER
WITH ON-SITE REPULSION

When the strength of HU is relatively strong and the total
number �nk is much smaller than the number N of sites, the
system tends to have at most one atom at each site because of
the gap caused by HU. Moreover, in the limit when there is
only one boson, we can still transfer a function perfectly. In
this case, an arbitrary state �
� of the whole system can be
annihilated by the on-site repulsion Hamiltonian HU�
�=0.
Therefore, this case is the same as the one in Eq. �15�. The
transfer would be perfect if we are able to prepare an initial
state

�
�1 = ��0� + �b1
†�0� , �16�

where only the first site is occupied. Thus, the state can be
perfectly transferred to �
�N in the same way as in the linear
case. Generally, an arbitrary state,

�
� = ��0� + �
k=1

n

�kbk
†�0� , �17�

with one atom at an n-site processor A can also be transferred
perfectly.

VII. GENERALIZATION

A time-independent arbitrary unitary transformation W
does not change the commutation relations among angular
momentum components, meaning that Hl=v ·L is mapped
into Hl�=v ·L�, where the components of L� satisfy the same
commutation relations. However, this map may introduce
new effects. Indeed, the whole family of Hamiltonians gen-
erated by an arbitrary W can transfer functions perfectly as in
Eq. �13�. For spin systems, this transformation W corre-
sponds to the so-called dressed qubit �36�. The bosonic Hil-
bert space is infinite dimensional and this allows more flex-
ibility to use additional transformations, including
continuous-variable transformations �this is not possible in
spin chains�. As an example, here, we now consider transfor-
mations W such that they act on each site individually,
namely, W=�k=1

N Wk. For instance, the Hamiltonian Hl=JLx
becomes

Hl� = Hl + � Ck�2���2 − ����bk + bk+1� + H.c.�� �18�

under the displacement operator Wk=exp��bk
†−��bk�. Here,

we set �k’s equal to � for all sites, so that the dressed coher-
ent state (dressed displaced vacuum)

��� � ����N = � exp��bk
† − ��bk��0� �19�

is invariant under the transformation U�t0�. Any function f is
mirror transferred via the coherent state ���,
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f�b1
† − ��, . . . ,bn

† − ������ → f�bN
† − ��, . . . ,bN−n+1

† − ������ .

�20�

Another example of dressing transformation occurs via the
one-mode squeezing operator Wk=exp��� /2��bk

2−bk
†2��,

where the transferred Hamiltonian reads

Hl� = Hl cosh � + Hs sinh � , �21�

where

Hs = � Ck�bk
†bk+1

† + bk+1bk� . �22�

This induces squeezed states. Any function f can be perfectly
mirror transferred via the dressed squeezed vacuum

��� � ����N = � exp���/2��bk
2 − bk

†2���0� �23�

in the same way as in Eq. �20�.
We can also introduce another useful nonlinear term by

setting � as an operator. If we bosonize �=�0�c+c†� and as-
sume a small �0, the Hamiltonian �21� becomes

Hl� = Hl + �0�c + c†�Hs, �24�

which describes a nonlinear down-conversion effect. If the
boson � is coupled to a collective rotational system, �=�0Jz,
the additional term in the Hamiltonian becomes
�CkJz�bk

†bk+1
† +bk+1bk�=HsJz.

For generalizations, Refs. �3,12� also discussed the possi-
bility of other Hamiltonians that might not be directly related
to Hl, but play the same role as Hl. Reference �12� shows that
perfect state transfers are associated with the spectra of these
Hamiltonians. Here it is useful to point out that these Hamil-
tonians must not have the same eigenspectra as Hl. These
Hamiltonians can generate, via arbitrary dressing transforma-
tions W, other families which are not equivalent to the family
of Hl.

VIII. INTERFERENCE EFFECTS DUE TO DIFFERENT
NUMBERS OF SITES IN EACH PATH

The phase or signature, given by Eq. �12�, with values of
�1 and �i forming a Z4 cyclic group, is analogous to the
phase gate for qubits. For instance, an unknown state ��0�
+�b1

†�0� can be transferred into ��0�+r�bN
† �0�. When the to-

tal number of sites, N, is even, the signature r= � i. When N
is odd, r= �1. For a given signature r, this “phase gate” is
applied during the perfect function transfer processes.

This phase gate induces an important effect. Consider
now site A as a sender and site B as a receiver. On a two-
dimensional lattice, we can consider different paths from site
A to site B. These paths can be designed such that the values
of N are different for each path, but their “generalized optical
paths” are the same. Different values of N could result in up
to four different values of the signature factor r. A perfect
function transfer can simultaneously occur in, for instance,
two paths. This resembles the inference of two waves. States
sent from site A via different paths will interfere at site B
�Fig. 2�. Quantum interference effects in directed paths can
produce measurable effects �see, e.g., �37��.

Following Ref. �17�, we can characterize the bosonic field
operators

�r� = �
k,p

bk
�p�w�r − rk

�p�� �25�

at time t=0, where p=1,2 denotes the two paths with the
numbers of sites: N1 and N2. The field operator  evolves as

�r,t� = e−iJ�Lx
�1�+Lx

�2��t�r�eiJ�Lx
�1�+Lx

�2��t, �26�

where Lx
�1� �Lx

�2�� is the angular momentum operator of path 1
�2�. At time t= t0,

�r,t0� = �
k

�bk
�1�w�r − rN1−k+1

�1� � + rbk
�2�w�r − rN2−k+1

�2� �� ,

�27�

where we set r=1 for path 1. The average field intensity at r
is

I�r,t� = 
†�r,t��r,t�� , �28�

where 
¯ � denotes the expectation value for the initial state.
For simplicity, let us consider the processor A to be localized

at the origin r=0. This implies that 
�bk�
�p���†bk

�p��=0, except
for k=k�=1. The initial intensity is

I�r,0� = 4
�b1
�1��†b1

�1���w�r − r1��2, �29�

where r1�r1
�1�=r1

�2�. Since we start from the first site r=0 at
time t=0, we approximately set b1

�1�=b1
�2� being the same

boson. The final intensity then becomes

I�r,t0� = 
�b1
�1��†b1

�1���w�r − rN��2�2 + r + r�� �30�

because we set the two paths ending up at the same site rN
�rN1

�1�=rN2

�2�. The intensity I varies with different values of the
signature r. For example, the intensity I in Fig. 2 will be half
of I�r ,0�. When the signature r=+1,−1, � i, the factor �2
+r+r�� in Eq. �30� is equal to 4, 0, and 2, respectively. This
corresponds to constructive, destructive, and in-between in-
terferences. This site-number-dependent interference can be
generalized to include contributions from many directed
paths �37�. Note that, in quantum interference path-integral
calculations �37�, summing over directed paths can require
summing over an enormously large number of different

FIG. 2. �Color online� An example of site-number interference
effect for two paths containing N=5 sites �with signature factor r1

=1� and N=8 sites �upper path with r2= i�. The generalized “optical
paths” in this case are the same �because both paths are of equal
length�, but the number of sites, N, for each path is not. The overall
phase factor r for these two paths is the product of the signature
factors for each path. Thus r=r1r2= i. Here, r= i plays a role analo-
gous to the Aharonov-Bohm flux �.
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terms, instead of just four different types of terms here. In
other words, the Z4 group cyclic nature of the signature fac-
tor reduces the huge number of different terms used for stan-
dard interference calculations �37� to just summing over four
possible values of r, with r= �1, � i.

IX. CONCLUSIONS

We have shown, by generalizing the recent results of
�9,10�, that arbitrary functions can be sent perfectly �without
state initialization and remote collaboration� through engi-
neered interacting bosonic and qubit chains. As an example,
we have analyzed perfect state transfers �using, e.g., ultra-
cold bosonic atoms in optical lattices or polaritons in coupled
cavities� described by the Bose-Hubbard model with prop-
erly designed site-dependent tunneling amplitudes �the so-
called Krawtchouk lattices�.

In a more general case, we have studied a family of linear
and nonlinear Hamiltonians that enable perfect state transfers
according to dressing transformations leading to, e.g.,
dressed qubits, dressed coherent state �dressed displaced
vacuum�, or dressed squeezed vacuum. We have also shown
that one can observe quantum interference of states transmit-
ted in two-dimensional lattices through various paths differ-
ing solely in the numbers of intermediate sites of each path.
This interference effect is analogous to the signature-
dependent effects in nuclear-structure theories �16�.
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