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Quantum control requires full knowledge of the system many-body Hamiltonian. In many cases this infor-
mation is not directly available due to restricted access to the system. Here we show how to indirectly estimate
all the coupling strengths in a spin chain by measuring one spin at the end of the chain. We also discuss the
efficiency of this “quantum inverse problem” and give a numerical example.

DOI: 10.1103/PhysRevA.79.020305 PACS number�s�: 03.67.Lx

I. INTRODUCTION

The great progress in experimental techniques for ma-
nipulating microscopic objects has brought even quantum-
mechanical systems under control. It has been one of the
strong driving forces to promote the recent intensive theoret-
ical study of quantum information science. What we need
toward the realization of quantum information processing
and quantum simulations is control over a quantum system
that resides in a high-dimensional Hilbert space. Then, in
order to achieve physical controllability, we typically decom-
pose the Hilbert space into a tensor product of many low-
�usually two-� dimensional spaces and consider addressing
each of them individually as well as coupling any two mem-
bers.

Although the addressability of the whole system is thus
the key, paradoxically it is the origin of the biggest problem
in quantum control. That is, that we can access the system
means that the surrounding environment can also interact
with it, causing unwanted errors. In order to circumvent or
minimize the effect of noise, various methods have been pro-
posed: e.g., quantum error correcting codes, decoherence-
free subspaces, and topological quantum computing. Here,
we focus on an alternative approach—i.e., operating only a
�small� subset of the system while isolating the rest from its
environment. If we have all information on the Hamiltonian
describing the system, its controllability can be analyzed by
the theory of quantum control �see �1� for an introduction�.
Recently, it has also been shown that entire spin chains can
be fully controlled by operating on one end only, provided all
parameters of the Hamiltonian are known �2,3�.

However, if we could completely isolate part of the net-
work from any interactions with the outer world, then this
isolation would prevent us from obtaining the required infor-
mation on the shielded subsystem. While the type of interac-
tion that governs the dynamics inside the network would be
known due to its intended design, the precise values of vari-
ous parameters that characterize the full Hamiltonian might
not be known accurately enough to enable us to have a de-
sired controllability. Hence, a natural question arrises: is it
possible to estimate the necessary parameters of the Hamil-
tonian only by accessing a subset of the whole network? We
answer this question positively and show how to do it for
chains of spin-1 /2 particles whose interaction is of Heisen-
berg type. The main task is thus to estimate the coupling

strengths between “untouchable” spins. This is also useful
for quantum-state transfer in spin chains, where some
schemes require a good knowledge of the system Hamil-
tonian �4�.

The question of system identification of a quantum device
by Fourier analysis has recently been studied in �5�, where
the identification of two-level subspaces was emphasized.
Here we give a solution to system identification for the
N-level case under strong local constraints. Our work can be
seen as an example of inverse problems that are very impor-
tant in a number of areas of science and engineering. There
are a plethora of situations where indirect probing is the only
way to acquire desired information, from medical ultra-
sonography to seismic reflection in geophysics. A closely
related problem to the one in this paper is the estimation of
spring constants in classical-harmonic oscillator chains �6�.
Our contribution is to provide the quantum-mechanical coun-
terpart of this problem and to discuss the efficiency of the
estimation procedure. Roughly speaking, we obtain informa-
tion on the couplings by inserting one excitation into the
chain and observing its return probability. Since the excita-
tion travels back and forth the chain, it obtains knowledge on
all the couplings �see Fig. 1�. This is proved by the main
theorem in Sec. II. It turns out that in order to obtain good
knowledge on the coupling strengths, the excitation needs to
“see” each single link of the chain 2N times, where N is the
length of the chain. This claim will be made rigorous by
using the uncertainty principle of the Fourier transform in
Sec. III.

II. SETUP AND MAIN RESULT

We consider a chain of N spins coupled by an anisotropic
Heisenberg Hamiltonian: i.e.,

FIG. 1. �Color online� All coupling strengths �black lines� of a
chain of spins can be estimated indirectly by quantum-state tomog-
raphy on one end of the chain �e.g., the left-most spin, inside the
dashed square�.
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with unknown couplings �n and anisotropy �. Additionally,
we assume that we know the signs of �1 and �2. H conserves
the number of excitations: i.e.,

��
v�V

Zv,H� = 0,

This allows us to speak about local excitations in the system.
In particular, we will see later that for almost all cases it
suffices to restrict the parameter estimation to the single- �or
first-� excitation sector of the system. As usual, we let �n	
denote single-excitation states with spin n in the state �1	 and
all other spins in the state �0	. The state with all spins in �0	
will be denoted as �0	. The unknown part of the Hamiltonian
is the interaction strength �n between each neighboring pair
of spins �n ,n+1�. The purpose of the following will be to
estimate these coupling strengths.

Theorem. Assume that the Hamiltonian of Eq. �1� has a
nondegenerate spectrum in the first excitation sector. Then
the coupling constants �n can be obtained by acting on the
first spin only.

We remark that although the nondegenerate spectrum is
the generic case, in practice almost-degenerate eigenvalues
can be problematic to the efficiency of the method suggested
below. This will be discussed in more detail in Sec. III. The
following lemma is similar to the inverse problems for clas-
sical oscillator chains considered in �6�.

Lemma. Assume that all eigenvalues Ej �j=1, . . . ,N� in
the first excitation sector of the Hamiltonian of Eq. �1� are
nondegenerate and known. Assume that for all orthonormal
eigenstates �Ej	 in the first excitation sector the coefficients

1 �Ej	 are known. Then the coupling constants �n are known.

While the requirements of the lemma may sound unreal-
istic at first sight, we will see toward the end of this section
that they are provided by a simple Fourier analysis of the
return probability of a single excitation.

Proof of the lemma. Our first observation is that �setting
�0=�N=0 for the boundary terms�

H�n	 = �n−1�n − 1	 + �n�n + 1	 + Dn�n	 , �2�

with

Dn = G − 2���n + �n−1� ,

G = ��
m=1

N−1

�m.

The first equation we use is

Dn = 
n�H�n	 = � Ej�
n�Ej	�2. �3�

In particular, this implies that D1 is known by the require-
ments of the lemma. Then, for all j we have

Ej�Ej	 = H�Ej	 . �4�

Taking the inner product with 
n� and using Eq. �2�, we ob-
tain

�Ej − Dn�
n�Ej	 − �n−1
n − 1�Ej	 = �n
n + 1�Ej	 . �5�

For n=1 this reads

�Ej − D1�
1�Ej	 = �1
2�Ej	 .

Since the left-hand side �lhs� is known for all j, the expan-
sion of �2	 in the basis �Ej	 is known up to the unknown
constant �1. Through normalization of �2	, we then obtain
��1�, and since the sign of �1 is known by assumption, we
obtain �1. Also, we now know 
2 �Ej	 for all j. The next
equation is obtained by setting n=2 in Eq. �5� as

�Ej − D2�
2�Ej	 − �1
1�Ej	 = �2
3�Ej	 .

The only unknown on the lhs is D2, which is obtained by Eq.
�3�. Using again the normalization, we obtain �2 and 
3 �Ej	.
We could continue this procedure, but the normalization
would not provide us with the signs of the �n. We know
more: from D1−D2=−2��2 we obtain � and from D1 we can
then get �m=1

N−1�m. Then, Eq. �3� gives us D3 and therefore �3
including its sign. This method is then easily generalized by
using Eq. �5� for n=4 to obtain 
3 �Ej	, Eq. �3� for �4, and so
on. �

Now we describe how the requirements of the lemma can
be measured by controlling the first spin only. First, we ini-
tialize the system in 1

�2
��0	+ �1	�. We remark that this can be

done by acting on the first spin only; cf. �7��. We then per-
form quantum-state tomography �8� on the same spin at a
later time. The evolved state is

1
�2

U�t���0	 + �1	� =
1
�2
�exp− iGt��0	 + �

n=1

N

fn1�t��n	� ,

with fn1 given by 
n�U�t��1	. The reduced density matrix of
the first spin of the chain is given by

�1 =
1

2
� 2 − �f11�2 expiGt�f11

*

exp− iGt�f11 �f11�2
� .

Thus, by performing quantum-state tomography on spin 1,
we can sample the following matrix element of the time
evolution operator:

exp− Gt�
1�U�t��1	 = �
j

�
1�Ej	�2 exp− i�Ej + G�t� . �6�

Since the eigenvectors of H are determined only up to an
irrelevant phase, we can assume, without loss of generality,
that


1�Ej	 � 0 �j = 1, . . . ,N� .

Hence through Fourier-transforming Eq. �6�, the coefficients

1 �Ej	 are known �as long as the spectrum is nondegenerate�.
The eigenvalues Ej are known up to the constant G. As usual,
this global shift of eigenvalues does not change the
physics—Eq. �5� shows that G cancels out when determining
the coupling strengths.

III. EFFICIENCY

The efficiency of the coupling estimation can be studied
using standard properties of the Fourier transform �see �9�
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for an introduction�. The function 
1 �U�t� �1	 is sampled for
each time t by state preparation, system evolution, and
quantum-state tomography. Therefore an important cost pa-
rameter is the total number of measured points, being pro-
portional to the sampling frequency. The minimal sampling
frequency is given by the celebrated Nyquist-Shannon sam-
pling theorem as 2fmin=Emax, where Emax is the maximal
eigenvalue of H in the first excitation sector. Due to deco-
herence and dissipation, the other important parameter is the
total time interval T over which the functions need to be
sampled to obtain a good resolution. This is given by the
�classical� uncertainty principle that states that the frequency
resolution is proportional to 1 /T. Hence the minimal time
interval over which we should sample scales as Tmin
=1 / ��E�min, where ��E�min is the minimal energy distance
of the eigenvalues of the Hamiltonian. Another important
parameter is the height of the peaks in the Fourier transform
given by �
1 �Ej	�2. These should be high enough to resolve,
which means that all energy eigenstates need to be well de-

localized. If there is too much disorder, localization will take
place �see, for example, �10��, and couplings far away from
the controlled region can no longer be probed �in turn, this
suggests a way of obtaining information on localization
lengths indirectly—see the Conclusion�. When localization is
negligible, the numerical algorithm to obtain the coupling
strengths from the Fourier transform is very stable �6�. The
reason is that the couplings are obtained from a linear system
of equations, so errors in the quantum-state tomography or
effects of noise degrade the estimation linearly. In our nu-
merical analysis we found good agreement with the real cou-
plings for systems with small randomness �Fig. 2�. Let us
also look at the scaling of the problem with the number of
spins. Typically the dispersion relationship in one-
dimensional systems of length N is cos �k

N , which means that
the minimal energy difference scales as � 1

N2 and the total
time interval should be chosen as N2. This agrees well with
our numerical results �tested up to N=100�. For each sam-
pling point a quantum-state tomography of a signal of an
average height of �1 /N needs to be performed. Since the
error of tomography scales inverse proportionally to the
square root of the number of measurements, roughly N2 mea-
surements are required for each tomography.

IV. CONCLUSION AND OUTLOOK

In conclusion, we have found that a vast class of spin
chain Hamiltonians can be estimated by some restricted op-
eration at the chain end. There are obviously many variants
of the inverse problem that we have introduced above. For
example, it is straightforward to see that the anisotropy pa-
rameter � can be estimated even if it is site dependent �i.e.,
�n� if one assumes that the signs of all �n are known. We
have emphasized here only one example as we think it is the
most relevant one for the applications �3,4� and stands as a
paradigm for the setup we have introduced: quantum system
identification of a black box by restricted access. There are
many interesting more general and fundamental questions
that our study suggests. For instance, is it possible to count
the number of qubits by restricted access �11�? What can be
said about more complicated networks and higher-
dimensional lattices? If the black box contains some dissipa-
tion and decoherence, what can we learn about it through
restricted access? What can be learned about the localization
length?
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FIG. 2. �Color online� Simulated measurement data and its Fou-
rier transform. The green stars show the position of the exact eigen-
frequencies. The coupling strengths have been chosen randomly in
the interval 1�0.05 for a chain of N=20. The simulated measure-
ment points allowed the estimation with a standard deviation of
0.01 with respect to the real couplings. The Fourier transform was
computed using standard fast-Fourier-transform algorithms and a
Hann window. Only the ten peaks with positive Ej are shown; the
others are symmetric around the y axis.
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