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We present a simple protocol to purify bipartite entanglement in spin-1 /2 particles by utilizing only natural
spin-spin interactions, i.e., those that can commonly be realized in realistic physical systems and Sz measure-
ments on single spins. Even the standard isotropic Heisenberg interaction is shown to be sufficient to purify
mixed state entanglement. Our protocol does not need controlled-NOT �CNOT� gates that are very hard to
implement experimentally. This approach could be useful for quantum-information processing in solid-state-
based systems.
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I. INTRODUCTION

Entanglement purification is one of the most important
tasks in quantum-information processing �1–4�. It is a pro-
cess to extract strongly entangled pairs out of initially
weakly entangled ones using local operations and classical
communication. By repeating the purification process,
�near-� maximal entanglement can be obtained. Such a task is
indispensable because maximally entangled states are an ir-
replaceable resource for many important protocols, such as
quantum cryptography, quantum teleportation, and quantum
repeaters. Unfortunately, as entanglement can only be gener-
ated by direct physical interactions, the coherent physical
transfer of quantum states is necessary. However, such a
transport is always fraught with difficulties due to interac-
tions with the environment, which lowers the quality of en-
tanglement. Therefore, a number of quantum-information
processing tasks rely on the feasibility of entanglement puri-
fication, which is the key process to distill arbitrarily high
entanglement out of degraded states.

Most well-known entanglement purification protocols for
bipartite two dimensional systems were proposed by Bennett
et al. �1,2� �the Bennett-Brassard-Popescu-Schumacher-
Smolin-Wootters �BBPSSW� protocol� and Deutsch et al. �3�
�the Deutsch-Ekert-Jozsa-Macchiavello-Popescu-Sanpera
�DEJMPS� protocol�. Both operate on two pairs shared be-
tween two separated parties Alice and Bob to enhance en-
tanglement in one of the pairs. An operation commonly used
in these protocols is a controlled-NOT �CNOT� gate applied at
both ends of the channel. A CNOT gate flips one of the spins
�target spin� if the other �control spin� is in �1�, and leaves the
target spin unchanged if the control spin is in �0�, where �0�
and �1� are some orthogonal vectors. Yet, in general, carrying
out a CNOT operation is one of the toughest challenges in
experiments. This is why there have been only a few experi-
ments of purification, mainly with photons �5� and one with
trapped ions �6�. Throughout this paper we will consider
spin-1 /2 particles as a representative of two-level systems
because our main interest is in the behavior of entanglement
in spin chains with standard spin-spin interactions.

The main aim of this paper is to show that entanglement
purification is possible only with unmodulated natural inter-
actions between spins and simple Sz measurements on single
spins, as long as the fidelity of the initial state to a Bell state
is larger than 1 /2. A physical intuition behind this idea is that
measuring a subset of spins would project the remaining
pairs onto a more strongly entangled state since there are
constructive and destructive interference of magnons in a
spin chain during its dynamical evolution �7–9�.

Here, there is no need of mapping quantum information to
different physical systems, e.g., photons. In addition, there is
no need of artificial multiqubit gate operations, such as
CNOT. With an isotropic Heisenberg interaction, the imple-
mentation of a CNOT operation has to involve at least using
two two-spin operations �10�, that is, the accumulation of
errors is very likely to occur. From the pragmatic point of
view, we naturally wish to minimize the number of artificial
controls. Our proposal simplifies the necessary manipula-
tions, compared with those in experiments �6�, and also the-
oretical proposals for solid state circuits, such as Ref. �11�. It
does not entail even single spin operations after the first
round of the protocol, that is, those operations are necessary
only once at the beginning. Several analyses have been done,
for example, for quantum state transfer with a chain of
spin-1 /2 particles �7� or harmonic oscillators �12�, elemen-
tary gate operations �13�, and cloning transformation �14�
under similar motivations, however, ours performs an invalu-
able, and practically very important, quantum-information
processing task with minimal control.

II. ENTANGLEMENT PURIFICATION WITH SPIN
CHAINS

A general scenario of entanglement purification by spin
chain dynamics is depicted in Fig. 1. Alice and Bob share n
pairs of weakly entangled spins forming two spin chains so
that Alice’s jth spin is entangled with Bob’s jth spin for all j.
Each chain will evolve due to the exchange interaction be-
tween nearest-neighboring spins. We will primarily consider
the isotropic Heisenberg interaction, however, let us assume
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the Hamiltonian in a generic anisotropic form as

H = − �
�i,j�

�JxSi
xSj

x + JySi
ySj

y + JzSi
zSj

z� , �1�

where Jk and Si
k �k=x ,y ,z� are the coupling strengths and the

standard SU�2� spin operators for the ith spin, respectively.
After a certain time lapse they measure n−m spins each in
the 	�↑�,�↓�
 basis, turning off the interaction, to enhance or
reduce entanglement in the remaining m pairs compared with
that of the initial state. All active controls we consider here
are one switching-on and one switching-off of the exchange
interaction Eq. �1�, and single-spin measurements in the
	�↑�,�↓�
 basis. Single spin operations can be added to the list
of available controls, however, the fewer controls, the better.
In order to avoid complications due to residual correlations
between unmeasured pairs, we consider cases in which only
one pair is left unmeasured after a run of the protocol. We
will hereafter denote vectors �↑� and �↓� by �1� and �0�, re-
spectively, and take �=1.

If the initial state of the pair is a partially entangled pure
state �15�, then a maximally entangled pair can be attained
by simply attaching only one spin to the pair locally and
letting the two spins evolve under the isotropic Heisenberg
interaction, that is, Eq. �1� with Jx=Jy =Jz=J. Suppose that
the initial state of the pair is given by ���=��00�+��11�,
where � ,��R, �2+�2=1 and ��� �the case of ��� can
be treated in the same fashion�. See Fig. 2�a� for a schematic
diagram and the numbering of the spins. The three-spin state
at time t can be computed as

���t�� = �eiJt/4�000� + �e−iJt/4�i sin
Jt

2
�011� + cos

Jt

2
�110�� ,

�2�

where spins are ordered according to the numbering in Fig.
2. If an Sz measurement on the spin “3” at Jtmax
=2 cos−1�� /�� gives the outcome 0, the state of the first pair
�spins “1” and “2”� will be projected onto a maximally en-
tangled state with probability 2�2. The net result stays the
same even with the �isotropic� antiferromagnetic Hamil-
tonian, i.e., J�0

This process can be seen as equivalent to local filtering
�16�, in which a spin and an ancilla evolve under some uni-
tary operation, and then a measurement is performed on the
ancilla. For specific measurement outcomes the pair becomes
closer to the maximally entangled state.

Let us move on to the case in which the initial state of the
pairs is mixed. In order to simplify the discussion, we shall
assume that each pair is in a Werner state �17�, that is,

�W = F��+���+� +
1 − F

3
���−���−� + �	+��	+� + �	−��	−�� ,

�3�

where ��
�= ��00�
 �11�� /2 and �	
�= ��01�
 �10�� /2
are the maximally entangled Bell states, and F is the fidelity
between �W and ��+�. The reasoning for this assumption is
that any mixed state can be transformed into a Werner state
with random bilateral local unitary operations �twirling�
without lowering its fidelity with a Bell state, thus showing
the feasibility of entanglement purification for Werner states
is sufficient, in principle �1�. In what follows, we shall use
the BBPSSW protocol as a reference for comparisons be-
cause it is easier than others to analyze.

It turns out that higher entanglement can never be attained
by starting with two pairs of spins �W

�2 regardless of the
combinations of values of �Jx ,Jy ,Jz� in the Hamiltonian.
Nevertheless, entanglement in a pair can be enhanced if there
are two extra pairs, i.e., three pairs in total as in Fig. 2�b�.
The reason why this approach fails with two pairs will be
explained later.

FIG. 1. �Color online� Entanglement purification using spin
chains. Alice and Bob initially share n pairs of weakly entangled
spins forming two spin chains. They let the spin chains evolve
under a standard spin-spin interaction and perform single-spin mea-
surements on a subset of the spins. Entanglement purification suc-
ceeds if the remaining m pairs contain higher entanglement than the
initial state.

FIG. 2. �Color online� Configurations to obtain one pair with
higher entanglement by spin chain dynamics. �a� If the initial state
of a pair is pure, an ancillary spin suffices. �b� If the pairs are
initially in a mixed state, we need three pairs, two of which are to
be measured. The blue lines and red dashed lines indicate interac-
tion and entanglement, respectively, and the measurement is in the
	�0�,�1�
 basis.
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If there are three pairs, the resulting fidelity does exceed
the initial one. An example of the “time evolution of the
fidelity is plotted in Fig. 3. In this plot, the isotropic nearest-

neighbor interaction H=J�S� i ·S� j is assumed and the time t
indicates the measurement time. With the initial state �W
above, the measurement outcomes �0,0,1,1� or �1,1,0,0� at
sites �3,4,5,6� or �1,2,5,6� lead to a successful fidelity in-
crease �Hereafter angular brackets � � denote the spin sites�.
The maximum fidelity attainable can be calculated analyti-
cally as

Fmax� =
16 − 53F + 118F2

59 − 106F + 128F2 , �4�

which is always larger than F if F�1 /2 and is achieved at
times Jt= �2n+1�2��n=0,1 ,2 , . . . �. Figure 4 shows the
comparison between the maximum reachable fidelity by our
protocol and that by the BBPSSW protocol. The fidelity in-
crease in the spin-chain-based protocol is approximately
twice as large as that by the BBPSSW protocol, which is
quite significant despite the simplicity of the protocol. There
are other combinations of outcomes, �0,0,0,0� and �1,1,1,1�
which give a fidelity increase, but we exclude this possibility

because the increase is small �roughly half of the BBPSSW
protocol� while the probability is slightly higher than the
above case.

What about the necessary time precision for the protocol?
The duration �FHWM� �t to have a fidelity increase larger
than �Fmax� −F� /2 depends on F, but it can be computed to be
J�t�0.5 for a wide range of F, i.e., 0.61�F�0.94. With
J�1 eV in, e.g. Ref. �18�, this condition gives
�t�300 ps, which is much longer than the experimentally
feasible accuracy of �10 ps.

Another nice feature of this protocol is that the purified
pair stays in the Werner state with the new fidelity Fmax� ,
i.e., ��=Fmax� ��+���+�+ �1−Fmax� � /3���−���−�+ �	+��	+�
+ �	−��	−��. This means that further twirling operations are
not necessary when iterating the protocol with three new
pairs in ��, unlike the BBPSSW protocol.

III. DISCUSSION

Let us now discuss the case where there are only two
pairs of spins for our scheme. As we have mentioned above,
two pairs of a Werner state cannot be purified if there are no
extra single spin operations. We sketch its reasoning and
show that the protocol can be as efficient as the BBPSSW
protocol when single spin operations are available in addi-
tion to a single switching on and off of the two-spin interac-
tion of the form of Eq. �1�.

The Hamiltonian �1� has its invariant subspaces spanned
by the following combinations of Bell-product states,
namely, ��+�− ,�−�+�, ��+	
 ,	
�+�, �	+	− ,	−	+�,
�	
�− ,�−	
�, and ��+�+ ,�−�− ,	+	+ ,	−	−�. Note
that these subspaces are independent of the values of the
coupling strengths Jk �k=x ,y ,z�, because all terms in Eq. �1�
commute with each other, thus simultaneously diagonizable
regardless of Jk’s. In the following, the dominant component
in the initial Werner state is assumed to be �+ and we will
look at the resulting state of one of the pairs when the out-
comes of the Sz measurement on the other pair are the same.
We do not lose any generality by such assumptions thanks to
the symmetry of the Hamiltonian and the Werner state.

The initial state �W
�2 is diagonal in the Bell-product

basis and there are three values of the weight for those
Bell-product components. Let us write those weights as
wL=F2, wM =F�1−F� /3, and wS= �1−F�2 /9. Since the
components in the same rank-2 subspace above have an
equal weight, �W

�2 is equivalent to an identity operator
in each rank-2 subspace. Thus the time evolution of en-
tanglement is determined by that of components in the
rank-4 subspace. If we evaluate the fidelity with respect to
�+, its maximum is obtained when the weight of �+�+

comes back to wL. The �unnormalized� state of spins
�1,2� after measuring �0,0� or �1,1� at sites �3,4� then
becomes wL��+���+�+wS��−���−�+wM���+���+�+ ��−���−�
+ �	+��	+�+ �	−��	−��+wS��	+��	+�+ �	−��	−��. The fidel-
ity between this state and �+ is �wL+wM� / �wL+4wM +3wS�
=F, hence there is no fidelity increase. The same logic can be
applied straightforwardly to cases with different expected
outcomes and a different reference Bell state for fidelity
evaluation.

FIG. 3. �Color online� The fidelity as a function of the measure-
ment time, with the initial fidelity equal to 0.75, indicated by the red
�horizontal� line.

FIG. 4. �Color online� Maximum attainable fidelity Fmax� be-
tween the resulting state and a Bell state. The top �red� solid line
represents the maximum fidelity after a run of our protocol with
three pairs. The dashed �blue� line shows the fidelity change by the
BBPSSW protocol. The bottom �black� dash-dotted line represents
F�=F.
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If we allow anisotropy for the interaction, entanglement
purification can be achieved with as big fidelity increase as
in the BBPSSW protocol with the help of extra single spin
operations. This is simply because a CNOT gate can be de-
composed into a sequence of single spin operations and one-
time activation of the XY- or Ising-type interaction �19�. But
with the isotropic Heisenberg interaction, such a decomposi-
tion is known to be impossible �20�.

The effect of the Heisenberg Hamiltonian is quite differ-
ent when there are three pairs and its invariant subspaces can
no longer be described neatly by the Bell states. Physically,
this difference can be attributed to the behavior of spinless
fermions that appear after the Jordan-Wigner transformation.
When there are only two spins in a chain the fermion propa-
gates �or hops� freely between sites, hence the simple dy-
namics described above. On the contrary, in a three-spin
chain, the fermions interact with each other and there can be
some nontrivial interferences between different modes that
result in the concentration of entanglement.

Despite such an intuitive picture, the application of the
Jordan-Wigner transformation to our problem makes the
whole calculation quickly untractable. Instead, here we at-
tempt to characterize the three-pair Hamiltonian in terms of
the ability of making correlations between Bell pairs. Such
an analysis is useful because entanglement purification can
be seen as a process to extract information on a given pair by
correlating other pairs to it. The BBPSSW protocol makes
use of the correlating power of the bilateral CNOT, which
correlates two Bell states as

�	kl��	mn� → �	k,l+n��	k+m,n� , �5�

where 	00,	01,	10,	11 are in our notation
�+ ,�− ,	+ ,	−, respectively, and additions in the indices are
in modulo 2. If a bilateral CNOT is applied on a randomly
chosen Bell pair and another pair in a known Bell state, the
mutual information between these two pairs is increased
from 0 bits to 1 bit. Similarly, the time evolution operator

U�Jt=2��=exp�−2�i�S� i ·S� j� for three pairs increases the
mutual information �in the Bell basis�, between a given un-
known pair and the other two, from 0 to 1.48 bits, while U
=exp�−iHt� generates no correlation between pairs in the
two-pair case. The correlation generated between pairs then
gives �partial� information on the unmeasured pair, enabling
us to single out pairs containing higher entanglement.

A price we have to pay for the simplicity and the larger
fidelity increase is the probability of success, which is about
2 /5 of that of the BBPSSW protocol. Let us make a rough
estimation of the number l of initial pairs to obtain a final
pair achieving a desired fidelity increase the for BBPSSW
protocol �lB� and for our spin-chain-based protocol �lSC�.
These can be written as

lB = � 2

pB
�rB

and lSC = � 3

pSC
�rSC

, �6�

where pB �pSC� and rB �rSC� are the success probability per
run and the number of rounds �“rounds” as in a sport

tournament�, respectively. We approximate pSC by its aver-
age over the range 1 /2�F�1 for simplicity as it does not
vary much. Also, by expanding the form of F� with respect
to F around 1, we see that

rB � �ln
2

3
�−1

ln�1 − Ff

1 − Fi
� � �ln

2

3
�−1

ln�11

27
�rSC = 2.21rSC

�7�

for a fidelity change from Fi to Ff. With these approxima-
tions, we find that

lSC

lB
� 1.16rSC �8�

holds for any fidelity increase. This might make our protocol
appear less attractive than the BBPSSW. However, more im-
portant is the number of multispin operations the resulting
pair experiences. In our scheme this number is rSC, which is
only 23% of 2rB, the operations needed for the standard
CNOT-based BBPSSW protocol. In addition, the difference in
l is rather small. Even if rSC=5, which corresponds to a
fidelity increase from 0.75 to 0.990, lSC / lB is only 2.07. We
therefore wish to state that the efficiency of our protocol is
still notable, considering that only natural evolutions and an
initial one-time twirling are involved.

Before summarizing, let us briefly note the effect of an-
isotropy. Our protocol does not work with the XY or Ising
interaction. Yet, a small amount of anisotropy is useful to
purify mixed state entanglement. For example, suppose that
there is an antisymmetric exchange interaction, also known
as the Dzyaloshinskii-Moriya interaction, in addition to the
XY interaction as

H = − J � �Si
xSj

x + Si
ySj

y� + d� · S� i � S� j , �9�

where d� is the coupling vector that reflects the anisotropy. If
a set of three pairs, each of which is in the Werner state with
fidelity F=0.75, evolves under the Hamiltonian with J=1

and d� = 	0.1,0 ,0
, the fidelity can be as high as 0.81 when
two pairs are measured at t�352.

IV. SUMMARY AND OUTLOOK

We have shown that entanglement purification is possible
with only the free dynamics of spin chains and simple Sz
measurements on single spins. Arbitrarily high entanglement
can be obtained by repeating the process. The amount of
operations is minimal, in the sense that single spin operations
�twirling� are needed only once for the entire process and
only one activation of the interspin interaction is required for
each run. Hence the error accumulations due to artificial con-
trols should be much less likely compared with conventional
schemes. More detailed and quantitative comparisons of er-
rors under realistic conditions would thus be one of the im-
portant future research topics.

The proposed scheme might also be experimentally real-
izable in the near future as the number of spins in this
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protocol is not large. Candidate physical systems would be,
for example, semiconductor quantum dots �10,18,22�, super-
conducting qubits �21�, atoms trapped in optical lattices �23�,
etc., where the interqubit couplings are often described by
Heisenberg-type interactions.

If we look at our protocol from a more general perspec-
tive, it can be understood as an execution of a quantum-
information processing task by a natural time evolution and
simple measurements. While we have considered only one
specific task in this paper, it would be very intriguing if more
complicated tasks could be performed with simple multipar-
ticle interactions.
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