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We study the two-particle quantum Zeno dynamics with a type of nondeterministic collective measurement
whose outcome indicates whether the two-particle state has been collapsed to �11�. Such a threshold detection,
when used continuously, can lead to nontrivial quantum dynamics. We show that such type of dynamics can be
used to produce quantum entanglement almost deterministically. We then numerically show the robustness of
the method and we find that the operational errors of the small-angle rotations do not accumulate. We also
propose a possible implementation using superconducting flux qubits.
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I. INTRODUCTION

Due to the quantum Zeno effect �1–3�, quantum decay can
be suppressed if a particle is continuously observed in the
same basis. However, if we continuously observe a particle
with a slowly changing basis, the particle’s state will keep
following the measurement basis. As we shall show, applying
this fact to a multiqubit system, one can make nontrivial
quantum-state steering.

The quantum Zeno effect of a single particle has attracted
considerable interest in the past. Recently, the multi-particle
dynamics due to the quantum Zeno effect has also been stud-
ied �4,5�. In particular, Ref. �4� proposed to realize a
controlled-NOT �CNOT� gate through the quantum Zeno effect
of two optical qubits. Here we study a two-qubit quantum
Zeno dynamics with threshold detection, which checks
whether the two-particle state has been collapsed to �11�. As
we shall show below, such measurements can suppress the
coefficient of the state �11� and can lead to nontrivial two-
particle and multi-particle entangled states, e.g., Bell states,
Greenberger-Horne-Zeilinger �GHZ� states, cluster states,
and so on.

Quantum entanglement is an important resource for quan-
tum information processing �QIP�. Two-qubit joint opera-
tions are crucial for tasks such as creating and manipulating
quantum entanglement in QIP. Indeed, CNOT gates and
single-qubit unitary transformations are sufficient for gener-
ating any quantum entanglement and for universal quantum
computing. However, implementing a CNOT gate experimen-
tally seems to be a daunting task. This is a huge barrier to
scalable quantum computing, which requires numerous CNOT

gates. To avoid this difficulty, it has been proposed �6–10� to
replace the CNOT gate with a Bell measurement. Indeed, it is
possible to replace CNOT gates by quantum teleportation �7�,
where the only collective operation is a Bell measurement.
However, so far it is unknown how to do a projective Bell
measurement without using a CNOT gate. In other words, the
complete projective Bell measurement seems to be as diffi-
cult to implement experimentally as a CNOT gate. In practice,

a nondeterministic collective measurement is often used be-
cause it is easier to implement. However, many of these pro-
posals can only realize probabilistic QIP.

An elegant alternative, one-way quantum computation us-
ing cluster states �11�, is promising. In that approach, cluster
states are first produced and afterwards used for quantum
computing through individual measurements only. Efforts
have been made towards the efficient generation of cluster
states via nondeterministic two-qubit measurements. Also,
there are proposals for generating cluster states using solid-
state qubits �see, e.g. �12–16��.

Nondeterministic collective measurements, as already
demonstrated in a number of experiments, can be used to
produce entangled states including cluster states probabilis-
tically. Indeed, cluster-state quantum computation has re-
cently been demonstrated with such a technique �17�.

Here we present an alternative approach. We show that
one can actually produce, almost deterministically, quantum
entanglement, such as a cluster state via nondeterministic
measurements, which we name “threshold measurements” or
“J−measurements.” These indicate whether the measured
two-qubit state is �11�. Although the measurement outcome
itself is nondeterministic, by using the quantum Zeno effect
�see, e.g., �1–3��, a certain quantum subspace is almost in-
hibited from decay if it is measured continuously; therefore
providing an almost deterministic result.

Consider the following two-qubit nondeterministic collec-
tive measurement composed of two projectors:

J1 = �1��1� � �1��1�, J0 = I − J1, �1�

where I is the four-dimensional identity operator. We call
this type of measurement “J−measurement.” This
J−measurement is different from a parity measurement or
singlet-triplet measurement �8,18,19�. Our measurement is a
threshold measurement on whether both qubits are in state
�1�.

As shown below, technically, a J−measurement does not
need to control exactly the interaction strength or duration,
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neither does it assume any synchronization difficulty. One
only needs to turn on the “threshold detector” to see whether
the current is larger than the threshold value. For clarity, we
assume that a two-qubit state is monitored by a
J-measurement detector: If the detector clicks, the state is
collapsed to �11�; if the detector does not click, the state is
projected into the subspace

J0 = ��00�, �01�, �10�	 . �2�

If the state is initially in the subspace J0, the quantum Zeno
effect will inhibit the state to evolve to �11� if the J measure-
ment is performed frequently. We shall show that, by only
using single-qubit operations and J-measurements, one can
almost deterministically produce large cluster states without
using any other separate conditional dynamics or quantum
entangler.

As mentioned earlier, our work is somewhat related to
prior works, in particular Ref. �4�. Both Ref. �4� and our
work propose to apply the two-qubit quantum Zeno effect for
quantum information processing �QIP�. However, these two
approaches are quite different in many aspects. First, the
roles of the quantum Zeno effect in these two works are
different. In Ref. �4�, one needs both a quantum entangler �a
coupled optical fiber or a beam splitter� and the quantum
Zeno effect �through a two-photon absorption by an atomic
gas�. In our design, we only need a threshold measurement
and a single-qubit rotation. Except for these, we need neither
a separate quantum entangler nor a two-qubit quantum uni-
tary. In other words, in our design, the quantum Zeno effect
has a more crucial role: it produces the quantum entangle-
ment rather than assisting the separate quantum entangler for
QIP. Second, the calculations and the results are different. In
our design, since we only use the threshold measurement,
there are additional results from the dynamics due to the
quantum Zeno effect itself. The effects of the errors caused
by discrete measurements are studied in detail in our work.
These results are not limited to any specific physical system.
Third, the proposed physical systems for experimental real-
ization are different. Reference �4� studies an optical system
with two-photon absorption by atoms, while here we con-
sider solid-state qubits with our threshold detection. Of
course, different systems and approaches have different ad-
vantages in various aspects, such as technical overheads,
costs, robustness, scalability, and so on.

II. QUANTUM ENTANGLEMENT THROUGH
A QUANTUM ZENO EFFECT BASED

ON J−MEASUREMENTS

Let us define

���� =
1

2

��01� � �10�� .

We now show how to drive the two-qubit state �00� to the
maximally entangled state ��+� by repeating the following W
operation �on the two qubits�: �i� Rotate each individual qu-
bit by the same small angle �, and then �ii� perform a
J−measurement.

After a number of W operations, the state �00� can be
driven into ��+� with probability 1−O�sin ��. We do not have
to require a constant � for each application of W, but to
simplify the presentation we now assume a constant positive
� for each step. The initial state is

��0� = �00� = a0�00� + 
2b0��+� = a0�00� + b0��01� + �10�� ,

�3�

with a0=1 and b0=0. After the first W operation, the initial
state becomes

��1� = a1�00� + b1��01� + �10�� , �4�

with probability

N1 = 1 − sin4� � 1. �5�

Here

a1 = cos2�/N1,

and

b1 = sin � cos �/N1.

Thus, the probability amplitude of ��+� increases after each
step. Through the iterative application of W, the state ��0�
will, sooner or later, be projected into ��+�. Therefore, we
only need to show that after less than k1�O�1 /sin �� appli-
cations of W, the two-qubit quantum state ��0� is mapped
into ��+� with high probability. In this case, the total prob-
ability that the state ��0� is projected into �11� during the
whole process is only O�sin ��. Therefore, given a suffi-
ciently small �, the failure probability is negligible and the
result is almost deterministic.

Let us consider now the state ��i� obtained after W is
applied i times to ��0�:

��i� = Wi��0� = ai�00� + bi��01� + �10�� . �6�

Assume that ai ,bi�0. After applying W one more time we
obtain

��i+1� = W��i� = ai+1�00� + bi+1��01� + �10�� �7�

with

ai+1 = �ai�1 − sin2�� − 2bi sin � cos ��/Ni+1;

bi+1 = �bi�1 − sin2�� + ai sin � cos ��/Ni+1

with

Ni+1 = 1 − ai
2 sin4� − 4bi

2 sin2� cos2� � 1 − O�sin2�� .

The amplitude difference between �00� and ��+� changes af-
ter each step. We define

�i+1 = bi+1 − ai+1 − �bi − ai�

= ��ai + 2bi�sin � cos � + �ai − bi�sin2��/Ni+1.

After k1 applications of W, we obtain

bk1
− ak1

= b0 − a0 + 
i=1

k1

�i.

Our goal now is to know how large k1 must be so that
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ak1
� 0,

i.e.,

�bk1
− ak1

� � 1/
2.

If all �ai ,bi ; i�k1	 are non-negative, then

�i+1 � sin � cos � ,

therefore

bk1
− ak1

� − 1 + k1 sin � cos � . �8�

Given this, we conclude that there exists a positive number

k1 � O�1/sin �� , �9�

such that after W is applied k1 times, ak1
must be almost zero,

provided that � is sufficiently small. From the above deriva-
tion and a similar derivation, we draw the following lemma:

Lemma. Iterating the W operation can map the state �00�
into ��+�, and also map the state ��+� into −�00� in the same
number of steps. Together with single-qubit unitary opera-
tions, any state � �00�+	 ��+� can be mapped into ��+� with
less than k1=O�1 /sin �� iterations of W.

Iterating the W operation can also map the initial state
�10� into the maximally entangled state ��+�. This can be
seen as follows: Consider now the initial state

��0�� = �10� =
1

2

���+� − ��−�� . �10�

The state ��−� is invariant under identical individual rota-
tions. Also, ��+� can be mapped into −�00� �see the Lemma
above�. Therefore, we obtain the state

��k1
� � � −

1

2

��00� + ��−�� �11�

after k1 iterations of W. After applying a local phase flip, the
state is changed into

���� �
1

2

��00� + ��+�� . �12�

Again using our Lemma above we conclude that this state
can also be mapped into ��+�.

III. QUANTUM DYNAMICS OF THE W OPERATOR

We now study more precisely the properties of W using its
matrix representation. Given any initial state �
�, after a W
operation, the �un-normalized� state in the J0 space becomes:

�
1� = M����
� = J0R��� � R����
� , �13�

where M��� is the matrix representation of W. The probabil-
ity that the qubit is projected into the J0 subspace is
��
1 �
1��2. In matrix representation,

R��� = �cos � − sin �

sin � cos �
�, �0� = �1

0
�, �1� = �0

1
� ,

and J0= I3 � 0 �I3 is the 3�3 identity matrix�. Since we are
only interested in the case when the initial state 
�J0, the

matrix representation for a W operation in J0 space is sim-
plified to

M��� = � cos2� − sin � cos � − sin � cos �

sin � cos � cos2� − sin2�

sin � cos � − sin2� cos2�
� .

�14�

In this matrix representation, the ket states are represented by

��00�, �10�, �01�� = ��1

0

0
�,�0

1

0
�,�0

0

1
�� . �15�

Hereafter M��� is simply denoted by M. After N iterations of
W, the evolution operator in the J0 subspace is MN. We now
test our results numerically. First, we iterate W for k1=100
times with �=� / �200
2�. We then obtain the numerical ma-
trix

M100 = �0.0039 − 0.7028 − 0.7028

0.7028 0.4980 − 0.5020

0.7028 − 0.5020 0.4980
� . �16�

This shows that if we start from the initial state �00�, after
100 iterations of W, we obtain the maximally entangled state
��+� with probability 98.8% and a fidelity larger than
99.99%. Iterating W 1000 times with �=� / �2000
2�, we
obtain a highly entangled state: with 99.9% probability and a
fidelity larger than 1−10−6.

IV. INTELLIGENT EVOLUTION

If the initial state is �10�, after iterating the W operator, we
can also obtain the maximally entangled state ��−�. Also, we
want to have an “intelligently designed” evolution which
will produce different maximally entangled states depending
on whether the initial state is �00� or �10�, since this type of
evolution is crucial in expanding a cluster state, as shown
below. After k1=100 iterations of W, we perform a phase flip
operation P= � 1

0
0

−1 � to the first qubit, and apply the W opera-
tion k2=50 times to obtain the final evolution matrix

M50PM100 = � 0.0027 0.0011 − 0.9958

− 0.7008 − 0.6994 0.0027

0.7047 − 0.7033 − 0.0012
� . �17�

As shown below, such an “intelligent” evolution can expand
a cluster state deterministically. In the above three-stage op-
erations, W was iterated k1 times, then a phase flip P was
applied, and finally k2 iterations of W. If � is very small, the
constraints k1�=� / �2
2� and k2�=� / �4
2� will produce al-
most perfect results �i.e., with both the probability and the
fidelity almost equal to 1�. Now we show this explicitly.
Suppose that after k1 iterations of W, the initial state �00� is
mapped into the maximally entangled state ��+�. This re-
quires m11 �the matrix element of the first row and the first
column of the matrix Mk1� to be exactly 0. Here,

Mk1 = �cos2�I3 + r����k1, �18�

and

QUANTUM ENTANGLEMENT VIA TWO-QUBIT QUANTUM… PHYSICAL REVIEW A 77, 062339 �2008�

062339-3



r��� = � 0 − sin � cos � − sin � cos �

sin � cos � 0 − sin2�

sin � cos � − sin2� 0
� .

�19�

Therefore

Mk1 = 
n=0

k1

Ck1

n rn cos2k1−2n� , �20�

with Ck1

n = � n
k1

�=k1�k1−1�¯ �k1−n+1� /n!. Any term of the
form k1

l sinj� is discarded in the summation if j l because �
is very small. Therefore, we obtain

m11 � cos�
2k1 sin �� �21�

which becomes 0 when

k1� =
�

2
2
. �22�

Consider now another initial state

�10� = ���+� − ��−��/
2. �23�

The ��−� part is invariant under W. According to our Lemma
above, after k1 iterations of W, the state �10� must be changed
to

���−� − �00��/
2. �24�

After the phase-flip P is applied, the state becomes

��� = − ���+� + �00��/
2. �25�

Let us recall now the evolution property for the initial state
�00� under iterations of W. According to our Lemma, after k2
iterations of W with k2�=� / �4
2�, the state ��� becomes
−��+�. This means, if we start from ���, we only need

k2� =
�

4
2
�26�

in order to obtain −��+�. Based on these facts we conclude
the following theorem:

Theorem. The operator Wk/2 PWk can change the initial
states ��00� , �10�� into ���−� ,−��+�� if k�=� / �2
2�, and the �
for every step is very small.

Our W operation is not limited to produce two-qubit en-
tanglement, as shown below; it can also be used to expand a
cluster state almost deterministically.

V. QUANTUM ENTANGLEMENT EXPANSION

As is known �11�, one can build a large cluster state from
the product state �+ � � + �¯ �+ �, where �+ �= ��0�+ �1�� /
2,
with a controlled-phase �C-Phase� gate applied to the nearest
qubits from the left to the right. A C-Phase will change any
state �i� � j� into �−1�ij � i� � j�, �i , j�0,1�. For example, con-
sider the two-qubit case: The state �+ � � + � is changed into
��0� � + �+ �1� �−�� /
2, which can be transformed into ��+� by
a single-qubit flip operation. In general, an n-qubit cluster
state can be written in the following bipartite form:

�Cn� = �E��0� + �E���1� , �27�

where �E� and �E�� span the subspace of the first �n−1� qu-
bits, �0� and �1� span the subspace of the nth qubit. We can
expand this to an �n+1�-qubit cluster state using a C-Phase
gate with an ancilla qubit �+ �. Explicitly, after the C-Phase
gate, the expanded cluster state becomes

�Cn+1� = �E��0�� + � + �E���1��− � . �28�

The few lines above are known results on how to produce a
cluster state with C-Phase gates �11�. Below we show how to
expand a cluster state in the form of Eq. �28� by our W
operations. Here, we do not need any C-Phase gate since the
W operation is sufficient for such type of expansion. We first
take a Hadamard transform of the last qubit of the initial
n-qubit cluster state in Eq. �27� and we set the ancilla state to
be �0�. The entire state of the �n+1� qubits is now

�D� = ��E�� + � + �E���− �� � �0�

=
1

2

��E���00� + �10�� + �E����00� − �10��� . �29�

According to our theorem, the operator Wk/2 PWk leads to the
following transformation

�00� → ��−�; �10� → − ��+� �30�

if k�=� / �2
2�. This means that, after applying Wk/2PWk, the
state of �n+1� qubits becomes

1

2

��E����−� − ��+�� + �E�����−� + ��+���

= − �E��10� + �E���01� . �31�

After applying a phase flip and a Hadamard transform to the
last two qubits, and a bit-flip to the nth qubit, we obtain an
�n+1�-qubit entangled state identical to that of Eq. �28�. This
means that the J−measurement can be used to produce and
expand a cluster state almost deterministically, if the rotation
angle � of every step is sufficiently small.

VI. ROBUSTNESS ANALYSIS

In practice, any protocol always has errors. In our proto-
col, there are many iterations. Since our scheme measures
the qubits frequently, one natural question raised here is as
follows: If there are small errors in each iteration, will these
errors accumulate and finally lead to the failure of this
scheme? Here we make a partial investigation of this prob-
lem. In each step, we need to rotate both qubits by a small
angle �. Intuitively, there could be operational errors in doing
the rotation. Say, sometimes the rotated angle is larger than
�, and sometimes it is smaller than �. Here we do numerical
simulations to determine the final effects of such operational
errors with two assumptions: �i� In each step, the rotated
angles of each qubits are the same. �ii� There are only occa-
sional errors in the rotation. Say, at step i, the rotation angle
can be �i=�+�i which is different from �, but each �i is
random.
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To have a quantitative evaluation of the robustness of our
protocol, we define Ps as the probability of obtaining a per-
fect result, averaged over the results from the initial states of
�00� and �01�. Explicitly

Ps =
1

2
����−�Wk/2PWk�00��2 + ���+�Wk/2PWk�10��2� . �32�

Here we have taken into account both the probability that the
measurement outcome goes beyond the J0 subspace and the
probability that the final state is not ��+�, although the out-
come is in the subspace J0. Contrary to one’s intuition, the
more iterations of W are taken, the less the outcome state is
affected by the operational errors, as shown by the numerical
test in Table I. From the numerical results there we can see
that even for a not-so-large number of steps, e.g., k=50,
fairly good results can be obtained under quite large opera-
tional errors �50%�. As shown in the table, in the case when
the largest error in every step is bounded by 50%, the aver-
age fidelity is larger than 96%.

Above we have presented our results on the two-qubit
quantum Zeno effect and its application in generating and
expanding quantum entanglement. We find that good fidelity
can be achieved even if we only use fewer than 100 steps
with operational errors �occasional error� up to 50% in every
step. The final question remaining is how to physically
implement the J−measurement, which is a two-qubit thresh-
old measurement.

VII. IMPLEMENTATION

There have been a number of proposals �20–22� for two-
qubit measurements based on quantum dots or superconduct-
ing qubits. There �20–22�, not only two-qubit measurement
schemes are given, but also their feasibility, including deco-
herence. On the other hand, threshold detections for a single-
qubit have been experimentally demonstrated already
�23–25�.

Compared with the one-qubit threshold measurement, the
two-qubit threshold measurement does not need extra precise
control of interaction or synchronization. Here we consider
an implementation scheme for two-qubit threshold detection,
using Josephson-junction circuits �see, e.g., �24–28��.

Consider a circuit with one large junction, denoted by “0”
and two parallel flux qubits, each one consisting of three
smaller junctions, as shown in Fig. 1. If the current across

junction 0 is larger than a certain critical value IT0, it
switches from the superconducting state to the normal state.
The direction of the current contributed by any qubit in the
circuit depends on its state, say, �1� for the “up” current and
�0� for the “down” one. The current contributed from those
three-junction flux qubits is significantly less than IT0. How-
ever, with an appropriate bias current, the current contributed
by those flux qubits determines whether the large junction, 0,
will be switched to the nonsuperconducting state with a non-
zero voltage V. The current is determined by the quantum
state of those flux qubits in the circuit. Suppose that the state
�1� , �0� of each individual qubit contributes a current �ID,
respectively. If the bias current is set to be, e.g., Ib= IT0− ID,
by monitoring the voltage V, we can conclude whether the
state of those flux qubits has been projected to the state �11�.
Of course, the bias current Ib and the magnetic flux �e can
be tuned. Consider the case where there are only two qubits.
There are two subspaces, J0= ��00� , �01� , �10�	 and J1= �11�. A
state in subspace J1 �J0� will cause �not cause� junction “0”
to switch from the superconducting to the normal state, given
a certain bias current Ib and an external field �e. Thus, when
the current Ib is biased, we can conclude whether the quan-
tum state of those observed qubits belongs to subspace J0 or
J1, by monitoring the voltage V. If no bias current is applied,
there is no measurement. But if the bias current slightly be-
low IT0 is applied, a “J” measurement is performed.

The Hamiltonian for a flux qubit is �28�

H = Ip��e −
1

2
�0��z + ��x, �33�

where Ip is the maximum persistent supercurrent of the flux
qubit, � is the tunneling amplitude of the barrier and �
� Ip�0, with �0 being the flux quantum. Initially we can set
�e��0 /2 so that the state �00� is produced for the two flux
qubits. We then shift �e to �0 /2 very fast and apply Ib
frequently. After a time period of � / �2
2��, the entangled
state ��+� is produced if V=0 is verified throughout the pe-
riod. This procedure can be extended so as to experimentally
produce large cluster states. For existing technologies of su-
perconducting qubits, the detection time is around 1 ns,
while the decoherence time can be several �s �see, e.g.,
�29��, which indicates that thousands of J−measurements
could be done within the decoherence time. In the future, it
would be interesting to study the effects of decoherence on
this circuit.

TABLE I. Numerical results of the Ps values as defined in Eq.
�32� given different operational errors. These numerically test the
robustness of our results with respect to random operational errors
in the rotation. Here �M is the largest possible error of the rotation
angle in every step �in percentage�, k indicates the number of itera-
tions of the operator Wk/2 PWk.

k \�M→ 0% 5% 10% 20% 50%

50 97.17% 97.18% 97.13% 97.07% 96.69%

100 98.58% 98.58% 98.58% 98.57% 98.50%

1000 99.87% 99.86% 99.86% 99.85% 99.85%

V

γ

ΦeIb
0

1 2

FIG. 1. �Color online� The so called J−measurement can be
implemented by a Josephson-junction circuit with flux qubits. Junc-
tion “0” is a larger junction. Flux qubit 1 and flux qubit 2 each
consists of three small junctions. �e is the flux of the external
magnetic field threading the loop connecting junction “0” and qubit
1.
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VIII. CONCLUDING REMARKS

We have studied the two-qubit quantum Zeno effect with
threshold detection, a type of nondeterministic collective
measurement: the J−measurement which distinguishes two
subspaces J1= ��11�	, and J0= ��00� , �01� , �10�	. We show that
the two-qubit quantum Zeno effect can be used to produce
and expand quantum entanglement, such as cluster states,
which are a useful resource for quantum computing.
These give insights on the quantum Zeno effect and its
possible application in QIP. The method presented here can
also be used to produce other types of entangled states, in-
cluding the Greenberger-Horne-Zeilinger states and the so-
called “W states” �30�. We also discussed the possible imple-
mentation of the J−measurement with superconducting
qubits.

ACKNOWLEDGMENTS

We are grateful to Hans Briegel and Sahel Ashhab for
enlightening discussions. F.N. gratefully acknowledges par-
tial support from the National Security Agency �NSA�, Labo-
ratory Physical Science �LPS�, Army Research Office
�ARO�, National Science Foundation �NSF� Grant No. EIA-
0130383, JSPS-RFBR 06-02-91200, and Core-to-Core
�CTC� program supported by the Japan Society for Promo-
tion of Science �JSPS�. X.B.W. was supported in part by the
National Fundamental Research Program �NFRPC� of China
Grants No. 2007CB807900 and No. 2007CB807901, NSFC
Grant No. 60725416, and China High Tech. Program Grant
No. 2006AA01Z420. J.Q.Y. was supported by the National
Natural Science Foundation of China �NSFC� Grants No.
10534060 and No. 10625416, and the NFRPC Grant No.
2006CB921205.

�1� D. J. Griffiths, Introduction to Quantum Mechanics �Prentice
Hall, Upper Saddle River, NJ, 1994�; K. Koshino and A. Shin-
imu, Phys. Rep. 412, 191 �2005�.

�2� B. Misra and E. C. G. Sudarshan, J. Math. Phys. 18, 756
�1977�; A. Peres, Am. J. Phys. 48, 931 �1985�; Wayne M.
Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, Phys.
Rev. A 41, 2295 �1990�; A. G. Kofman and G. Kurizki, Nature
�London� 405, 546 �1990�; E. Block and P. R. Berman, Phys.
Rev. A 44, 1466 �1991�; C. Search and P. R. Berman, Phys.
Rev. Lett. 85, 2272 �2000�; S. A. Gurvitz, L. Fedichkin, D.
Mozyrsky, and G. P. Berman, ibid. 91, 066801 �2003�.

�3� W. H. Zurek, Phys. Rev. Lett. 53, 391 �1984�; A. Barenco et
al., SIAM J. Comput. 26, 1541 �1997�; L. Vaidman, L. Gold-
enberg, and S. Wiesner, Phys. Rev. A 54, R1745 �1996�; L.-M.
Duan and G.-C. Guo, ibid. 57, 2399 �1998�; A. Beige, D.
Braun, B. Tregenna, and P. L. Knight, Phys. Rev. Lett. 85,
1762 �2002�; P. Facchi and S. Pascazio, ibid. 89, 080401
�2002�; J. Pachos and H. Walther, ibid. 89, 187903 �2002�; D.
Dhar, L. K. Grover, and S. M. Roy, ibid. 96, 100405 �2006�;
F. Helmer, M. Mariantoni, E. Solano, and F. Marquardt, e-print
arXiv:0712.1908.

�4� J. D. Franson, B. C. Jacobs, and T. B. Pittman, Phys. Rev. A
70, 062302 �2004�.

�5� G. Gordon and G. Kurizki, Phys. Rev. Lett. 97, 110503
�2006�; F. F. Fanchini and R. d. J. Napolitano, Phys. Rev. A
76, 062306 �2007�.

�6� E. Knill, R. Laflamme, and G. J. Milburn, Nature �London�
409, 46 �2001�.

�7� D. Gottesman and I. L. Chuang, Nature �London� 402, 390
�1999�; D. W. Leung, Int. J. Quantum Inf. 2, 33 �2004�.

�8� A. Ekert and R. Josza, Philos. Trans. R. Soc. London, Ser. A
356, 1769 �1998�; T. B. Pittman, M. J. Fitch, B. C. Jacobs, and
J. D. Franson, Phys. Rev. A 68, 032316 �2003�; J. D. Franson,
M. M. Donegan, M. J. Fitch, B. C. Jacobs, and T. B. Pittman,
Phys. Rev. Lett. 89, 137901 �2002�.

�9� N. Linden and S. Popescu, Phys. Rev. Lett. 87, 047901
�2001�; R. Josza and N. Linden, Proc. R. Soc. London, Ser. A
459, 2011 �2003�; E. Biham, G. Brassard, D. Kenigsberg, and
T. Mor, Theor. Comput. Sci. 320, 15 �2004�; H. F. Hofmann
and S. Takeuchi, Phys. Rev. Lett. 88, 147901 �2002�.

�10� M. A. Nielsen, Phys. Lett. A 308, 96 �2003�; Phys. Rev. Lett.

93, 040503 �2004�.
�11� H. J. Briegel and R. Raussendorf, Phys. Rev. Lett. 86, 910

�2001�; R. Raussendorf and H. J. Briegel, ibid. 86, 5188
�2001�; R. Raussendorf, D. E. Browne, and H. J. Briegel, J.
Mod. Opt. 49, 1299 �2002�; Phys. Rev. A 68, 022312 �2003�.

�12� M. Borhani and D. Loss, Phys. Rev. A 71, 034308 �2005�.
�13� Y. S. Weinstein, C. S. Hellberg, and J. Levy, Phys. Rev. A 72,

020304�R� �2005�.
�14� T. Tanamoto, Y. X. Liu, S. Fujita, X. Hu, and F. Nori, Phys.

Rev. Lett. 97, 230501 �2006�.
�15� J. Q. You, X. B. Wang, T. Tanamoto, and F. Nori, Phys. Rev. A

75, 052319 �2007�.
�16� Z.-Y. Xue and Z. D. Wang, Phys. Rev. A 75, 064303 �2007�.
�17� P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Wein-

furter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, Nature
�London� 434, 169 �2005�.

�18� D. E. Browne and T. Rudolph, Phys. Rev. Lett. 95, 010501
�2005�; T. Rudolph and S. Virmani, New J. Phys. 7, 228
�2005�.

�19� Y. L. Lim, A. Beige, and L. C. Kwek, Phys. Rev. Lett. 95,
030505 �2005�.

�20� H.-A. Engel and D. Loss, Science 309, 586 �2005�.
�21� S. D. Barrett and T. M. Stace, Phys. Rev. B 73, 075324 �2006�.
�22� R. Ruskov, A. N. Korotkov, and A. Mizel, Phys. Rev. B 73,

085317 �2006�.
�23� T. Hayashi, T. Fujisawa, H.-D. Cheong, Y.-H. Jeong, and Y.

Hirayama, Phys. Rev. Lett. 91, 226804 �2003�.
�24� D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Ur-

bina, D. Esteve, and M. H. Devoret, Science 296, 886 �2002�.
�25� K. Katz et al., Science 312, 1498 �2006�.
�26� J. Q. You and F. Nori, Phys. Today 58�11�, 42 �2005�.
�27� J. Q. You, J. S. Tsai, and F. Nori, Phys. Rev. Lett. 89, 197902

�2002�; Phys. Rev. B 68, 024510 �2003�.
�28� J. B. Majer, F. G. Paauw, A. C. J. ter Haar, C. J. P. M. Har-

mans, and J. E. Mooij, Phys. Rev. Lett. 94, 090501 �2005�; G.
S. Paraoanu, ibid. 97, 180406 �2006�.

�29� P. Bertet, I. Chiorescu, G. Burkard, K. Semba, C. J. P. M.
Harmans, D. P. DiVincenzo, and J. E. Mooij, Phys. Rev. Lett.
95, 257002 �2005�.

�30� W. Dür, G. Vidal, and J. I. Cirac, Phys. Rev. A 62, 062314
�2000�.

WANG, YOU, AND NORI PHYSICAL REVIEW A 77, 062339 �2008�

062339-6


