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We discuss the possibility of observing quantum nonlocality using the so-called mode entanglement, ana-
lyzing the differences between different types of particles in this context. We first discuss the role of coherent
states in such experiments, and we comment on the existence of coherent states in nature. The discussion of
coherent states naturally raises questions about the role of particle statistics in this problem. Although the Pauli
exclusion principle precludes coherent states with a large number of fermionic particles, we find that a large
number of fermionic coherent states, each containing at most one particle, can be used to achieve the same
effect as a bosonic coherent state for the purposes of this problem. The discussion of superselection rules arises
naturally in this context, because their applicability to a given situation prohibits the use of coherent states.
This limitation particularly affects the scenario that we propose for detecting the mode entanglement of
fermionic particles.
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I. INTRODUCTION

Entanglement is probably the most intriguing aspect of
quantum mechanics. It has steadily been the subject of re-
search and controversy ever since it was noted by
Schrödinger in 1935 �1–3�.

The most studied form of entanglement is the one involv-
ing two physical objects with internal degrees of freedom.
The quintessential example in the literature is the entangle-
ment in the Bell states of two spin-1/2 particles. This simple
form of entanglement, however, is not the only one in nature.
In particular, we consider here mode entanglement, which
introduces additional intrigue to this subject due to the fact
that it can involve the vacuum as a crucial element in the
problem, and it can be obtained using a single particle. Both
of these aspects are commonly seen as foreign to the discus-
sion of entanglement.

In order to capture the essence of mode entanglement, one
can consider a single particle in a quantum superposition of
being at two different locations. One rarely associates this
state with entanglement. However, if the particle is viewed as
an excitation of an underlying field, the quantum state takes
the form of an entangled state: the first mode of the field
containing a particle while the second mode is empty, and
vice versa.

The above example shows that the formal expression used
to describe a quantum state is not the ideal indicator of the
presence of entanglement. Instead, it would be more mean-
ingful to define the presence of entanglement according to
the possibility of experimentally observing quantum effects
associated with entanglement, e.g., the violation of the Bell
inequalities �4�. As we shall discuss in some detail below, the
nature of the particles involved in the mode entanglement is
a crucial factor in determining whether this entanglement is
detectable or not. Analyzing the detectability of mode en-
tanglement for different types of particles is the main subject
of this paper.

Several theoretical studies have analyzed the so-called
single-photon entanglement in quite some detail �5–10�. In
fact, there have been experimental tests of the Bell inequali-
ties using the mode entanglement of single photons �11,12�.
Photons, however, represent a single type of particles with
specific properties. Here we build on the results of Ref. �13�
�see also Refs. �14,15��: we analyze the roles played by par-
ticle statistics �16� and superselection rules �17� in the de-
tectability of mode entanglement. We divide our discussion
into four cases, depending on the nature of the particles, i.e.,
bosons or fermions, and whether superselection rules con-
strain the total particle number to be fixed or not. This divi-
sion simplifies the task of identifying the roles played by the
different physical elements in the problem.

The importance of superselection rules, i.e., the constraint
of having a fixed particle number, can be seen by considering
a Bell-violation experiment. In such an experiment, it is nec-
essary to perform measurements in a variety of bases. In the
case of mode entanglement, the notion of measurements in
different bases suggests that one needs to perform measure-
ments in bases of indefinite particle number, e.g., the basis
��0�± �1�� /�2. If superselection rules apply to the type of par-
ticle under consideration, such a measurement is forbidden.
Although this difficulty might seem to be a major obstacle to
the detectability of mode entanglement under the constraint
of superselection rules, we shall present procedures to over-
come it by utilizing the indistinguishability between the par-
ticle under consideration and other properly prepared ancil-
lary particles. The use of particle indistinguishability in our
proposed procedures indicates that particle statistics will also
be an important factor in the detectability of mode entangle-
ment, since there are major differences between bosonic and
fermionic particles in this regard.

The role of coherent states in a Bell-test experiment can
also be seen by considering the need for performing mea-
surements in a variety of bases. Rotations on a quantum state
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before the measurement are equivalent to, and sometimes
necessary for, changing the measurement basis. Such rota-
tions are commonly induced using coherent states. Thus, in
our analysis below we shall deal with questions related to
coherent states, superselection rules and particle statistics.

This paper is organized as follows: In Sec. II we present
the basic setup for our analysis. We analyze mode-
entanglement-detection �gedanken� experiments using four
different types of particles in Secs. III–VI. We conclude by
reviewing our main results in Sec. VII.

II. DESCRIPTION OF THE SETUP

Throughout this paper we consider a setup where a par-
ticle is prepared in a spatially delocalized state of the form

��� =
1
�2

��L� + �R�� , �1�

where the states �L� and �R� are thought of as being localized
on opposite sides of the experimental setup. For the case of
photons, for example, this state can be obtained by sending a
beam into a 50:50 beam splitter. When viewed as a state of
the photon field, in the form

��� =
1
�2

��10� + �01�� , �2�

one can see that this is an entangled state. The task is now to
detect this entanglement, e.g., using a Bell-test experiment
�4�.

How to proceed in order to probe the entanglement in the
state in Eq. �2� depends on the available measurement tools.
For example, the experiments on this subject �11,12� probed
the entanglement using homodyne detection, mixing the in-
coming photons with coherent states of known phases. Ana-
lyzing the detailed description of such specialized tech-
niques, however, would be a distraction from the aim of this
paper. We therefore consider a conceptually simpler sce-
nario: We imagine that the incoming �flying� particle can
excite a two-level target particle from its ground state to its
excited state. The initial state of the combined system is
given by

��� =
1
�2

��10� + �01�� � �gg� , �3�

where the first ket describes the state of the flying particle,
the second ket describes the state of the two target particles
�note that one target particle is placed on each side of the
setup�, and the symbols g and e are used to denote the
ground and excited states of the target particles. Depending
on whether the flying particle is absorbed by the target par-
ticle during the excitation process or not, one obtains either
the state

��� =
1
�2

�00� � ��eg� + �ge�� �4�

or the state �18�

��� =
1
�2

��10� � �eg� + �01� � �ge�� . �5�

The state in Eq. �4� is the proper description for an incoming
photon that is absorbed by one of two target atoms. However,
it cannot be obtained whenever superselection rules apply to
the species of flying particles, since the flying particle cannot
be annihilated in this case. We shall refer to particles with a
conserved total number as massive particles �more as a mat-
ter of easily recognizable terminology than fundamental
physical arguments �19��.

Note that the number of target particles does not change
in the above picture, and they do not move between the two
sides of the experimental setup. The discussion of superse-
lection rules is therefore not crucial in regard to the target
particles. It is safest, however, to assume that they are differ-
ent from the flying-particle species, such that we do not need
to worry about complications associated with the flying and
target particles being indistinguishable and obeying
identical-particle symmetry constraints.

III. CASE 1: MASSLESS BOSONS

We start by considering the relatively simple case of a
single photon passing through a beam splitter and resulting
in an entangled state between the left and right modes of the
electromagnetic field. Although the experiments of Refs.
�11,12� relied on an auxiliary laser beam as a reference phase
standard for the Bell test, it seems conceptually simpler to
imagine the incoming photons being absorbed by target at-
oms and resulting in states of the form given in Eq. �4�. The
mode entanglement is then transferred to the internal degrees
of freedom of the target atoms. One can then conclude that
the measurements for the Bell test can be performed straight-
forwardly on the states of the target atoms.

An important point that was not addressed in the above
scenario is the fact that for a Bell test one would need to
perform rotations on the states of the target atoms before the
measurement �here we are making the realistic assumption
that measurements will always be performed in the ��g� , �e�	
basis�. Such rotations are typically performed using classical
fields of the same frequency as the incoming photons. For
these fields to be classical and useful for our purposes, one
must know the relative phase between the fields on the left-
and right-hand sides of the beam splitter. In other words,
although the entanglement was transferred to the internal
states of the target atoms when the incoming photon was
absorbed, one still needs to have a common phase reference
�typically in the form of photonic coherent states on the two
sides of the experimental setup with a known relative phase�.
The simple-looking scenario of using target atoms therefore
does not eliminate the need for a phase reference. It only
divides the procedure into two steps, each of which is con-
ceptually simple.

Having established the need for a common phase refer-
ence, we are now led to ask whether the two sides of the
setup must be entangled in order to have such a common
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phase reference. If the answer is yes, one would be led to
question whether any observed phenomena probed the mode
entanglement of the incoming photons or a combination of
the mode entanglement and the preexisting entanglement in
the setup. We address the above question next.

Can two coherent states with a known relative phase be
prepared independently of each other?

Although the answer to the above question, in the affir-
mative, is accepted by the majority of physicists, it has gen-
erated some controversy in recent years �20,21�. We there-
fore address it explicitly here for clarity.

The simplest approach to take here is probably to consider
the classical problem of, say, radio-frequency antennas. Tak-
ing two distant antennas with known relative orientations,
and assuming the antennas are controlled by experimentalists
with synchronized clocks, the two experimentalists can pro-
duce classical waves with a known relative phase. If the
setup includes a screen, i.e., a set of detectors, one can pre-
dict exactly where the interference maxima and minima will
appear on the screen. All that is needed to make this predic-
tion is knowledge of the relative orientation of the antennas
and synchronization of the clocks. Although this argument
treats relatively low-frequency waves, there is conceptually
nothing different when dealing with the optical frequencies.
Finally, when this situation is described in quantum-
mechanical terms, the predictability of the interference pat-
terns implies that the photon states generated by the two
sources must be coherent states.

One can therefore conclude that as long as the two
sources share reference frames and synchronized clocks, they
can in principle generate coherent states with a known rela-
tive phase. The fact that present-day experiments cannot pro-
duce two independent optical-frequency lasers with a known
relative phase should not be seen as a fundamental obstacle
to the existence of coherent states �as was in fact noted in
Ref. �20��. The most crucial point here is probably the fact
that the two sources generating the mutually coherent waves
do not need to share any entanglement.

Turning back to the problem of performing rotations on
an atomic state, one can also envision replacing the common
phase reference by the application of intense static electric
fields �the strength of the field being compared with the fre-
quency of the relevant atomic transition� in order to perform
the atomic-state rotation. The phase-standard aspect of the
shared reference frame disappears completely in this case.
One must keep in mind, of course, that real atoms cannot be
approximated by two-level systems under such intense fields.
However, this argument demonstrates that sharing a common
phase reference is nothing more than sharing a space and
time reference frame.

As for the need to share reference frames, this is by no
means unique to the case of quantum-optical coherent states.
It also applies, e.g., to a Bell-test experiment using spin
states. More specifically, take two observers that share maxi-
mally entangled pairs of spin-1/2 particles �e.g., in the singlet
state�. Until the observers establish the proper reference
frames for their measurements, they cannot detect the en-
tanglement. Of course they can sacrifice a few pairs in order
to establish those proper reference frames, and then they can
proceed with the experiment and observe the violation of the

Bell inequality. Alternatively, the two observers can scan the
entire range of possible measurement directions, thus simul-
taneously establishing the common reference frame and ob-
serving the Bell-inequality violation. The main point here,
however, is to note that in many �classical and quantum�
physical problems a common reference frame must be estab-
lished before correct predictions can be made.

IV. CASE 2: MASSIVE BOSONS

This case was analyzed in Ref. �13�, and we shall not
repeat the analysis here. The main result is that if one takes N
ancillary particles of the same species as the flying particles
and forms two entangled Bose-Einstein condensates �in a
properly prepared state�, one can follow the procedure ex-
plained in Ref. �13� and detect the mode entanglement in the
state of the flying particles. The observable concurrence for
each incoming flying particle is given by 1−1 / �2N� for large
N.

An important result in this case is that the condensate of N
particles can be reused for an arbitrary number of flying par-
ticles. The unlimited reusability of the condensate suggests
that the condensate can be naturally thought of as playing an
auxiliary role in the experiment. This result is also rather
counterintuitive, and it stands in contrast with the notion that
quantum reference frames are generally degraded as a result
of repeated use �22�. A possible explanation of this result is
that in the procedure of Ref. �13� no measurements are per-
formed directly on the condensate. In fact, if one performs
measurements on the condensate, one can �at least probabi-
listically� increase the entanglement in the first created pairs
of target particles, but the entanglement of subsequent pairs
will be degraded. It would be interesting to see if similar
ideas can be applied to quantum reference frames in general.

It should be noted here that as the flying particles come
into the proposed setup and are used to excite the target
particles then properly discarded into the condensate, some
amount of entanglement between the condensate and the tar-
get particles is generated. The state of the condensate there-
fore changes after each measurement on a given pair of tar-
get particles. Alternatively, if several entangled pairs are
generated before any measurement is performed, the differ-
ent pairs will be entangled with each other. As such, the
different entangled pairs generated in this procedures cannot
be considered independent and identically distributed �i.i.d.�.
Note, however, that whenever the Bell inequalities are vio-
lated, the observed correlations cannot be described by local-
hidden-variable theories. In other words, using an i.i.d.
source is not a requirement of the Bell test.

In principle, it is possible to write down the full �pure�
quantum state of the entire system and analyze the entangle-
ment present in different sets of subsystems. However, since
our main focus in this paper is the detection of mode en-
tanglement, we only consider the correlations that are present
within the individual pairs of target particles, even in the
case where a stream of flying particles is used to generate a
large number of entangled pairs of target particles. Other
correlations in the system give rise to interesting phenomena
that are not directly related to the aim of this paper and will
be discussed in more detail elsewhere.
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Another interesting result in the case of massive bosons is
that a single ancillary particle is sufficient to allow the ob-
servation of the Bell-inequality violation �ensemble averag-
ing over many setups is needed in order to guarantee the
violation, as will be discussed in detail elsewhere�. This re-
sult can be verified by using the following criterion presented
in Ref. �23�. First, following Ref. �13� with N ancillary par-
ticles, we calculate the reduced density matrix describing the
state of the target particles in the basis ��gg� , �ge� , �eg� , �ee�	,
and we find it to be given by

�TP =
1

2

0 0 0 0

0 1 � 0

0 � 1 0

0 0 0 0
� , �6�

where ��1−1 / �2N�. �In the following we only need to use
the fact that � is nonzero.� Using this density matrix, we now
follow Ref. �23� and define a 3�3 matrix T with entries
Tij Tr��TP��i

L
� � j

R�� with the standard Pauli matrices �1,
�2, and �3 for the left and right particles. Then we compute
the three eigenvalues of the matrix T†T and define a new
function M��� as the sum of the two greatest eigenvalues.
The necessary and sufficient condition for the violation of
the Bell inequality �in the Clauser-Horne-Shimony-Holt ver-
sion �24�� can be expressed as M����1. For the density
matrix �TP above, we find that M���=1+ ���2�1+ �1
−1 / �2N��2, which is always greater than 1 regardless of N,
hence the violation of the Bell inequality.

V. CASE 3: MASSLESS FERMIONS

We now turn to the case of fermionic flying particles. We
start by considering the case of massless fermions because it
gives conceptually interesting results and serves as an intro-
duction to Sec. VI, regardless of whether it corresponds to
any realistic physical situation. The discussion would also be
relevant if superselection rules do not have to be obeyed for
fermionic particles, a situation predicted by some high-
energy theories �14�.

We consider a �possibly hypothetical� fermionic analog of
photons: we imagine a fermionic species of particles that can
be created at will, and any given mode can contain at most
one particle. We therefore cannot create coherent states of a
form similar to coherent states of bosonic particles, i.e.,

���coherent,B = exp�−
�	�2

2
��

n=0



	n

�n!
�n� . �7�

We shall show, however, that the fermionic analog of coher-
ent states can be used to achieve the same result obtained
using bosonic coherent states in the context of the present
discussion. As mentioned above, we assume that states of the
form

���coherent,F =
1
�2

��0� + �1�� �8�

are physical and can be created at will. The above state will
be the main building block for the coherent-state-like ma-
nipulations below.

We now imagine that the incoming particle is absorbed by
one of two target particles as explained in Sec. II. This can
be achieved using the effective Hamiltonian

Ĥ = J�i�+a − i�−a†� , �9�

where J is the coupling strength, �± are raising and lowering
operators of the target-particle state ��+�g�= �e��, and a and
a† are, respectively, annihilation and creation operators of the
incoming particle species. After the absorption of the flying
particle, the target particles end up in a state of the form
given in Eq. �4�.

As discussed in Sec. III above, the detection of mode
entanglement is now reduced to the ability of performing
arbitrary rotations on the states of the target particles. We
therefore focus on these rotations for the remainder of this
section, and below we give explicit expressions for the rep-
resentative example of a � /2 rotation. Note that we do not
allow using a bosonic coherent state here; instead we imag-
ine that the target particle can only be manipulated using the
same Hamiltonian describing the absorption of the incoming
particle �Eq. �9��.

Let us take a target particle in an arbitrary initial state

���i = ��g� + �e� �10�

and try to rotate it to the state

��� f ,ideal =
� − 

�2
�g� +

� + 

�2
�e� . �11�

The above quantum state can also be described using the
density matrix

� f ,ideal =
1

2
� �� − �2 �� + ���� − �

�� + ��� − �� �� + �2
� . �12�

In order to perform the desired rotation, one can try to use an
ancillary mode in the state given by Eq. �8� and allow that
mode to interact with the target particle using the effective
Hamiltonian in Eq. �9� for a duration of � / �4J�. If we trace
out the degrees of freedom of the ancillary mode at the final
time, we find that the above operation transforms the initial
state of the target particle �Eq. �10�� into a mixed state de-
scribed by the density matrix
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� f =
1

4
� 2���2 + �� − �2 �2��� + �� + �2�� − ��

�2���� + � + �2�� − �� �� + �2 + 22 � . �13�

The overlap between this state and the ideal state can be
calculated using the fidelity

F = f ,ideal���� f��� f ,ideal. �14�

We do not write the long expression for the fidelity in the
above example or go further into specific averaging proce-
dures. The main point to note is that the fidelity is clearly
smaller than 1 �compare Eqs. �12� and �13�� �25�.

Since the fidelity reduction can be attributed to instances
where the initial state of the target particle and ancillary
mode is given by �g� � �0� or �e� � �1� �26�, we now try to
reduce the impact of such instances. An obvious approach is
to use a large number N of ancillary modes, each in a state of
the form given by Eq. �8�; the bad states �g� � �00¯0� and
�e� � �11¯1� now have very small probability amplitudes.
We now perform a numerical simulation: We take the target
particle and allow it to interact with each ancillary mode
using the Hamiltonian in Eq. �9� for a duration of � / �4JN�.
Without going into the details of the calculation, which par-
allels the explanation given above for a single ancillary
mode, we find that the fidelity, i.e., the overlap between the
ideal and actual final states, of the target particle approaches
1, with error proportional to 1 /N.

The above procedure can therefore be incorporated into a
mode-entanglement experiment, with the conclusion that af-
ter the absorption of the incoming particle an arbitrary mea-
surement can be performed on the states of the target par-
ticles. This result implies that the mode entanglement would
be detectable in a Bell-test experiment.

We should stress here that the coupling between the target
particle and the ancillary modes must be done sequentially.
If, instead, the target particle is coupled to all ancillary
modes simultaneously using the Hamiltonian

Ĥ = J�
k

�i�+ak − i�−ak
†� = J�N�i�+�

k

ak

�N
− i�−�

k

ak
†

�N
� ,

�15�

the target particle couples to a single collective mode, de-
fined by the annihilation operator b�kak /�N. Using this
procedure therefore gives the same results as using a single
ancillary mode, i.e., a 50% success probability for producing
an entangled pair of target particles �13� �here k labels the
different ancillary modes�.

VI. CASE 4: MASSIVE FERMIONS

Encouraged by the success achieved using fermionic co-
herent states in Sec. V, we now try to follow a similar pro-
cedure for the case of massive fermions.

Since we now want to impose superselection rules �e.g.,
unlike the scenario of Sec. V, the flying particle is not ab-

sorbed upon exciting the target particle and we cannot create
coherent states at will�, we must look for alternatives with a
fixed particle number for the flying-particle species. We fol-
low a procedure similar to that introduced in Ref. �13� and
combine it with the sequential manipulation of Sec. V.

Our starting point is the initial state of the flying particle
and two target particles given in Eq. �5�. We also assume that
we have already created N entangled pairs of ancillary modes
�with each pair of modes sharing one particle� of the form

��anc� =
1
�2

��Lanc� + �Ranc�� , �16�

where the states �Lanc� and �Ranc� describe the ancillary par-
ticle being localized on the left- and right-hand side of the
beam splitter, respectively. We now want to perform a se-
quence of local operations, each involving a target particle
�on the left- or right-hand side�, the corresponding flying-
particle mode and an ancillary mode. We shall try to design
this sequence of operations such that the flying particle is
discarded into one of the ancillary modes by the end of the
entire procedure �the key property of this disposal process is
that one should no longer be able to deduce the location of
the excited target particle from the state of the flying-particle
species�. The concurrence in the state of the target particles
at the end of the sequence of operations can be calculated
from the target-particle reduced density matrix, which is ob-
tained by tracing over the degrees of freedom of the flying
and ancillary particles at the end of the procedure.

We now focus on a single operation to be performed on
one side of the setup; this operation will essentially be the
building block from which the entire sequence is con-
structed. We look for a unitary operation that mixes the states
�e� � �1�flying � �0�anc and �e� � �0�flying � �1�anc with some prob-
ability �27�. The desired effect of this operation is that, if the
flying particle is on the side of the setup where the operation
is performed and the ancillary mode is empty, the flying
particle will �with some probability� be discarded into the
ancillary mode, thus partially erasing the information in the
flying-particle mode. In Ref. �13�, a well-merging process
was proposed for this purpose. We find the well-merging
process unsuitable for generalization to the multistep proce-
dure that we are trying to construct here. It seems that the
next closest analog to what was done in Sec. V is to use
operations of the form

U = �cos � − sin �

sin � cos �
� �17�

in the above basis �i.e., ��e� � �1�flying � �0�anc , �e� � �0�flying

� �1�anc	�, while not affecting any other state �28�.
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In the case of a single pair of ancillary modes �Eq. �16��,
the optimal value of � is � /2 �this would be referred to as a
� rotation�, resulting in a concurrence of 1/2 between the
two target particles. In this case one can clearly identify the
successful instances as those associated with the subspace
��eg� � �Lflying� � �Ranc� , �ge� � �Rflying� � �Lanc�	 and the unsuc-
cessful instances as those associated with the subspace
��eg� � �Lflying� � �Lanc� , �ge� � �Rflying� � �Ranc�	. In particular,
if both the flying and ancillary particles end up on the same
side of the setup, their indistinguishability cannot be utilized
to erase the information about the location of the flying par-
ticle.

We now numerically simulate the procedure with two
pairs of ancillary modes �i.e., two ancillary particles� and
search for the optimal values of �1 and �2, which represent
the two steps in the procedure �we take the same value of � j
on both sides of the experimental setup in each step�. We find
that the maximum achievable concurrence is still given by
1/2, and is obtained by taking one of the two angles equal to
0 and the other equal to � /2. This means that the optimal
approach is to use only one of the two available pairs of
ancillary modes.

Although the above is one specific example of a proce-
dure attempting to increase the concurrence between the tar-
get particles, it seems to be the most natural one combining
the results of Sec. V and those of Ref. �13�. We therefore
suspect that no other procedure would allow an increase in
the concurrence.

Note that the failure to increase the concurrence using a
larger number of ancillary particles does not mean that
quantum-nonlocal effects cannot be observed in this system.
In principle, they are observable �13�. The only concern is
that one can raise questions about whether the observed ef-
fects should be attributed to the mode entanglement or the
combination of the mode entanglement and the entanglement
already present within the pair of ancillary modes.

VII. CONCLUSION

In this paper we have analyzed the problem of detecting
mode entanglement using various types of particles. The re-
sults are summarized in Table I, assuming the existence of N
suitably prepared ancillary particles for the case of massive
particles. For massless particles, mode entanglement is no
different from the Bell-state entanglement in terms of experi-
mental observability, regardless of particle statistics. As we
have discussed, coherent states play an important role in this
context �note that coherent states can only be used when
considering massless particles�. For massive particles, i.e.,
those that must obey particle-number superselection rules,
one must make use of additional ancillary particles in order
to experimentally detect the mode entanglement. For bosons,
an ancillary Bose-Einstein condensate of N particles can be
reused arbitrarily many times, which suggests that the con-
densate should be thought of as a catalyst in the experimental
detection of the entanglement. For fermions, we cannot find
any procedure that gives better results than using a single
ancillary particle. This result suggests that one cannot detect
the mode entanglement in this case; one can only detect the
entanglement present in the combination of the flying and
ancillary particles. If this conclusion is correct, one would
have to question whether the mode entanglement of massive
fermions can be considered a true �i.e., experimentally ob-
servable� form of entanglement.

Finally, we would like to mention that the concept of co-
herent fermionic states has been used in the literature �29�,
mainly as a simple calculational tool to analyze the behavior
of fermionic many-body systems �This effort was motivated
by the fact that coherent states provide invaluable predictive
power when studying certain aspects of the behavior of
bosonic many-body systems �30�.� In this paper, we have
analyzed the possibility of using fermionic coherent states to
simulate classical fields for the purpose of inducing unitary
transformations on the states of the target particles. The se-
quentiality in our proposed procedure provides some distin-
guishability between the particles, thus we do not have to
deal with anticommutation rules or Grassmann variables. It
would be interesting to see if there is a connection between
the ability to utilize fermionic coherent states analyzed here
and the properties of these states analyzed in previous work.
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TABLE I. Concurrence between the two target particles �TPs�
for one incoming flying particle and maximum number of times the
experiment can be repeated �with a given number N of ancillary
particles in the case of massive particles� for different types of
particles.

Particle type Concurrence Max. number

between TPs of repetitions

Massless bosons 1 


Massive bosons 1−1 / �2N� 


Massless fermions 1 


Massive fermions 1/2 N
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