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Highly entangled states called cluster states are a universal resource for measurement-based quantum com-
puting �QC�. Here we propose an efficient method for producing large cluster states using superconducting
quantum circuits. We show that a large cluster state can be efficiently generated in just one step by turning on
the interqubit coupling for a short time. Because the interqubit coupling is only switched on during the time
interval for generating the cluster state, our approach is also convenient for preparing the initial state for each
qubit and for implementing one-way QC via single-qubit measurements. Moreover, the cluster state is robust
against parameter variations.
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I. INTRODUCTION

Quantum computing �QC� with highly entangled states,
known as cluster states, takes advantage of both entangle-
ment and measurement in a remarkable way �1–6�. In sharp
contrast to conventional QC, which uses unitary one- and
two-qubit logic operations, this new type of QC is performed
through only single-qubit projective measurements on a clus-
ter state. This measurement-based QC is termed “one-way”
because it proceeds in an inherently time-irreversible man-
ner. Moreover, it is universal in the sense that any quantum
circuit and quantum gates can be implemented on a suitable
cluster state �1�.

For one-way QC, the initial cluster state should be first
generated. This highly entangled state provides a universal
resource for QC. Ideally, it is desirable to produce a cluster
state in just one step on a scalable circuit, so as to have
efficient QC. However, this is challenging. Recently, a
quantum-optics experiment �7� implemented one-way QC
through local nondeterministic Bell measurements. Even
though the cluster state was generated in one step, its gen-
eration probability was extremely low. Moreover, it is hard to
implement scalable QC with optical cluster states due to the
difficulty of large-scale integration in the optical devices.
Alternatively, solid-state QC with cluster states were pro-
posed �8,9� using the Heisenberg exchange interaction be-
tween electron spins in quantum dots. In these approaches,
additional rotations are performed on individual qubits in
order to obtain an effective Ising-like Hamiltonian for pro-
ducing the cluster state. Also, several steps, instead of the
ideal one step, are required to achieve a quantum-dot cluster
state.

Here we propose an efficient method for one-step genera-
tion of large cluster states using superconducting quantum
circuits. These circuits are based on Josephson junctions
�JJs� and are regarded as promising candidates of solid-state
qubits �see, e.g., �10��. We consider two scalable quantum

circuits in which an inductive coupling is employed to couple
nearest-neighbor charge qubits in one circuit �Fig. 1�a�� and
arbitrarily separated charge qubits in the other circuit �Fig.
1�b��. Both circuits give rise to an Ising-like Hamiltonian,
but the interqubit interactions are nearest-neighbor and long-
range, respectively.
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FIG. 1. �Color online� Schematic diagrams of two arrays of
superconducting charge qubits �denoted as rectangular boxes�. �a�
Qubit array �Q1 ,Q2 , . . . ,QN� with every nearest-neighbor charge
qubits coupled by a large Josephson junction �JJ�, shown as a
crossed rectangle, that acts as an effective inductance LJ. The inter-
qubit coupling is induced by the externally applied magnetic flux �i

in each small superconducting loop connecting qubit Qi and one or
two large JJs. For simplicity, all large JJs are assumed to have the
same Josephson coupling energy EJ0. �b� Qubit array with long-
range interactions, where all charge qubits are connected in parallel
to a common inductance L. The interqubit coupling is induced by
the external magnetic flux �e through the inductance L. As a typical
example, we explicitly show the schematic diagram of charge qubit
QN, where a superconducting island �denoted as a solid circle� is
connected to two JJs �with phase drops �AN and �BN� and biased by
a voltage VN through the gate capacitor CN.
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Because the decoherence time for quantum states is lim-
ited, in order to have efficient one-way QC, it is essential to
generate a cluster state in a deterministic and fast way, so
that only a short time is consumed. Also, it should be con-
venient to prepare the initial state for each qubit and to per-
form local single-qubit measurements. Furthermore, for a
solid-state system, the produced cluster state should be ro-
bust against unavoidable parameter variations. Our proposed
JJ circuits meet these requirements. First, the cluster state is
generated in just one step by turning on, for a short time, the
interqubit coupling. Also, this cluster-state generation is de-
terministic, in sharp contrast to the extremely low probability
of generating nondeterministic optical cluster states �7�. Sec-
ond, because the interqubit coupling is turned on only when
generating the cluster state, the preparation of the initial state
for each qubit can be easily achieved, before generating the
cluster state, via local single-qubit operations. Moreover, due
to the absence of interqubit coupling after generating the
cluster state, local projective measurements used for one-way
QC can also be conveniently performed via single qubits.
Third, the cluster state is robust against unavoidable param-
eter variations because its decoherence time is not sensitive
to such parameter variations. Furthermore, all qubits work at
the optimal point �namely, the degeneracy point� where the
quantum state has a longer decoherence time.

II. QUBIT ARRAY WITH NEAREST-NEIGHBOR
INTERACTIONS

Consider a chain of qubits described by the Hamiltonian

H = �g�t��
i,j

��i − j�
1 ± �x

�i�

2

1 ± �x
�j�

2
, �1�

where ��i− j� specifies the interaction range of the qubits.
Similar to the quantum Ising model used for producing clus-
ter states �1,2�, this Hamiltonian is also Ising-like, but its
anisotropic direction and the “magnetic” field are along the x
direction, instead of the usual z direction. Below we first
focus on a chain of superconducting charge qubits with
nearest-neighbor interactions.

As shown in �11�, two charge qubits can be coupled by a
shared inductance. Because a JJ can behave like an effective
inductance, one can also replace the common inductance
with a large JJ �12–14�. Figure 1�a� shows an array of charge
qubits with a large JJ connected to every pair of nearest-
neighbor qubits. This large JJ directly couples the nearest-
neighbor charge qubits. Also, the non-nearest-neighbor qu-
bits can be coupled via the large JJs, but the interactions are
negligibly small. Here we use the charge states �0� and �1� as
the basis states, which correspond to zero and one extra Coo-
per pairs in the superconducting island of each qubit. The
Hamiltonian of the charge-qubit array can be reduced to

HA = �
i=1

N

�Hi + �i,i+1�x
�i��x

�i+1�� , �2�

with �N,N+1=0. The Hamiltonian Hi of the ith charge qubit is

Hi = �i�Vi��z
�i� − ĒJi�x

�i�, �3�

where

�i�Vi� =
1

2
Eci�CiVi

e
− 1	 ,

ĒJi = EJi cos�	�i

�0
	 . �4�

We assume that the charge qubit works in the charging re-
gime with Eci
EJi. Here Eci is the charging energy of the
superconducting island in the ith qubit and EJi is the Joseph-
son coupling energy of the two identical JJs coupled to the
island; Vi is the gate voltage applied to the qubit and �i is the
externally applied magnetic flux through a small loop con-
necting the ith qubit and one or two large JJs �see Fig. 1�a��.
The flux-dependent interqubit coupling is given by �12�

�i,i+1 = LJ�	2EJiEJ,i+1

�0
2 	sin�	�i

�0
	sin�	�i+1

�0
	 , �5�

where the large JJ acts as an effective inductance LJ
=�0 /2	I0, with I0=2	EJ0 /�0 being its critical current.

When each charge qubit is shifted to work at the degen-
eracy point CiVi /e=1, the Hamiltonian of the charge-qubit
array becomes

HA = �
i=1

N

�− ĒJi�x
�i� + �i,i+1�x

�i��x
�i+1�� . �6�

Let

1

2
ĒJi = �i,i+1 


1

4
�g, i = 2,3, . . . ,N − 1,

ĒJ1 = �12 = ĒJN 

1

4
�g . �7�

These conditions can be readily satisfied by choosing suit-

able EJi and �i because ĒJi decreases from EJi to zero and
�i,i+1 increases from zero to �	 /�0�2LJEJiEJ,i+1 for 0
��i /�0�

1
2 . The reduced Hamitonian can be written as

HA = �g�
i=1

N−1
1 − �x

�i�

2

1 − �x
�i+1�

2
, �8�

which has the form of Eq. �1� with nearest-neighbor interac-
tions ��i− j�=�i+1,j.

Initially, the external flux is not applied, so that no inter-
qubit coupling is induced and one can manipulate each
charge qubit separately. We first prepare all qubits in the state
�0�i. This initial state can be produced by applying a gate
voltage to the left �CiVi /e�0� of the degeneracy point and it
corresponds to the ground state of the system. Then, shift the
gate voltage Vi fast to the degeneracy point �CiVi /e=1� and
turn on the externally applied magnetic flux �e to trigger the
interqubit coupling for a period of time t. The unitary trans-
formation generated by the Hamiltonian �8� is
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U�t� = exp�− igt�
i=1

N−1
1 − �x

�i�

2

1 − �x
�i+1�

2  . �9�

The inital state of each charge qubit can be written as �0�i
= ��−�i+ �+ �i� /�2, where �± �i= ��0�i �1�i� /�2 are eigenstates

of Hi=−ĒJi�x
�i� with eigenvalues ±ĒJi. For the values gt

= �2n+1�	, where n is an integer, the generated state of the
charge-qubit array is a highly entangled cluster state:

��N� =
1

2N/2 �
i=1

N

��− �i + � + �i�x
�i+1�� , �10�

with the convention �x
�N+1�
1.

The generation of cluster states in an array of capacitively
coupled charge qubits was proposed in �15�. Because of the
limitation due to the capacitive interqubit interaction, the ap-
proach in �15� is valid when each qubit works far away from
the degeneracy point. This is not desirable because the deco-
herence time of a charge qubit becomes much shorter away
from the degeneracy point. Furthermore, because the capaci-
tive interqubit coupling is fixed �16�, it is difficult to prepare
the initial state for each qubit. However, the generation of
cluster states proposed here employs an array of inductively
coupled charge qubits. This proposal has obvious advan-
tages: �1� Each charge qubit works at the degeneracy point
when generating a cluster state, where the qubit has a longer
decoherence time; �2� the initial state of all qubits can be
easily prepared by turning off the external magnetic flux and
shifting the gate voltage away from the degeneracy point; �3�
when the initial state is prepared, the cluster state can be
readily generated by applying the external flux �i for a pe-
riod of time; and �4� after generating the cluster state, no
external magnetic flux is applied and the interqubit coupling
is switched off. This becomes convenient for implementing
one-way QC via local single-qubit measurements on the gen-
erated cluster state.

III. QUBIT ARRAY WITH LONG-RANGE INTERACTIONS

When multiple charge qubits are connected to a com-
monly shared inductance �see Fig. 1�b��, not only nearest-
neighbor but also distant qubits can be coupled by this com-
mon inductance �11�. Because the common inductance for
coupling the charge qubits has a large value �L�10 nH�
�11�, if the circuit is not too large, the inductances of the
circuit, except L, can be neglected. The reduced Hamiltonian
of the system is given by

HB = �
i=1

N

Hi − �
i,j�j�i�

N

�ij�x
�i��x

�j�. �11�

Here ĒJi in the single-qubit Hamiltonian Hi becomes

ĒJi = EJi cos�	�e

�0
	 , �12�

with �e being the externally applied magnetic flux through
the common inductance L. The interqubit coupling is

�i,j = L�	2EJiEJj

�0
2 	sin2�	�e

�0
	 . �13�

Let

ĒJi

N − 1
= �ij 


1

4
�g , �14�

for 1� i, j�N, and j� i. This condition can be satisfied
using N identical charge qubits and a suitable �e. While
fulfilling this condition and simultaneously having each
charge qubit work at the degeneracy point, the Hamiltonian
becomes

HB = − �g �
i,j�j�i�

N
1 + �x

�i�

2

1 + �x
�j�

2
, �15�

which corresponds to Eq. �1� with long-range interactions.
The initial state of each charge qubit, �0�i= ��−�i

+ �+ �i� /�2, is also prepared by both turning off the external
flux �e and applying a gate voltage to the left of the degen-
eracy point. Furthermore, we shift the gate voltage fast to the
degeneracy point and apply the flux �e for a period of time
t. The unitary transformation given by the Hamiltonian �15�
is

U�t� = exp�igt �
i,j�j�i�

N
1 + �x

�i�

2

1 + �x
�j�

2  . �16�

At gt= �2n+1�	, the generated cluster state is

��N� =
1

2N/2 �
i=1

N ��− �i�− 1�N−i �
j=i+1

N

�x
�j� + � + �i	 , �17�

which is also a highly entangled state. In Eq. �10�, the op-
erator �x

�i+1� acts on the states ��� of the �i+1�th qubit. How-
ever, for the cluster state ��N�, the operator �x

�j� acts on the
states ��� of the qubits j= i+1, . . . ,N, with i=1,2 , . . . ,N−1;
this is due to the long-range nature of the interqubit coupling
in Hamiltonian �15�.

IV. PARAMETER VARIATIONS AND ROBUSTNESS
OF CLUSTER STATES

As in other solid-state systems, parameter variations un-
avoidably occur when fabricating JJ circuits. When the pa-
rameters EJi vary in the charge-qubit array in Fig. 1�a�, be-

cause ĒJi=EJi cos�	�i /�0�, the condition

ĒJ1 = ĒJN =
1

2
ĒJi =

1

4
�g , �18�

with i=2,3 , . . . ,N−1, can be satisfied by adjusting the local
magnetic fluxes �i. However, if LJ and EJi vary, the condi-
tion

�i,i+1 =
1

4
�g �19�

cannot be satisfied. In order to fulfill this condtion, one can
connect a current source in parallel to each large JJ and bias
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the JJ with a current Ibi� I0. Now the interqubit coupling
becomes

�i,i+1 = LJi�	2EJiEJ,i+1

�0
2 	sin�	�i

�0
+

1

2
�i	

� sin�	�i+1

�0
−

1

2
�i	 , �20�

where the effective inductance for each large JJ is

LJi =
�0

2	I0 cos �i
, �21�

with

�i = sin−1� Ibi

I0
	 . �22�

Here the condition �19� can be readily satisfied by changing
the bias current Ibi. As for the charge-qubit array in Fig. 1�b�
and the capacitively coupled charge qubits �15�, the condi-
tions for obtaining an Ising-like Hamiltonian cannot be fully
satisfied for varying qubit parameters. Therefore the charge-
qubit circuit in Fig. 1�a� should be advantageous for sup-
pressing the effects of unavoidable parameter variations.

Below we further show the robustness of the cluster states
against parameter variations. According to the Fermi golden
rule, the relaxation rate of the ith charge qubit is

�1
�i� 


1

T1
�i� =

1

2
AiSi��� , �23�

where

Ai =
ĒJi

2

�i
2 + ĒJi

2
, �24�

and Si��� is the power spectrum of the charge noise domi-
nant in the charge qubit. For a typical Gaussian noise �17�,
the dephasing factor is

�i��� = Bi� d�Si���
sin2���/2�
2	��/2�2 , �25�

with

Bi =
�i

2

�i
2 + ĒJi

2
. �26�

The dephasing rate ��
�i�
1/T�

�i� is defined by �i�T�
�i��=1. Fol-

lowing the Bloch-Redfield theory �see, e.g., �18��, the deco-
herence rate �2

�i�
1/T2
�i� is

�2
�i� =

1

2
�1

�i� + ��
�i�. �27�

Because all interqubit couplings are switched off after gen-
erating a cluster state, the decoherence time T2 of the cluster
state is given by

1

T2
= �

i

1

T2
�i� . �28�

Here all charge qubits work at the degeneracy point �i�0,
thus

Ai � 1 − � �i

ĒJi
	2

,

Bi � � �i

ĒJi
	2

. �29�

Obviously, Ai and Bi are weakly affected by the variations of
the parameters EJi. This indicates that the decoherence time
T2 of the cluster state is not sensitive to the parameter varia-
tions. Therefore the cluster state is robust against the un-
avoidable parameter variations.

V. DISCUSSION AND CONCLUSION

Each Josephson coupling energy for a charge qubit is
typically EJ /h�10 GHz �see, e.g., �16��, which corresponds
to a switching time �1�0.1 ns for the single-qubit operation.
For the charge-qubit array in Fig. 1�a�, the interqubit cou-
pling is

� � LJ�	EJ

�0
	2

,

where

LJ =
�0

2	I0
=

1

EJ0
��0

2	
	2

.

Choosing, e.g., EJ0=5EJ, one obtains � /h�0.5 GHz. Be-
cause �g /4=�, the shortest time to generate the cluster state
is ts=	 /g�0.25 ns, comparable to the switching time �1 of
the single-qubit operation. For the array of charge qubits
coupled by a common inductance L �see Fig. 1�b��, the in-
terqubit coupling is

� � L�	EJ

�0
	2

.

Using L=10 nH, one has � /h�1.1 GHz. The corresponding
shortest time for generating the cluster state is ts�0.11 ns
��1. Let T2 be the decoherence time of a qubit. The deco-
herence time of N weakly coupled qubits can be estimated as
T2

�N��T2 /N. For a charge qubit with T2�0.5 �s at the de-
generacy point �19�, considering an array with N=100
charge qubits, one obtains T2

�N��5 ns. This decoherence time
is longer than the shortest time ts for generating the cluster
state. Here the common inductance is chosen to be large
�e.g., L=10 nH�, but the interqubit couplings are still weak,
and those couplings are turned off after generating a cluster
state. Thus the effects of L on the decoherence of the cluster
state are small. Moreover, these decoherence effects can be
further reduced when L is replaced by a large JJ acting as an
effective inductance.

For the usual quantum Ising model, where its anisotropic
direction and the “magnetic” field are both along the z direc-
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tion, the basis states used for representing a cluster state are
the eigenstates �0�i and �1�i of �z

�i�. To implement one-way
QC, single-qubit projective measurements are performed �1�
on the basis states �± �i, namely, the eigenstates of �x

�i�. In our
proposed charge-qubit arrays the reduced Hamiltonian is also
Ising-like, but its anisotropic direction and the “magnetic”
field are along the x direction, instead of the z direction �1�.
Now the cluster state is represented using basis states �± �i,
instead of �0�i and �1�i. Correspondingly, the single-qubit pro-
jective measurements are performed on the basis states �0�i
and �1�i. In charge qubits, these states correspond to zero and
one extra Cooper pairs in the superconducting island of each
qubit. The local single-qubit projective measurements on
these basis states can be implemented using, e.g., either a
probe junction �16� connected to the superconducting island
or a single-electron transistor �20� coupled to the charge qu-
bit. Because the single-electron transistor has high efficiency
for reading out the quantum state, it is more advantageous to
use it for performing local single-qubit projective measure-
ments. Also, because such a transistor is coupled to each
charge qubit via a small capacitance, it only produces weak

backaction on the qubit state in the absence of quantum mea-
surement.

In conclusion, we propose an efficient method for produc-
ing large cluster states using superconducting circuits. We
consider two charge-qubit arrays where either nearest-
neighbor or arbitrarily separated qubits are inductively
coupled. The initial cluster state can be efficiently generated
in just one step by turning on the interqubit coupling for a
short time. Also, our approach is convenient for preparing
the initial state of the system and for implementing one-way
QC via single-qubit measurements on the cluster state be-
cause the interqubit coupling is switched off in both cases.
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