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We study the effect of a phase shift on the amount of transferable two-spin entanglement in a spin chain. We
consider a ferromagnetic Heisenberg or XY spin chain, both numerically and analytically, and two mechanisms
to generate a phase shift, the Aharonov-Casher effect, and the Dzyaloshinskii-Moriya interaction. In both cases,
the maximum attainable entanglement is shown to be significantly enhanced, suggesting its potential usefulness
in quantum information processing.
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I. INTRODUCTION

Transferring quantum information reliably and efficiently
is an important task in quantum information processing. For
example, quantum communication protocols, such as quan-
tum key distribution �or quantum cryptography�, usually re-
quire two �or more� distant parties to share entanglement of
high quality to achieve tasks that are impossible in the re-
gime of classical mechanics. Also, in a typical situation we
encounter in the standard quantum computation model, we
need to couple two spatially separated qubits in order to
perform two qubit unitary operations, e.g., a controlled-NOT

gate.
Most common approaches to this task include methods

with an information bus, guided ions �atoms�, flying photons,
a sequence of swapping operations between neighboring qu-
bits, etc. However, these methods require additional com-
plexity in structures, manipulations, and controls of the in-
teraction between qubits, as well as repeated conversions
between the qubit state and another physical degree of free-
dom. Flying photons may be the best information carrier
over macroscopic distances, but may not be so for micro-
scopic scales of the order of, say, a few micrometers. This is
why there has been intensive research activity in the past few
years on quantum information transfer via arrays and/or
chains of stationary qubits that are interacting with their
neighboring qubits.

Typically, in previous studies of this topic, the quantum
information channel consists of one or more chains of spin-
1/2 particles, each of which interacts with their nearest
neighbors. The interaction between spins can be described by
either the Heisenberg or the XY �or variations of these, e.g.,
the XXZ� model with some relevant parameters for coupling
strengths, anisotropy, etc. These types of models attract
much attention because they are in principle sufficient for
implementing quantum information processing: examples of
proposed methods are those with quantum dots and particles
trapped in an optical lattice.

A number of important and interesting results have been
reported in this research area: for example, sending quantum
information through a spin chain without modulation �1�,

entanglement transport with an anisotropic XY model �2�,
perfect transfer by manipulating the coupling strengths �3,4�,
near perfect transfer with uniform couplings by a spatially
varying magnetic field �5�, Fourier analysis-based quantum
information encoding �6�, measurement-assisted transfer
through two parallel chains �7�, specific realizations of the
method in �1� with superconducting qubit array �8,9�, perfect
transfer by local measurements on individual spins �10�, and
also transfer through a chain of coupled harmonic oscillators
�11�.

The geometry of the spin chain could be more general in
principle, but we will primarily consider a one-dimensional
chain or ring of N spin-1/2 particles for simplicity. If we look
at the chain as a whole, we can think of independent quan-
tum states of collective modes, i.e., eigenstates of the Hamil-
tonian for the whole chain. The propagation of quantum in-
formation encoded in a spin can be thought of as the
interference between all modes, which evolve independently.

Hence, a naive strategy towards quantum information
transfer of better quality would be to control the propagation
of each mode, which will affect the �constructive� interfer-
ence at a certain target site. Here we take this approach and
consider the effect of changes in the energy spectrum and
dispersion relation of the mode �or “spin wave”� that induce
a spin current in the chain. As a result of the induced change
in the energy spectrum, there will also be a change in the
time evolution of each mode and thus the interference be-
tween these modes. An advantage of this approach is that the
pairwise coupling strengths Jij between ith and jth spins and
the external electromagnetic field can be taken as a constant
over the whole chain, unlike some schemes proposed before.
That is, they do not have to be manipulated site by site,
regardless of the starting and target sites for the transfer.

In this paper, we study the effect of a phase shift on the
amount of transferable entanglement through a spin chain.
We shall primarily focus on the transfer of entanglement,
rather than the state itself, since entanglement is the key to
achieving highly nonclassical information processing. Be-
sides, keeping the fidelity of the �entangled� two-spin system
is harder than keeping the fidelity of a single spin. This can
be stated more precisely as “the entanglement fidelity asso-
ciated with a trace-preserving map is lower than or equal to
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the corresponding input-output fidelity of a subsystem” �12�.
In short, attaining an entanglement transfer of high quality
guarantees a state transfer of high quality.

Further, we assume that the whole system is in the “one-
magnon” state, in which the total number of up spins in the
chain is one. This situation is simple enough to start our
analysis with and is indeed reasonable when considering in-
formation transfer. Thus, all spins in the initial state, except
the one that is the subject of the transfer operation, are ini-
tially down. As for the interaction between spins, we will
consider the standard isotropic Heisenberg model. The
Heisenberg model is actually equivalent to the XY model
under the one-magnon assumption, therefore our analysis
will be applicable to a wide range of physical systems. Also,
as assumed �mostly tacitly� in the literature listed above, we
make another assumption not to let useful entanglement pass
by the target site: the entanglement at the target site�s� can be
extracted later on at will or can be retained for further op-
erations, including entanglement distillation �13�, to maxi-
mize the efficiency of subsequent processes.

We will consider two different ways of generating phase
shifts. One is due to the Aharonov-Casher effect �14�, while
the other is induced by the Dzyaloshinskii-Moriya interac-
tion �15,16�. There are other means to generate a phase shift,
or equivalently a �persistent� spin current, in a chain and/or
ring, such as those reported in �17,18�. However, we focus
on the two above because these seem to be sufficient to dem-
onstrate a significant entanglement-enhancing effect due to
phase shifts. We discuss only chains of ring geometry be-
cause the effect is absent in open-ended chains as shown in
the Appendix .

II. PAIRWISE ENTANGLEMENT IN SPIN CHAINS

Let us start with a description of the entanglement be-
tween an arbitrary pair of spins in an N-spin chain within the
one-magnon condition. The properties of the spin chain, such
as its geometry, the nature of the interaction, etc. could be
any at this point. As there is only one up spin in total, the
state of the whole chain at time t can be given by

���t�� = �
j

� j�t�Sj
+�0��N, �1�

where Sj
+=Sj

x+ iSj
y is the raising operator defined with the

spin-1/2 operators Sj
� ��=x ,y ,z� for the jth spin. The

lowering operator is defined as its Hermitean conjugate,
Sj

−=Sj
x− iSj

y. Throughout this paper, we will let �0� denote the
spin-down state, while �1� is the spin-up state. As in standard
entanglement transfer scenarios with the one-magnon as-
sumption, the magnon is initially localized at a single site.
With such initial conditions, we can identify the amplitudes
� j�t� as the propagators, or the Green’s functions, from the
point of view of wave mechanics. They have all information
to describe the time evolution of a magnon wave packet.

In order to evaluate the pairwise entanglement in ���t��,
we employ the concurrence �19� as its measure. The concur-
rence C in a bipartite state � is defined as

C ª max�0,�1 − �2 − �3 − �4	 , �2�

where �i are the square roots of the eigenvalues of matrix R
in descending order. The matrix R is given as a product of �
and its time-reversed state, namely

R = ���y
� �y��*��y

� �y� , �3�

where �y is one of the standard Pauli matrices and the star
denotes the complex conjugate. The concurrence takes its
maximum value 1 for the maximal entanglement, while it is
0 for all disentangled qubits.

We will compute the concurrence Cl1,l2
�t�, between the

l1th and l2th spins, at time t by tracing out all spins except
those two. Then, Cl1,l2

�t� can be written as

Cl1,l2
�t� = 2��l1

�t����l2
�t�� . �4�

Hence Eq. �4� states that the concurrence between the two
sites in a chain can be expressed as a product of the absolute
values of propagators. That the entanglement is determined
by the propagators supports our approach towards enhancing
the entanglement by phase shift, because the propagators are
naturally affected by change in dispersion relation caused by
phase shifts.

III. ENTANGLEMENT TRANSFER WITH THE
AHARONOV-CASHER EFFECT

First, we consider the Aharonov-Casher effect �14� as a
physical mechanism that causes a phase shift in the collec-
tive modes. When a neutral particle with magnetic moment

�� travels from r� to �r�+�r�� in the presence of electric field E� ,
the wave function of the particle acquires an extra phase,
which is the Aharonov-Casher �AC� phase,

�� =
1

	c2

r�

r�+�r�

�� 
 E� �x�� · dx� , �5�

in addition to the ordinary dynamical phase. The physical
origin of the AC effect is that a particle moving in an electric
field feels a magnetic field as well due to relativistic effects:
the AC effect is essentially equivalent to spin-orbit coupling.
If there is no external field applied to the ring of spins, the
dispersion relation should be symmetric with respect to the
zero wave number �k=0�, i.e., Ek=E−k, due to the rotational
symmetry of the system. However, if the accumulated AC
phase along a ring does not vanish after a 2� rotation, the
dispersion relation will change as the applied field breaks the
�spatial� symmetry. Consequently, the propagation speed of
each mode will be affected and the concurrence between any
two sites can be expected to change accordingly.

Figure 1 sketches two possible configurations to have the
AC phase effectively. The geometry in Fig. 1�a� is very simi-
lar to that for electrons in an atom. An electric field diverges
radially, and the z axis is taken to be perpendicular to the

plane containing the ring. The term �� 
E� �x�� ·dx� in Eq. �5�
takes its largest value when a �quasi-�magnetic moment
�magnon� travels along the chain. The electric field could be
generated by, for example, a charge on a wire at the center of
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the ring. Alternatively, the directions for the spin and the
electric field can be swapped as in Fig. 1�b� to have the same

�� 
E� �x��.
We consider a Heisenberg chain of N spin-1/2 particles

interacting ferromagnetically with their nearest neighbors.
The phase acquisition due to the AC effect modifies the stan-
dard Heisenberg model Hamiltonian to �20,21�

H = − �
j=1

N

� 1
2 �ei�Sj

+Sj+1
− + e−i�Sj

−Sj+1
+ � + Sj

zSj+1
z + hSj

z� , �6�

where the interaction strength is taken as J=−1 for all neigh-
boring pairs and h is the magnetic field, which is taken to be
uniform and parallel to the z direction. The phase change �
between neighboring spins is given by Eq. �5� with r�=r� j and

�r�=rj+1
� −rj

� . The ring-shaped configuration is represented by
periodic boundary conditions, i.e., N+1=1. The Hamiltonian
H can be diagonalized with the help of the Jordan-Wigner
transformation �22,23� that maps spins under H to spinless
fermions. The annihilation and creation operators for the fer-
mion at site j are

cj = exp��i�
l=1

j−1

Sl
+Sl

−�Sj
−

and cj
† = Sj

+ exp�− �i�
l=1

j−1

Sl
+Sl

−� . �7�

Under the one-magnon condition, the Hamiltonian H is now
diagonalized as

H = − �
j=1

N 1

2
�ei�cj

†cj+1 + e−i�cj+1
† cj� −

1

2
�cj

†cj + cj+1
† cj+1�

+ h�cj
†cj −

1

2
� +

1

4
� = �

k

Ek�k
†�k �8�

with a further linear transformation �k=� jkj
* cj. The energy

eigenvalues Ek can be computed as

Ek = − cos�k + �� + �1 −
N

4
� − h�1 −

N

2
� , �9�

where k=2�n /N with −N /2�n�N /2, and kj =1/�Neikj.
As the second and third terms of Eq. �9� are constant, we will
omit them hereafter. A one-magnon eigenstate can be ob-
tained accordingly with the form of �k

† as

�k� ª �k
†�0��N =

1
�N

�
j

eikjSj
+�0��N. �10�

The presence of the extra phase � is reflected only in the
energy spectrum, while the expression for eigenstates is un-
changed. The change in the dispersion relation by a phase
shift is illustrated in Fig. 2�a�.

Note that applying the Jordan-Wigner transformation to
the Hamiltonian �6� gives an additional term to Eq. �8�,
−1/2�ei�c1

†cN+e−i�cN
† c1��exp�i��l=1

N cl
†cl�+1�, which is a re-

sult of the periodic boundary condition. We have already
omitted this term in Eq. �8� since it equals zero as long
as we consider the one-magnon state. This is because
exp�i��l=1

N cl
†cl�+1=0 for any N. Also, the one-magnon con-

dition makes the Heisenberg model equivalent to the XY
model, as the interaction between �virtual� fermions after the
Jordan-Wigner transformation is absent under this condition
in both models.

A. Entanglement with an isolated spin

Let us analyze the entanglement propagation along the
spin chain. Suppose that at t=0 a physically isolated �the

FIG. 1. �Color online� Examples of configurations for the
Aharonov-Casher effect in a ring-shaped spin chain. In �a�, the z
axis is taken to be parallel to the direction perpendicular to the

plane that contains the spin chain. With an electric field E� , which is

directed to the radial direction, the term �� 
E� �x�� ·dx� in Eq. �5�
takes its largest value. Alternatively, as in �b�, the directions for the
spin and the electric field can be swapped to have the same

�� 
E� �x��. The magnetic moment of spin eigenstate, �↑ � or �↓ �, is
parallel to the radial direction.

FIG. 2. Energy spectrum Ek=−cos�k+�� �in the units of J�. �a�
A nonzero � changes the dispersion relation represented with open
circles �no phase shift� to the one with filled circles ���0�. The
number of sites N is taken to be 8. �b� The energy spectrum when N
is large.
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0th� spin and the first spin are maximally entangled as
��01�+ �10�� /�2 and the rest of the spins in the chain are all in
�0�. Thus, the initial state of the whole system can be ex-
pressed as

���0�� =
1
�2
�0�0

1
�N

�
k

eik�k� + �1�0�0��N� . �11�

Hence, we find the state at time t, taking 	=1, as

���t�� =
1
�2
 1

N
�
k,j

exp�ik�j − 1� − iEkt��0�0Sj
+�0��N

+ eit�1�0�0��N� . �12�

Figure 3 depicts the process we consider: Fig. 3�a� shows the
initial correlation in ���0��, and Fig. 3�b� is the desired goal
of our entanglement transfer operation.

Now we can evaluate the entanglement between the 0th
and lth spins. Equation �12� can be written in the form of Eq.
�1� with amplitudes

� j�t� =
1

�2N
�

k

exp�ik�j − 1� − iEkt� . �13�

Because the 0th spin is not interacting with other spins, we
can take ��0�t� � =1/�2 for all t. From Eq. �4� we obtain
C0,l

0,1�t�=�2 ��l�t��, where the superscripts on C denote the
initially entangled pair. In the limit of large N, this takes a
simple analytical form

C0,l
0,1�t� = �e−i�l−1���−�/2�Jl−1�t�� = �Jl−1�t�� , �14�

with the Bessel function of the first kind J��x�. The effect of
the AC phase � disappears in this limit, since the energy
spectrum becomes continuous and displacing all modes by �
does not change the overall dispersion relation. This can be
clearly seen in the plot in Fig. 2�b�. In other words, � appears
only as a common phase factor for all modes, e−i�l−1���−�/2�,
thus there is no � dependence in �� j�.

An example of the plots of concurrence as a function of t
and � is shown in Fig. 4, which is the plot of C0,3

0,1�t� for N
=5. The phase � is the same as that in Eq. �6�, that is, the
phase a magnon acquires when hopping from the jth to the
�j+1�th site. Some improvement in the amount of transferred

entanglement due to the nonzero phase shift is evident: the
maximum concurrence when �=0 is Cmax

�=0 =0.647 �at t
=59.05�, and when ��0, Cmax can reach as high as 0.996 �at
t=23.71 and tan �=1.376� in the region we have calculated,
i.e., t� �0,200� and �� �−� ,��.

Figure 5 shows the comparison between the maximum
values of concurrence Cmax with and without phase shift for
various �N , l� from �3,2� to �13,13�, where N is the total
number of sites and l is the site where the concurrence is
evaluated. Plotted are the highest values found numerically
in the range of 0� t�200. The horizontal axis represents
�N , l�. The blue lines with diamond markers are for the ge-
ometry with an isolated spin, and the red lines are for the
entanglement transfer when the initial entanglement is held

FIG. 3. �Color online� Schematic picture of entanglement trans-
fer in a spin chain. �a� The configuration of the Heisenberg ring and
the entanglement it has at t=0, with a spatially separated system
that is here represented as the 0th spin. �b� The ideal goal of the
entanglement transfer operation: we wish to transfer as much en-
tanglement with the 0th spin as possible to a specific �target� spin in
the chain.

FIG. 4. �Color online� An example of plots of the concurrence C
transferred in a five-spin chain �ring� in the presence of a phase
shift. The initial entanglement �of the form ��01�+ �10�� /�2� is in the
first spin of the ring and an isolated �0th� spin. The phase shift � is
an extra phase a magnon acquires when traveling to a neighboring
site. The concurrence C is evaluated for the pair of the 0th and third
spins. Units for t and � are 	 seconds and radian, respectively,
where 	 is the Planck constant.

FIG. 5. �Color online� Comparison of the maximum concur-
rence attainable Cmax between the cases with and/or without phase
shift. The blue plots �diamonds� show the concurrence between the
0th and lth spins when the 0th and first spins have the entanglement
��01�+ �10�� /�2 at t=0. The filled and open diamonds correspond to
nonzero and zero phase shift, respectively. The red plots �triangles�
are for the concurrence between the lth and �l+1�th spins when the
first and the second spins are initially entangled in the same form.
The horizontal axis represents the total number N of sites in the
chain and the location l �2� l�N� at which the concurrence is
evaluated.
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by a pair in the chain. The latter case will be discussed in the
following subsection. For both cases, the open markers show
the maximum concurrence Cl1,l2

m1,m2 when �=0, while the filled
ones mark max�Cl1,l2

m1,m2	 in the range of −�����.
The enhancement of entanglement by the phase shift is

clearly seen in Fig. 5. The transferred entanglement is sig-
nificantly increased by nonzero phase shifts for many values
of �N , l�. Yet, the degree of enhancement varies because quite
an effective constructive interference can occur even when
�=0 for some �N , l�.

B. Entanglement in a pair of spins in the chain

Let us now look at an alternative scenario of entangle-
ment transfer. Instead of being entangled with an isolated
�0th� spin, both spins of an entangled pair can be in the same
chain. Considering the effect of the phase shift mentioned
above, we can naturally expect some improvement in the
efficiency of transfer in this scenario as well. We already
have the expression, Eq. �4�, for the concurrence at time t
between the lth and �l+1�th spins Cl,l+1

m1,m2�t�
=2 ��l

m1,m2�t� � ��l+1
m1,m2�t��, where m1 and m2 denote the initial

sites that are entangled. Factors � j
m1,m2�t� are given explicitly

by

� j
m1,m2�t� =

1
�2N

�
k

�exp�ik�j − m1� − iEkt�

+ exp�ik�j − m2� − iEkt�	 . �15�

The comparison of the maximum concurrence between
the cases with and without the phase shift is shown in Fig. 5
with red triangular markers. For the plot in Fig. 5, the initial
entanglement of the form of ��01�+ �10�� /�2 is assumed to be
in the first and second spins and the rest are in �0�.

As N tends to infinity, Cl,l+1
m1,m2�t� approaches the form

Cl1,l2

m1,m2�t� = �Jl1−m1
�t� + e−i�m1−m2���−�/2�Jl1−m2

�t��


�Jl2−m1
�t� + e−i�m1−m2���−�/2�Jl2−m2

�t�� . �16�

Interestingly, unlike Eq. �14�, there is still a dependence on
�, regardless of l’s and m’s. Nonzero � can indeed always
increase the maximum attainable pairwise entanglement in a
long chain, no matter which pair is initially entangled, and
no matter which pair we evaluate the concurrence for.

We can see in Fig. 5 that the degree of enhancement is
larger when the two initially entangled spins are in the chain,
compared with the case of entanglement with an isolated
one. This difference can be understood intuitively when N is
large: the physical reasoning for small N’s is essentially the
same. If we look at a propagator from a single site, the phase
shift � gives an almost common displacement to the phase of
all modes at any single site as we have seen in Eq. �14�.
When the entangled pair, m1 and m2, is embedded in the
chain initially, there are two independent propagators stem-
ming from the two sites. Since these propagators have dif-
ferent phase displacements at the same site, say the lth, the
interference due to nonzero � still occurs. As a result, there
remains a dependence of the concurrence on the phase shift.

IV. SPIN SHIFT INDUCED BY THE DZYALOSHINSKII-
MORIYA INTERACTION

Phase shifts can be generated by a different type of inter-
action, that is, the antisymmetric exchange interaction, also
known as the Dzyaloshinskii-Moriya �DM� interaction
�15,16�, in solids. The DM interaction could be quite signifi-
cant in some solid-state-based qubit systems, such as quan-
tum dots �24�.

The Hamiltonian for the DM interaction between two
spins, say 1 and 2, can be written as

HDM = d� · �S�1 
 S�2� , �17�

where d� is the coupling vector that reflects the anisotropy of

the system. Assuming that only the z component of d� has a
nonzero value, i.e., dz�0,dx=dy =0, and that all components
are constant along the chain, we can write the total interac-
tion Hamiltonian and its spectrum as �omitting the terms that
give only a constant bias�

H = −
1

2�
j

�Sj
+Sj+1

− + Sj
−Sj+1

+ + idz�Sj
+Sj+1

− − Sj
−Sj+1

+ ��

= −
1

2 cos 
�

j

�eiSj
+Sj+1

− + e−iSj
−Sj+1

+ �

= −
1

cos 
�

k

cos�k + ��k
†�k, �18�

where =tan−1 dz. Thus, the difference from the energy
spectrum under the AC effect, Eq. �9�, is only the factor
1 /cos  for the energy eigenvalues. As this factor is indepen-
dent of k, it only rescales the energy spectrum linearly �for a
given �, hence increases the speed of propagation of all
modes by 1/cos . Consequently, the maximum concurrence
attainable stays the same as that in the AC effect case, though
the time at which the maximum is achieved should be res-
caled as well. All quantitative results in the previous section
are valid for this system with HDM if t is replaced with
t / cos .

V. SUMMARY AND OUTLOOK

We have investigated the effect of externally induced
phase shifts on the amount of entanglement that can be trans-
ported in a spin chain. As we have qualitatively anticipated
in the Introduction, these phase shifts can significantly en-
hance the efficiency of entanglement transfer. Although we
have only studied two shift generating mechanisms, we be-
lieve that phase shifts are useful in quantum information pro-
cessing, particularly for short-distance transfers, regardless
of the mechanism. Also, we have found that there is an in-
teresting clear difference in the response to nonzero shift
when the chain is sufficiently long.

In the AC-effect-related experiment, there could be a dif-
ficulty in providing an electric field that is intense enough. A
rough calculation gives an estimate of the necessary strength
of the electric field of at least 107 V/m to have a meaningful
phase shift, if the system size is of the order of a �m. Nev-
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ertheless, such a strong electric field can be realized by two
dimensional electron gases formed in heterostructured SiGe,
GaAs, or other types of III-V materials. Furthermore, the
so-called band enhancement of spin-orbit coupling in crys-
tals �25� could be useful to have a substantial AC effect.

Despite a number of technical difficulties, some qubit ar-
rays, in which the effect of the phase shift can be observed,
could be fabricated with present-day technology. For ex-
ample, consider an array formed with charge qubits, one type
of superconducting qubits �26�. Quantum information in a
charge qubit is represented by the number of excess Cooper
pairs in the superconducting Cooper-pair box. When neigh-
boring qubits are coupled via a Josephson junction, the ef-
fective interaction can be described by the XY model �27�. As
the information carrier in this case is a pair of electrons, a
phase shift can be induced to the wave function of the pair
by the Aharonov-Bohm effect. A magnetic flux �B threading
through a ring formed by charge qubits with the Josephson-
junction-mediated coupling would generate a phase shift
�e / 	c��B for the wave function of the Cooper pair. Then we
could expect the same effect discussed in this paper. None-
theless, observing this effect is by no means straightforward:
all technical problems from nanostructure fabrication to mea-
surement method should be addressed. We shall leave these
challenging experimental problems for future investigation.
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APPENDIX: NOTE ON OPEN ENDED CHAINS

As a geometry for information transfer, open ended linear
chains may look more natural. If the dispersion relation can
be affected by the phase shift in the case of open ended
chain, then the amount of entanglement transferred can be
expected to change as well. However, this is not the case. Let
us briefly look at this.

Suppose that a chain of N spins is placed in a uniform
electric field as in Sec. III. The Hamiltonian is the same as
Eq. �6�, but instead of the periodic boundary condition we
have the open boundary condition �OBC�, �0=�N+1=0. The
one-magnon eigenstates are given by

�k�OBC =� 2

N + 1�
j=1

N

e−ij�sin�kj�Sj
+�0��N, �A1�

where k=�n / �N+1� with −N /2�n�N /2. Corresponding
energy eigenvalues are

Ek
OBC = − cos k . �A2�

Clearly, the phase shift � has no effect on the energy spec-
trum and thus the propagation speed of each mode. Therefore
� causes no change in the concurrence between any two
sites.

This result can also be paraphrased in the following way.
The phase shifts at all sites can be canceled by a product of
local gauge transformations, � jexp�ij��Sj

z+1/2��, in the case
of open-ended chains. The same cancellation cannot be made
for ring-shaped chains because of the accumulated phase
along the chain.
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