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We study a coupling �decoupling� method between a superconducting qubit and a data bus that uses a
controllable time-dependent electromagnetic field �TDEF�. As in recent experiments, the data bus can be either
an LC circuit or a cavity field. When the qubit and the data bus are initially fabricated, their detuning should
be made far larger than their coupling constant, so these can be treated as two independent subsystems.
However, if a TDEF is applied to the qubit, then a “dressed qubit” �i.e., qubit plus the electromagnetic field�
can be formed. By choosing appropriate parameters for the TDEF, the dressed qubit can be coupled to the data
bus and, thus, the qubit and the data bus can exchange information with the assistance of the TDEF. This
mechanism allows the scalability of the circuit to many qubits. With the help of the TDEF, any two qubits can
be selectively coupled to �and decoupled from� a common data bus. Therefore, quantum information can be
transferred from one qubit to another.
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I. INTRODUCTION

Superconducting qubits �1� are promising candidates for
quantum information processing and their macroscopic
quantum coherence has been experimentally demonstrated.
Single superconducting qubit experiments also motivate both
theorists and experimentalists to explore the possibility for
scaling up to many qubits.

Two-qubit experiments have been performed in supercon-
ducting charge �2�, flux �3–5�, and phase qubit �6–8� circuits.
One of the basic requirements for scalability to many qubits
is to selectively couple any pair of qubits. However, these
experimental circuits �2–8� are difficult to scale up to many
qubits, due to the existence of the always-on interaction.
Theoretical proposals �e.g., Refs. �9–18�� have been put for-
ward to selectively couple any pair of qubits through a com-
mon data bus �DB�. Some proposals �e.g., Refs. �9–11�� only
involve virtual excitations of the DB modes, while in others
�e.g., Refs. �12–18��, the DB modes need to be excited. In
these proposals �e.g., Refs. �9–11��, the controllable coupling
is implemented by the fast change of the external magnetic
flux, which is a challenge for current experiments. The swit-
chable coupling between any pair of qubits can also be
implemented by adding additional subcircuits �e.g., in Refs.
�19,20��. These additional elements increase the complexity
of the circuits and also might add additional uncontrollable
noise.

Recently, two theoretical approaches �21,22� using time-
dependent electromagnetic fields have been proposed to con-
trol the coupling between two qubits. Both proposals require
that: �i� the detuning between the two qubits is far larger than
their coupling constant; and thus the ratio between the cou-
pling constant and the detuning is negligibly small. In this
case, the two qubits can be considered as two independent
subsystems �8�. �ii� To couple two qubits, the appropriate
time-dependent electromagnetic fields �TDEFs� or variable-

frequency electromagnetic fields must be applied to the qu-
bits.

However, there are significant differences between these
two approaches �21,22�. Some are described below.

�i� In the proposal �21�, two dressed qubits are formed by
the two decoupled qubits and their corresponding TDEFs. If
the parameters of the applied TDEFs are appropriately cho-
sen so that the transition frequencies of the two dressed qu-
bits are the same, then the resonant coupling of the two
dressed qubits is realized, and the information between two
decoupled qubits can be exchanged with the help of the
TDEFs. However, for another proposal �22�, one TDEF is
enough to achieve the goal of exchanging information be-
tween two decoupled qubits. This works because there is a
nonlinear coupling �22� between the applied TDEF and the
two decoupled qubits. If the frequency of the applied TDEF
is equal to either the detuning �i.e., the difference� or the sum
of the frequencies of the two qubits, then these two qubits
are coupled to each other and information between these two
qubits can be exchanged.

�ii� For the case in Ref. �21�, when two qubits are coupled
to each other, the original basis states of each qubit are
mixed by the TDEF, but the frequencies of the qubits remain
unchanged. However, for the proposal in Ref. �22�, both ba-
sis states and transition frequencies of the two qubits remain
unchanged during the coupling �decoupling� process.

The approach in Ref. �22� can be used to scale up to many
qubits by virtue of a common DB �23�, in analogy with
quantum computing with trapped ions �24–26� and in con-
trast with the circuit QED approach �12–16,27,28�. The es-
sential differences between the “trapped ion” proposal for
superconducting qubits �23� and the circuit QED
�12–16,27,28� approach are the following.

�a� When a TDEF is applied to the selected qubit, there
are nonlinear coupling terms �23� between that qubit, the DB
and the TDEF, but these terms do not appear in the circuit
QED proposal �12–16,27,28�. This significant difference pro-
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vides different coupling mechanisms for these two proposals.
�b� In Ref. �23�, the frequencies of the qubit and the data

bus always remain unchanged during operations, including
coupling and decoupling. But these frequencies are changed
in the coupling and decoupling stages for the circuit QED
�e.g., in Refs. �27,28��.

�c� The qubit-DB coupling is realized in the proposal �23�
by applying a TDEF so that the frequency of the applied
TDEF is equal to the detuning or sum of the frequencies of
the qubit and the data bus; but this qubit-DB coupling is
realized by changing the qubit frequency, so that it becomes
equal to the DB frequency in the circuit QED.

�d� Without an applied TDEF used for the “trapped ion”
proposal �23�, the qubit and the DB are decoupled �23�. In
contrast, in the circuit QED �e.g., in Refs. �27,28��, the de-
coupling is realized by changing the qubit frequency such
that the qubit and the DB have a very large detuning.

From �b�, �c�, and �d�, it is clear that, in circuit QED, the
basis of the qubit and the data bus are always changed during
the coupling �decoupling� stage. But, in the “trapped ion”
approach �23�, the basis of the qubit and the data bus remain
unchanged during the coupling �decoupling� process.

Also, after our papers in Refs. �22,23� were submitted,
other groups �29,30� followed our proposal of using the non-
linear coupling between the qubits and the TDEF to control
the couplings among qubits. Our approach �22,23� works
when the frequency of the TDEF is equal to either the de-
tuning or the sum of the frequencies of the two qubits �or the
qubit and the data bus�, then the coupling between the two
qubits is realized, otherwise, these two qubits are decoupled
�22,23�.

Motivated by the “dressed qubits” proposal �21�, in this
paper we study how to scale up to many qubits using a
common DB and TDEFs. Our paper is organized as follows.
In Sec. II we describe the Hamiltonian of a superconducting
flux qubit coupled to an LC circuit DB. We explain the de-
coupling mechanism using dressed qubits, and then further
explain how the qubit can be coupled to the DB with the help
of the TDEF. In Sec. III the dynamical evolution of the qubit
and the data bus is analyzed. In Sec. IV the scalability of our
proposed circuit is discussed. We analyze the implementation
of single-qubit and two-qubit gates with the assistance of the
TDEFs. In Sec. V we discuss how to generate entangled
states. In Sec. VI we use experimentally accessible param-
eters to discuss the feasibility of our proposal.

II. DRESSED STATES AND COUPLING MECHANISM

A. Model

For simplicity, we first consider a DB interacting with a
singe qubit. Generally, the DB can represent either a single-
mode light field �12–16�, an LC oscillator �e.g., Refs.
�23,31,32��, a large junction �33–36�, or other similar ele-
ments, which can be modeled by harmonic oscillators. The
qubit can be either an atom, a quantum dot, or a supercon-
ducting quantum circuit with a Josephson junction—working
either in the charge, phase, or flux regime.

Without loss of generality, we now study a quantum cir-
cuit, shown in Fig. 1, constructed by a superconducting flux

qubit and an LC circuit acting as a data bus. The interaction
between a single superconducting flux qubit and an LC cir-
cuit has been experimentally realized �32�. The flux qubit
consists of three junctions with one junction smaller by a
factor 0.5���1 than the other two identical junctions. The
LC circuit interacts with the qubit through their mutual in-
ductance M. Then, the total Hamiltonian of the qubit and the
data bus can be written �23,32� as

H0 = ��a†a +
�

2
�q�z + ����+a + H.c.� , �1�

in the rotating-wave approximation. Here, the qubit operators
are defined by �z= �e��e�− �g��g�, �+= �e��g�, and �−= �g��e�
using its ground �g� and first excited �e� states. The qubit
frequency �q in Eq. �1� can be expressed �37,38� as

��q = 2�I2	�e −
�0

2

2

+ TRL
2

with the bias flux �e and the qubit �39� loop-current I. The
parameter TRL denotes the tunnel coupling between the two
potential wells of the qubit �37�. The ladder operators a and
a† of the LC circuit are defined by

a =�C�

�
	 + i� 1

�C�
Q , �2a�

a† =�C�

�
	 − i� 1

�C�
Q , �2b�

for the magnetic flux 	 through the LC circuit and the charge
Q stored on the capacitor C of the LC circuit with the self-
inductance L. The frequency of the LC circuit is �=1/�LC.
The magnetic flux 	 and the charge Q satisfy the commuta-
tion relation �Q ,	�= i�. The coupling constant � between the
qubit and the LC circuit can be written as

� = M���

2L
�e�I�g� .

B. Decoupling mechanism between the qubit and the LC
circuit

Below, we assume that the detuning �q−� between the
LC circuit and the qubit is larger than their coupling constant

EJ EJ

αEJ

Φe
Φe(t)

L C0

M

FIG. 1. �Color online� A three-junction flux qubit is coupled to
an LC circuit by their mutual inductance M. The dc bias magnetic
flux through the qubit is �e. A time-dependent magnetic field �e�t�
can be applied to the qubit, so the qubit can be coupled to the LC
circuit. Further details are explained in the text.
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�, i.e., without loss of generality, �q−�
 ���. In this large-
detuning condition, instead of the Hamiltonian H0 in Eq. �1�,
the dynamical evolution �of the qubit and the LC circuit� is
governed by the effective Hamiltonian �40�

H0
E = ��−a†a +

�

2
�q�z + �

���2

�q − �
�1 + 2a†a��e��e� , �3�

with �−=�− ���2 / ��q−��. Equation �3� shows that the inter-
action between the LC circuit and the qubit results in a dis-
persive shift of the cavity transition or a Stark-Lamb shift of
the qubit frequency �q. In this large detuning condition, the
qubit states cannot be flipped by virtue of the interaction
with the LC circuit.

Obviously, if the ratio ��� / ��q−�� tends to zero, then the
third term in Eq. �3� also tends to zero and �−��. In this
limit, the coupling between the qubit and the data bus can be
neglected, that is,

H0
E � ��a†a +

�

2
�q�z.

The qubit and the LC circuit can be considered as two inde-
pendent subsystems, which can be separately controlled or
manipulated. Below, we assume that the LC circuit and the
qubit satisfy the large-detuning condition, e.g., ��� / ��q−��
�0, when they are initially fabricated, so they are approxi-
mately decoupled.

C. Dressed states

We now apply a TDEF to the qubit such that the dressed
qubit can be formed by the applied TDEF and the qubit. Let
us assume that the qubit, driven now by the TDEF, works at
the optimal point �38�. In this case, the total Hamiltonian H
of the LC circuit and the qubit driven by a TDEF can be
written �32� as

H = H0 + ���e−i�ct�+ + H.c.� , �4�

in the rotating-wave approximation. Here �c is the frequency
of the TDEF applied to the qubit. � is the Rabi frequency of
the qubit associated with the TDEF. We note that now the
nonlinear coupling strength �23� between the qubit, LC cir-
cuit and the TDEF is zero since the qubit works at the opti-
mal point.

Since a unitary transformation does not change the eigen-
values of the system, in the rotating reference frame through
a unitary transformation UR=exp�−i�c�zt /2�, the Hamil-
tonian in Eq. �4� is equivalently transferred to an effective
Hamiltonian

He = UR
†HUR − i�UR

†	dUR

dt

 . �5�

Hereafter, unless specified otherwise we work in the rotating
reference frame. We can divide the Hamiltonian He in two
parts, i.e., He=He

�1�+He
�2� with

He
�1� = ��a†a + ���a�+ei�ct + H.c.� , �6a�

He
�2� =

�

2
��z + ����+ + H.c.� , �6b�

where �=�q−�c. The Hamiltonian He
�2� can be diagonalized

and rewritten as

He
�2� =

�

2
�z �7�

with the transition frequency

 = ���q − �c�2 + 4���2.

Here, �z is given by �z= �E��E�− �G��G� in the new basis
states

�E� = cos
�

2
�e� + ei� sin

�

2
�g� , �8a�

�G� = − sin
�

2
�e� + ei� cos

�

2
�g� , �8b�

with �=tan−1�2��� /��. The eigenvalues E and G, corre-
sponding to the eigenstates �E� and �G�, are denoted by

E = − G =
�

2
��2 + 4���2. �9�

The phase � is related to the Rabi frequency � ��= �� �e−i��,
and the phase � can be controlled by the applied TDEF. In
Fig. 2, the dependence of the eigenvalues E and G on the
detuning �=�q−�c and the amplitude of the Rabi frequency
��� has been plotted. The gap between these two surfaces
corresponds to the frequency  /2� of the dressed qubit. It
clearly shows that  can be changed by �c when ��� and �q
are given, and also changed by ��� when �c and �q are given.
The larger of ��� and � corresponds to the larger transition
frequency  of the dressed qubit.

In fact, the states �E� and �G� could be interpreted as the
dressed states of the qubit and the TDEF �41�. Usually, the
applied TDEF is considered as in a coherent state �41�, e.g.,
�� exp�−i�ct��. If the creation and annihilation operators of
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FIG. 2. �Color online� The dependence of the eigenvalues E and
G of Eq. �9� on the detuning frequency � /2�= ��q−�c� /2� and
the amplitude of the Rabi frequency ��� /2�. Here, the eigenvalues
have been rescaled as frequencies, i.e., E /h and G /h. The gap be-
tween these two surfaces corresponds to the frequency  /2� of the
dressed qubit.
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the TDEF are represented by b† and b, then the state
�� exp�−i�ct�� is an eigenstate of the operator b with the

eigenvalue � exp�−i�ct�. The average photon number N̄ of

the TDEF in this coherent state is N̄= ���2 and the width �N̄
of the number distribution of photons for the applied TDEF

is �N̄= ���.
In the limit N̄
�N̄
1, the photon number, absorbed and

emitted by the qubit, is negligibly small, and the qubit is
always assumed to be subjected to the same intensity ���2 of
the applied TDEF during the operation. Therefore, the TDEF
operators b and b† can be replaced by the classical number
� exp�−i�ct� and its complex conjugate. The relation be-
tween � and the Rabi frequency � of the qubit associated
with the applied TDEF is ���� ���. The coherent state
�� exp�−i�ct��, representing the TDEF, and the qubit state
can always be factorized at any time.

In the rotating reference frame, the coherent state of the
TDEF is always ���, and the dressed qubit-TDEF states �E�D
and �G�D can be understood as the product state of �E� �or
�G�� and ���, that is,

�E�D = 	ei� sin
�

2
�g� + cos

�

2
�e�
��� = �E���� , �10a�

�G�D = 	ei� cos
�

2
�g� − sin

�

2
�e�
��� = �G���� . �10b�

Therefore, the photon state ��� of the TDEF is usually omit-
ted when the dressed states are constructed by the qubit and
the TDEF, e.g., in Eq. �8�. Hereafter, in contrast to the
dressed states �G� and �E�, �g� and �e� are called “bare” or
undressed qubit states.

If we assume ���c, then in the dressed-state basis of Eq.
�8�, the effective Hamiltonian He can be rewritten as

He = ��a†a +
�

2
�z + ����−a†e−i�ct + H.c.� �11�

with the coupling constant

� = � cos2��/2�

between the dressed qubit and the LC circuit data bus. The
ladder operator �− is defined as �−= �G��E�. Here, the terms
�� /2�sin����zaei�ct, sin2�� /2��−ae−i�ct, and their complex
conjugates have been neglected because of the following rea-
son: there is no way to conserve energies in these terms, and
then they can be neglected by using the usual rotating-wave
approximation.

D. Coupling mechanism between the qubit and the LC circuit

To better understand the coupling mechanism, we can re-
write the Hamiltonian of Eq. �11� in the interaction picture as

He,int = ���−a†ei���−�c�−�t + H.c. �12�

Obviously, when the condition

 = � − �c �13�

is satisfied, the fast oscillating factor ei���−�c�−�t and its com-
plex conjugate are always one. In this case, the Hamiltonian
�12� becomes

He,int = ���−a† + H.c. �14�

The resonant condition in Eq. �13� can always be satisfied
by choosing the appropriate frequency �c of the TDEF and
the Rabi frequency �. Therefore, the dressed qubit can reso-
nantly interact with the LC circuit, and then the information
can be exchanged between the qubit and the LC circuit with
the help of the TDEF.

E. An example of coupling between a qubit and an LC circuit

We now numerically demonstrate the coupling and decou-
pling mechanism. For example, let us consider a qubit with
frequency �q /2�=2 GHz, which works at the optimal point;
the frequency of the LC circuit is � /2��4 GHz; and the
coupling constant ��� between the LC circuit and the qubit is
200 MHz. In this case, the ratio ��� / ��−�q�=0.1, and the
Stark-Lamb shift for the qubit frequency is about 20 MHz,
which is much smaller than the qubit frequency of 2 GHz. In
this case, the interaction between the qubit and the LC circuit
only results in an ac Stark-Lamb shift, but cannot make qubit
states flip.

If we apply a TDEF such that the frequency  of the
dressed qubit satisfies the condition in Eq. �13�, then the
dressed qubit states can be flipped by the interaction with the
LC circuit with the help of the TDEF. In Fig. 3, the transition
frequency of the dressed qubit

 = ���q − �c�2 + 4���2

and the frequency difference ��−�c� /2� are plotted as a
function of the frequency �c=�c /2� of the TDEF for the
above given frequencies of the qubit and the LC circuit when
the Rabi frequency of the qubit associated with the TDEF
��� /2�=0.2 GHz. Figure 3 shows that when the frequency of
the TDEF is �c=�c /2��2.96 GHz, the condition =�

0 1 2 3 40
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FIG. 3. �Color online� The frequency  /2� of a dressed qubit
�blue curve� and the frequency difference ��−�c� /2� �dark red
line�; both vs the frequency �c=�c /2� of the TDEF for the qubit
frequency �q /2�=2 GHz. The frequency of the LC circuit is
� /2�=4 GHz; and the Rabi frequency of the qubit associated with
the TDEF is ��� /2�=0.2 GHz. The crossing point denotes the value
of �c�2.96 GHz when the condition =�−�c is satisfied.
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−�c is satisfied, and then the qubit is coupled to the LC
circuit with the assistance of the TDEF. Therefore, the
dressed qubit state can be flipped by virtue of the interaction
with the LC circuit with the help of the TDEF.

This could be compared with the switchable coupling cir-
cuits in Ref. �23�, where the qubit basis is always kept in
�g� , �e�� no matter if the qubit is coupled to or decoupled
from the LC circuit. Here, the qubit basis states �e.g., �g� and
�e�� will be mixed as in Eq. �8� in the process of the TDEF-
assisted qubit and LC circuit coupling.

III. DYNAMICAL EVOLUTION OF A DRESSED QUBIT
INTERACTING WITH AN LC CIRCUIT

A. Resonant case

According to the above discussions, the information of
the qubit can be transferred to the data bus with the assis-
tance of an appropriate TDEF. For convenience, we observe
the total system in another rotating reference frame VR
=exp�i�c�zt /2�, then an effective Hamiltonian from Eq. �11�
can be obtained as

He
R = ��a†a +

�

2
� + �c��z + ����−a† + H.c.� . �15�

Therefore, the condition of resonant interaction between the
dressed qubit and the data bus is =�−�c, as obtained in
Eq. �13�. Here we need to emphasize that the basis states
have been changed to �G� , �E�� when the qubit is coupled to
the LC circuit with the assistance of the TDEF, but the qubit
basis states are �g� , �e�� when the qubit is decoupled from
the LC cirucit.

According to the Hamiltonian in Eq. �15�, if the LC cir-
cuit and the qubit are initially in the state �0,G�= �0� � �G�, or
�n+1,G�= �n+1� � �G�, or �n ,E�= �n� � �E�, then they can
evolve to the following states:

�0,G� → �0,G� , �16a�

�n,E� → A�t��cos��t��n,E� − iei� sin��t��n + 1,G�� ,

�16b�

�n + 1,G� → A�t��cos��t��n + 1,G� − ie−i� sin��t��n,E�� ,

�16c�

with A�t�=exp�−i�2n+1��t /2�, �= �� ��n+1, and �= ���ei�

= �� cos2�� /2��ei�. It is obvious that the phase � is deter-
mined by the coupling constant � between the qubit and the
LC circuit. Here, we note that the state �n ,E� �or �m ,G��
denotes that the LC circuit is in the number state �n� �or �m��,
but the qubit is in the dressed state �E� �or �G��.

In the following discussions, we focus on the case where
the LC circuit is initially in a state �0� or �1�. According to
Eq. �16�, we can obtain the following transformations:

�0,G� → �0,G� , �17a�

�0,E� → B�t��cos����t��0,E� − iei� sin����t��1,G�� ,

�17b�

�1,G� → B�t��cos����t��1,G� − ie−i� sin����t��0,E�� ,

�17c�

with B�t�=exp�−i�t /2�.

B. Nonresonant case

Above, we assumed that the detuning ��q−�� between the
qubit and the LC circuit is far larger than their coupling ���,
i.e., ��� / ��q−���0, and thus the qubit and the LC circuit
are independent. Here we consider another nonresonant case
between the dressed qubit and the LC circuit in Eq. �15�. We
assume that the detuning � between the dressed qubit and
the LC circuit satisfies the condition ��� /��1 with �=
+�c−�, but the ratio ��� /� does not tend to zero. In this
case, the dynamical evolution of the dressed qubit and the
LC circuit is governed by an effective Hamiltonian

He
D = ��−a†a +

�

2
��z + �

���2

�
�1 + 2a†a��E��E� , �18�

with �−=�− ����2 /�� and �=+�c. Because the ratio
��� /� is not negligibly small, the Stark-Lamb shift of the
dressed qubit frequency or the dispersive shift of the fre-
quency of the LC circuit should be taken into account.

If the LC circuit and the dressed qubit are initially in
states �0,G�, �1,G�, �0,E�, or �1,E�, then they evolve as fol-
lows:

�0,G� ⇒ exp	i
�

2
t
�0,G� , �19�

�1,G� ⇒ exp�i	− � +
���2

�
+

�

2

t��1,G� , �20�

�0,E� ⇒ exp�− i	�

2
+

���2

�

t��0,E� , �21�

�1,E� ⇒ exp�− i	� +
2���2

�
+

�

2

t��1,E� . �22�

IV. SCALABLE CIRCUIT AND QUANTUM
OPERATIONS

A. Scalable circuit

In the above, we show the basic mechanism of the cou-
pling and decoupling between a superconducting flux qubit
and the LC circuit. Therefore, a scalable quantum circuit,
which is required for quantum information processing, can
be constructed by N flux qubits and an LC circuit acting as a
data bus, shown in Fig. 4. The LC circuit interacts with N
qubits through their mutual inductances Mm �m
=1,2 , . . . ,N�. The distance between any two nearest qubits is
assumed so large that their interaction through the mutual
inductance can be negligibly small. Then, the total Hamil-
tonian of qubits and the data bus can be written �23� as
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H = ��a†a +
�

2 �
m=1

N

�m�z
�m� + ��

m=1

N

��m�+
�m�a + H.c.� ,

�23�

in the rotating-wave approximation. Here, the mth qubit op-
erators are defined as �z

�m�= �em��em�− �gm��gm�, �+
�m�

= �em��gm�, and �−
�m�= �gm��em� �m=1,2 , . . . ,N� using its

ground �gm� and the first excited �em� states. The mth qubit
frequency �m in Eq. �23� can be expressed �37� as

��m = 2��I�m�	�e
�m� −

�0

2

�2

+ �TRL
�m��2,

with the bias flux �e
�m� and its loop-current I�m� of the mth

qubit �23,39�. The parameter TRL
�m� denotes the tunnel cou-

pling between two wells in the mth qubit �37�. The ladder
operators a and a† of the LC circuit are defined as in Eq. �2�.
The coupling constant �m between the mth qubit and the LC
circuit is

�m = Mm���

2L
�em�I�m��gm� .

As in the above discussions, we assume that the detuning
�m−� between the LC circuit and the mth �m=1, . . . ,N�
qubit is far larger than their coupling constant �m. That is,
�m / ��m−���0. Then, all N qubits are decoupled from the
LC circuit and each qubit can be independently manipulated
by the TDEF. To couple a qubit to the LC circuit, an appro-
priate TDEF is needed to be applied such that the dressed
qubit states can be formed, and then the dressed qubit can
resonantly interact with the LC circuit.

For convenience, the parameters of any qubit are defined
as follows. The frequency of the TDEF applied to the mth
qubit is denoted by �m,c. The detuning between the mth qubit
frequency �m and �m,c is �m=�m−�m,c; �m is the Rabi fre-
quency of the mth qubit associated with the TDEF. �Gm� and
�Em� are eigenstates of the mth dressed qubit with the eigen-
values Gm and Em. The frequency of the mth dressed qubit is
given by m. The coupling constant between the mth qubit
and the LC circuit is

�m = �m cos2��m/2� ,

with �m=tan−1�2��m� /�m�.
We will now study how to implement the single- and

two-qubit operations for the scalable circuit schematically
shown in Fig. 4.

B. Single-qubit operations

The single-qubit operations of any qubit are easy to
implement by applying a TDEF, which resonantly interacts
with the selected qubit. For instance, if the frequency of the
mth qubit is equal to the frequency �m,c of the applied TDEF,
i.e., �m,c=�m, then the mth qubit rotation driven by the
TDEF can be implemented by the single-qubit Hamiltonian
Hm,s,

Hm,s = ���m��e−i�m�+
�m� + ei�m�−

�m�� , �24�

in the rotating reference frame through a unitary transforma-
tion exp�−i�m�zt�. Here, the phase �m is determined by the
applied TDEF. The time evolution operator of the Hamil-
tonian in Eq. �24� can be written as

U��m,�m� = exp�− i
�m

2
�e−i�m�+

�m� + ei�m�−
�m��� , �25�

with a duration t and �m=2��m�t. Here, U��m ,�m� is a general
expression for a single-qubit operation. This unitary operator
U��m ,�m� can be rewritten as a matrix form

U��m,�m� = � cos��m/2� − ie−i�m sin��m/2�
− iei�m sin��m/2� cos��m/2� � .

�26�

Any single-qubit operation can be derived from Eq. �26�. For
instance, a rotation around the x �y� axis can be implemented
through Eq. �26� by setting the applied TDEF such that �m
=0 ��m=� /2�. It is worth pointing out that the operation in
Eq. �26� is defined in the qubit space spanned by �gm� , �em��.

C. Two-qubit operations

To implement two-qubit operations, two qubits should be
sequentially coupled to the LC circuit with the help of the
TDEFs. We now consider how to implement a two-qubit
operation acting on the mth and nth qubits. For simplicity,
we assume that the classical fields, addressing two qubits to
form dressed states, have the same frequency. Therefore, the
following discussions are confined to the same rotating ref-
erence frame.

Let us assume that TDEFs are sequentially applied to the
mth, nth, and mth qubits. The durations of the three pulses
are �1, �2, and �3. After the dressed mth qubit is formed, it
can resonantly interact with the LC circuit, and their dynami-
cal evolution is governed by the Hamiltonian in Eq. �15�. For
the given initial states, they can evolve as in Eqs. �16� and
�17�. However, for the dressed nth qubit, it does not reso-
nantly interact with the LC circuit; that is, there is a detuning
�n=n+�n,c−� between the dressed nth qubit and the LC
circuit. Their dynamical evolution is governed by a similar

Φ(1)
e

Φ(N)
e

Φ(m)( t)

M1 M2 M3

L C

e

Φ(m)
e

FIG. 4. �Color online� The N-flux qubits are coupled to an LC
circuit by their mutual inductances Mm �m=1, . . . ,N�. The bias
magnetic flux through the mth qubit is �e

�m�. A TDEF can be applied
to any one of the qubits �e.g., �e

�m��t� through the mth qubit� such
that the qubit can be coupled to the LC circuit with the help of the
TDEF.
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Hamiltonian as in Eq. �18�, with just replacing the subscript
m by n, and their states can evolve as in Eqs. �19�–�22�.

After these three pulses, the state evolution of two qubits
and the LC circuit can be straightforwardly given �34� using
Eqs. �17� and �19� for the total system, which was initially in
the state �Gm��Gn��0�, �Gm��En��0�, �Em��Gn��0�, or
�Em��En��0�. Here, e.g., the state �Gm��Gn��0� denotes that the
mth and nth qubits are in the states �Gm� and �Gn�, but the LC
circuit is in the state �0�.

If the durations �1 and �3 of the first and third pulses
applied to the mth qubit satisfy the conditions sin���m��1�
=0 and sin���m��3�=0, then the above four different initial
states, e.g., �Gm��Gn��0�, have the following dynamical evo-
lutions:

�Gm��Gn��0� → exp�i�1��Gm��Gn��0� , �27a�

�Gm��En��0� → exp�i�2��Gm��En��0� , �27b�

�Em��Gn��0� → exp�i�3��Em��Gn��0� , �27c�

�Em��En��0� → exp�i�4��Em��En��0� , �27d�

with

�1 =
n

2
�2, �28a�

�2 = − �1 −
��n�2

�n
�2, �28b�

�3 = − ���1 + �3� + �1, �28c�

�4 = − ���1 + �3� + �2. �28d�

Here, we neglect the free evolution of another uncoupled
qubit when one qubit is coupled to the LC circuit.
After the above three pulses with the given durations,
a two-qubit phase operation Umn can be implemented in
the basis of the two-qubit dressed states
�Em��En� , �Em��Gn� , �Gm��En� , �Gm��Gn��. The matrix form of
the operation Umn is

Umn =�
ei�4 0 0 0

0 ei�3 0 0

0 0 ei�2 0

0 0 0 ei�1
� . �29�

We note that this two-qubit operation is in the rotating refer-
ence frame. Of course, it is also easy to obtain a two-qubit
operation in the bare �undressed� basis
�gm��gn� , �gm��en� , �em��gn� , �em��en�� by applying the single-
qubit operations on the mth and nth qubits separately. The
single-qubit operations can be given by choosing the appro-
priate parameters in Eq. �26� for a general expression of the
single-qubit operations.

A two-qubit operation and single-qubit rotations are
needed for universal quantum computing �43�. Therefore, the
two-qubit operation Umn, accompanied by arbitrary single-

qubit rotations �Eq. �26�� of the mth and nth qubits, forms a
universal set.

V. GENERATION OF ENTANGLED STATES

In this section, we will study how to generate an en-
tangled state between any two qubits, e.g., mth and nth qu-
bits, with the assistance of TDEFs.

We assume that the qubits are initially prepared in the
dressed states, e.g, �Em� � �Gn�, but the LC circuit is initially
in its ground state �0�. In this case, we can apply two pulses
to generate an entangled state. The first pulse with the fre-
quency �m,c brings the mth qubit to resonantly interact with
the LC circuit. The interaction Hamiltonian is described by
Eq. �15� in the rotating reference frame, but there is no in-
teraction between the LC circuit and the nth qubit. With the
pulse duration �1, the state �Em� � �Gn� � �0���Em ,Gn ,0�
evolves to the state

����1�� = cos���m��1��Em,Gn,0� − iei�m sin���m��1��Gm,Gn,1� ,

�30�

which can be written as

�����1�� = e−i�m,c�1/2 cos���m��1��Em,Gn,0�

− iei�mei�m,c�1/2 sin���m��1��Gm,Gn,1� , �31�

after removing the rotating reference frame. Here, the global
phase factor e−i��n+���1/2 has been neglected and �m is given
by �m= ��m�ei�m.

After the first pulse, the second pulse assists the nth qubit
to resonantly interact with the LC circuit. With the duration
�2 of the second pulse, the state ����1�� will evolve to the
state

����2�� = ei�1 cos���m��1��Em,Gn,0�

− iei�mei�2 sin���m��1�cos���n��2��Gm,Gn,1�

− ei��m−�n�ei�3 sin���m��1�sin���n��2��Gm,En,0� ,

�32�

after removing the rotating reference frame. Here �n is deter-
mined by �n= ��n�e−i�n, and

�1 = 1
2 �− �m,c�1 + ��n,c − �m��2� , �33a�

�2 = 1
2 ��m,c�1 + ��m − � + �n,c��2� , �33b�

�3 = 1
2 ��m,c�1 + ��m − � − �n,c��2� . �33c�

If the duration �2 of the second pulse is chosen such that
cos���n��2�=0, then an entangled state ��E� is created as

��E� = ei�1 cos���m��1��Em,Gn,0� − ei��m−�n�ei�3 sin���m��1�

��Gm,En,0� . �34�

It is very easy to find that we can prepare different entangled
states by choosing the duration �1 and the phase difference
�m−�n. For example, if the duration �1 for the first pulse and
the phase difference �m−�n are well chosen so that
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�1 =
�

4��m�
, �35�

then we can get maximally entangled states

��M� =
1
�2

��Em,Gn� − ei�p�Gm,En�� , �36�

with �p=�m−�n+�3−�1. Here, a global phase factor ei�1 has
been neglected. If the condition

�p = �m − �n + �3 − �1 = 2l� , �37�

with an integer l, can also be further satisfied, then a Bell
state

��B� =
1
�2

��Em,Gn� − �Gm,En�� �38�

can be obtained from Eq. �36�. Here, �m and �n are deter-
mined by the coupling constants between the qubits and the
LC circuit, thus from the experimental point of view, it can-
not be conveniently adjusted. Therefore, once the amplitudes
and frequencies of the two TDEFs are prechosen, the condi-
tion in Eq. �37� might not be easy to satisfy. Thus, the maxi-
mally entangled state in Eq. �36� is easier to generate com-
pared with the Bell state in Eq. �38�. However, it is still
possible to adjust the amplitudes, frequencies, and durations
of the TDEFs at the same time to satisfy the condition in Eq.
�37�, and then the Bell state in Eq. �38� can be created.

If the two-qubit states are initially in undressed states
�e.g., �gm� � �gn��, then we need to first make single-qubit
rotations on the two qubits, such that �gm� and �gn� can be
rotated to �Em� and �Gn�, respectively. After these two single-
qubit rotations, we repeat the above steps to obtain Eqs. �30�
and �32�. Then, we can get an entangled state, which is the
same as in Eq. �34� except that the phases are different from
�1, �3, �m, and �n. To prepare entangled states with the un-
dressed qubit states, we need to make another two single-
qubit operations such that �Gm� ��Em�� and �Gn� ��En�� change
to �gm� ��em�� and �gn� ��en��. Then entangled bare qubit states
can be obtained.

VI. DISCUSSIONS ON EXPERIMENTAL FEASIBILITY

As an example of superconducting flux qubits interacting
with an LC circuit, we show a general method on how to
scale up many qubits using dressed states. We further discuss
two experimentally accessible superconducting circuits with
the given parameters.

A. Flux qubit interacting with an LC circuit

A recent experiment �32� has demonstrated the Rabi os-
cillations between a single flux qubit and a superconducting
LC circuit. In this experiment �32�, the coupling constant g�
between the qubit and the LC circuit is about g�=0.2 GHz,
the qubit frequency �q at the optimal point is �q=2.1 GHz,
and the frequency of the LC circuit is �LC=4.35 GHz. So the
frequency difference between the LC circuit and the qubit is
�LC−�q=2.25 GHz. The ratio g� / ��LC−�q� of the coupling

constant g� over the frequency difference �LC−�q is about
0.089. Therefore, the dispersive shift �or Lamb shift� of the
LC circuit �qubit� due to nonresonant interaction with the
qubit �LC circuit� is about 0.018 GHz.

If a TDEF with the frequency �ex is applied to the qubit,
then the TDEF and the qubit can form a dressed qubit with
the frequency

�D = ���ex − �q�2 + 4����2. �39�

Here, the coupling constant between the qubit and the TDEF
is ��. When the frequency �D of the dressed qubit satisfies
the condition

�D = �LC − �ex, �40�

as shown in Eq. �13�, then the dressed qubit can be reso-
nantly coupled to the LC circuit. From the condition in Eq.
�40�, we derive another equation

�ex =
1

2
��LC + �q� −

2����2

��LC − �q�
. �41�

To make the dressed qubit couple to the LC circuit, Eq. �41�
shows that we should choose the different external frequen-
cies �ex for different coupling constants �� when the frequen-
cies of the data bus �LC and the qubit �q are given.

In Fig. 5, the frequency �ex is plotted as a function of ��,
which is in the interval 0.1–1 GHz, for the above given fre-
quencies of the qubit and LC circuit. Figure 5 clearly shows
that the frequencies �ex of the applied external microwave
are different for the different �� in order to couple the qubit
to the LC circuit with the assistance of the TDEF. As an
example, four different points are marked in Fig. 5 to show
the required frequencies �ex of the external microwave when
the coupling constants �� are different. For example, if ��
=0.4 GHz, then the applied external microwave should have
the frequency �ex=3.083 GHz to make the dressed qubit
resonantly couple to the LC circuit. And then the effective
coupling constant between the dressed qubit and the LC cir-
cuit is about ���0.1996 GHz for the coupling constant g�

0.1  0.2 0.4 0.6 0.8 1  
2.2

2.4

2.6

2.8

3.0

3.2

λ′  [GHz]

ν e
x 

 [G
H

z]

(0.2, 3.189) 
(0.4, 3.083 ) 

(0.6, 2.905) 

(0.8, 2.656) 

FIG. 5. �Color online� To couple qubit to the LC circuit, the
frequency �ex, applied to the qubit, is plotted as a function of the
coupling constant �� between the qubit and the external microwave.
As an example, four different points are marked in the curve to
show the required frequencies of external microwave when differ-
ent coupling constants �� are given.
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=0.2 GHz between the qubit and the LC circuit. Therefore
the microwave-assisted resonant interaction between the qu-
bit and the LC circuit can be realized in the current experi-
mental setup �32�. Furthermore, this circuit can be also
scaled up to many qubits.

B. Charge qubit interacting with a single-mode cavity field

We consider another experimental example of a charge
qubit interacting with a single-mode cavity field �27�. In this
experiment �27�, the qubit frequency �q is about 8 GHz at
the degeneracy point. The frequency �c of the cavity field is
about 6 GHz. The coupling constant g� between the qubit
and the cavity field can be, e.g., 50 MHz, then the ratio be-
tween g� and the detuning �q−�c is g� / ��q−�c�=0.025. This
means that the qubit and the cavity field is in the large-
detuning regime.

If an ac electric field with frequency �ex is applied to the
gate of the charge qubit, then the qubit and the ac field can
together form a dressed qubit. If we choose appropriate pa-
rameters for the ac field, the dressed qubit can be resonantly
coupled to the cavity field and then the qubit and the cavity
field can exchange information with the assistance of the ac
field. For example, if the Rabi frequency of the qubit asso-
ciated with the ac field is about, e.g., ���100 MHz, then the
dressed qubit can be resonantly coupled to the cavity field
when the frequency �ex of the ac field is 7.01 GHz, which is
obtained from Eq. �41�.

For the above two examples, we need to stress that the
bias of the “bare� charge or flux qubit is always kept to the
optimal point during the operations. In the coupling process,
the external microwave mixes the two “bare� qubit states,
and the dressed qubit states are resonantly coupled to the
data bus �an LC circuit or a single-mode cavity field�.

VII. CONCLUSION

In conclusion, using an example of a superconducting flux
qubit interacting with an LC circuit data bus, we study a
method to couple and decouple selected qubits with the data
bus. This method can be realized with the assistance of time-

dependent electromagnetic fields �TDEFs�. If a TDEF is ap-
plied to a selected qubit, then dressed qubit-TDEF states can
be formed. By choosing appropriate parameters of the TDEF,
the dressed qubit can interact resonantly with the data bus.
However, when the TDEF is removed, then the qubit and the
data bus are decoupled. By using this mechanism, many qu-
bits can be selectively coupled to a data bus. Thus, quantum
information can be transferred from one qubit to another
through the data bus with the assistance of the TDEF.

We stress the following: �i� all qubits are decoupled from
the data bus when their detunings to the data bus are far
larger than their coupling constants to the LC circuit; �ii� the
qubits can be independently manipulated by the TDEFs reso-
nantly addressing them �for example, if �m,c=�m, then the
mth qubit is addressed by its TDEF�; �iii� to couple any one
of the qubits to the data bus, an appropriate TDEF is needed
to be applied such that the dressed qubit can be resonantly
coupled to the data bus, and then the information of the qubit
can be transferred to the data bus with the help of the TDEF.

We emphasize that all superconducting qubits �charge or
flux qubits� can work at their optimal points during the cou-
pling and decoupling processes with the assistance of the
TDEF. Although this coupling �decoupling� mechanism is
mainly focused on superconducting flux qubits, it can also be
applied to either charge �e.g, in Refs. �12,27��, or phase �42�
qubits, as well as other solid-state systems. For instance, the
coupling between two quantum-dot qubits can be switched
on and off by using this method, or a large number of
quantum-dot qubits can be scaled up by using a single-mode
electromagnetic field with the assistance of the TDEF.
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