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We propose a mechanism to interface a transmission line resonator �TLR� with a nanomechanical resonator
�NAMR� by commonly coupling them to a charge qubit, a Cooper-pair box with a controllable gate voltage.
Integrated in this quantum transducer or simple quantum network, the charge qubit plays the role of a con-
trollable quantum node coherently exchanging quantum information between the TLR and NAMR. With such
an interface, a quasiclassical state of the NAMR can be created by controlling a single-mode classical current
in the TLR. Alternatively, a “Cooper pair” coherent output through the transmission line can be driven by a
single-mode classical oscillation of the NAMR.

DOI: 10.1103/PhysRevA.73.022318 PACS number�s�: 03.67.Mn, 85.85.�j, 42.50.Pq

I. INTRODUCTION

Solid state systems are promising candidates for novel
scalable quantum networks �1�. It is crucial to coherently
connect two or more quantum channels by using suitable
quantum nodes. We will describe a physical mechanism for
interfacing a nanomechanical resonator �NAMR� �see, e.g.,
�2–6�� and a superconducting transmission line resonator
�TLR� �7�, i.e., a quantum transducer between mechanical
and electrical signals. With increasing quality factors �e.g.,
Q�103–105� and large eigenfrequencies �e.g., �b
�MHz–GHz�, NAMRs have been fabricated in the nearly
quantum regime and proposed as candidates for either entan-
gling two Josephson junction �JJ� qubits �8,9�, or demon-
strating progressive quantum decoherence �10�. A supercon-
ducting TLR has recently been demonstrated �11� as a
quantized boson mode strongly coupled to a JJ charge qubit
�12�. Many new possibilities can be explored for studying
the strong interaction between light and macroscopic quan-
tum systems �see, e.g., �13��. In principle, the quantized bo-
son modes of NAMRs and TLRs can be regarded as quantum
data buses �see, e.g., �14��. Also, theoretical proposals have
been made for interfacing these with optical qubits �15–17�.

Here we investigate the quantum integration of solid-state
qubits and their data buses. In particular, we study how to
connect two very different quantum channels, a mechanical
and an electrical, provided by the NAMR and TLR, through
a quantum node implemented by a Cooper-pair box �CPB� or
charge qubit. Our system can be considered the quantum
analog of the transducer found in classical telephones (me-
chanical vibrations converted into electrical signals and vice
versa). Because these three quantum objects �NAMR, TLR,
and CPB� have been, respectively, realized experimentally
with fundamental frequencies of the same order, it is quite
natural to expect that they can be effectively coupled with
each other. The physical principle behind our approach is

similar to a theoretical prediction from cavity QED �18�:
Interacting with a common two-level atom, two off-resonant
boson fields can be effectively entangled and then the quan-
tum state tomography of a mode can be done with a high
fidelity from the output of another. We similarly use the
charge qubit as an artificial atom to coherently link two kinds
of boson modes, the TLR and the NAMR ones. This
quantum-node-induced interaction is controllable and can be
freely switched on and off. A direct TLR and NAMR cou-
pling through the gate voltage is problematic because the
on-chip coupling cannot be easily controlled.

The physical mechanism, described below, to prepare the
quasiclassical state of the NAMR has an atomic cavity QED
analog. Consider an atom located in an optical resonator, and
a classical pump laser also going through the cavity �18�.
The atom interacts with the cavity field and the laser, and
therefore couples the classical laser to the quantized cavity
field. When the atom is off-resonance with respect to the
cavity, the cavity mode can behave as a forced harmonic
oscillator, where the external force is effectively supplied by
the classical laser. Thus the coherent state of the cavity mode
can be generated and controlled by the driving laser. This
analogy motivates us to consider an inverse of the above
scheme generating the NAMR coherent state. We set the
TLR in a classical oscillation with a single frequency. This
oscillation plays the role of the classical pump laser in the
case of cavity QED. The off-resonance charge qubit interacts
with both the NAMR and TRL, and thus induces an external
force on the NAMR. This force will drive the boson mode of
the NAMR into a coherent state.

II. MODEL

The proposed transducer is illustrated in Fig. 1. A hori-
zontal TLR is a fabricated coplanar with a CPB. The charge
state of the CPB can be controlled by the gate voltage Vg
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applied to the gate capacitor with capacitance Cg. The CPB
is also coupled to a large superconductor, the thermal bath,
through two JJs with tunneling energy EJ. The superconduct-
ing quantum interference device �SQUID� geometry also al-
lows one to apply external magnetic fluxes to control the
charge state of the CPB. A lossless NAMR �at the bottom of
Fig. 1� with fundamental frequency �b and mass m is
coupled to the CPB through the distributed capacitance C�x�,
which depends on the displacement

x =� 1

2m�b
�b† + b�

quantized by �b ,b†�=1.
Let us assume that the distance fluctuations of the NAMR

are much smaller than the distance d between the NAMR
and the CPB. Thus the generic formula Cd=�A /d of the
parallel plate capacitance, with effective area A, becomes
C�x��C0�1−x /d�, where C0 is the distributed capacitance of
the NAMR in equilibrium. It is the x-dependence of C�x�
that couples the CPB to the NAMR, with free Hamiltonian
Hn=�bb†b.We set ��1 in this paper. For small Josephson
junctions, we assume that the equilibrium capacitance C0 and
the gate one Cg are much less than CJ. In the neighborhood
of ng= �CgVg+C0V� / �2e�=1/2, the joint system �CPB and
NAMR� can be approximately described by an effective
spin-boson Hamiltonian

H1 =
�

2
�z� + �bb†b + ��b† + b��z� − EJ cos��	x

	0
	�x�, �1�

where �=4EC�2ng−1�, EC=e2 / �2CT�, and

� =
eC0V

CTd�2m�b

.

Above, we have neglected the high-order term of x. CT=CJ
+Cg+C0 is the total effective capacitance. The Pauli matrices
��x� ,�y� ,�z�� of the quasispin are defined with respect to two

isolated charge states, 
1� and 
0�, of the CPB.
The coupling between the CPB and the TLR results from

the total external magnetic flux 	x=	C+	q through the
SQUID loop of effective area S ��1 
m2�. Here, 	c is a
classical flux used to control the Josephson energy and 	q
=S
0I / �2�r� is the quantized flux arising from the quantiza-
tion of the current I in the TRL of length L. We assume that
the SQUID is placed near the point where the amplitude of
the magnetic field is largest; r ��10 
m� is the distance be-
tween the line and the SQUID, and 
0 �=4��10−7 H m−1�
is the vacuum permeability. The quantized current in the
TLR can be directly obtained from the quantization of the
voltage �see, e.g., Ref. �7�� through the continuous Kirch-
hoff’s equation �I /�z=−c�V /�t. At the antinode z=L / �2k�,
the quantized current I�z�=�ki�k��−1��cL /�k sin�k�z /L�
��ak−ak

†� takes its maximum amplitude Imax= I�z=L /2k� to
create a quantized flux

	q = i�
k

�k�ak − ak
†�, �k =� 2c

�k��3

S
0L

2�r
. �2�

Here, =1/�lc, with l and c being the inductance and ca-
pacitance per unit length, respectively. The frequency of the
kth boson mode in the TLR is �k=k� /L , k=1,2 ,3 , . . .. At
low temperatures, the qubit can be only designed to couple a
single resonance mode of �k=�a of the TLR, and then the
flux felt by the qubit becomes 	q= i�a�a−a†�.

Usually, the quantized flux 	q produced by the TRL is not
strong, so that we can expand the Josephson energy to first
order in �	q /	0. This results in a linear interaction between
the charge qubit and the single mode quantized field.
Namely, the Josephson coupling V=−EJ cos��	x /	0��x� /2
can be linearized as

V = i���a − a†��x�, �� = −
EJ��a

	0
sin��

	c

	0
	 . �3�

The effective coupling �� can be controlled by the classical
external flux 	c.

Now we choose a dressed basis �spanned by 
e�
=cos�� /2�
0�−sin�� /2�
1� and 
g�=sin�� /2�
0�+cos
�� /2�
1�� to simplify the above total Hamiltonian under the
rotating-wave approximation. Here, the mixing angle

� = tan−1EJ

�
cos��

	x

	0
	�

is calculated with the effective qubit spacing �
=��2+EJ

2 cos2��	x /	0�. In terms of the corresponding
quasispin �e.g., �x= 
e��g
+ 
g��e
�, we obtain the effective
Hamiltonian

H2 = �aa†a + �bb†b +
�

2
�z + �b�b�+ + �−b†�

+ i�a�a�+ − a†�−� , �4�

where two effective coupling constants �a=�� cos � and �b
=� sin � can also be well-controlled by the classical flux.

The coherent interfacing between the TLR and a NAMR
implies that quantum states can be perfectly transferred be-

FIG. 1. �Color online� Schematic diagram of the coupled system
of a nanomechanical resonator �NAMR� and transmission line reso-
nator �TLR�. The TLR is located right above the SQUID connected
to the Cooper-pair box �CPB�, so the TLR can produce a flux
threading the loop in the SQUID. The Cooper pairs are schemati-
cally represented by two small overlapping circles inside the
Cooper-pair box. The oscillating NAMR is shown right below the
CPB. The CPB acts as a transducer mediating the interaction be-
tween the NAMR and the TLR.
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tween them. Let �T and �N be the Hilbert spaces of the TLR
and NAMR, respectively, and 
��0��= 
�T�0�� � 
�N�0��
��T � �N the initial state of the total system. A generic co-
herent interfacing is defined by the factorization of the time
evolution 
��T��= 
���T�� � 
�T�0�� at a certain instance T
without any man-made intervention. That is, the local infor-
mation carried by 
�T�0�� in �T ��N� can be perfectly mapped
into another localized in �N ��T�.

III. CASE I: QUANTUM INFORMATION TRANSFER
FOR TWO DEGENERATE MODES

To explore the essence of the interface between the TLR
and the NAMR, we first consider the degenerate case, i.e.,
�a=�b. The dynamics of the degenerate two-mode boson
field coupled to a common two-level atom has been exten-
sively investigated both analytically and numerically �see,
e.g., �19,20��. It has been proved that, when one mode is in a
coherent state at the initial time t=0 and another mode is the
vacuum, an oscillatory net exchange, with a large number of
photons, happens and thus there indeed exists a coherent
transfer of quantum information between them. However, the
exchange of photons between the two modes also displays an
amplitude decay and hence this transfer is not perfect, even
without dissipation and decoherence induced by the environ-
ment. In fact, the revivals and collapses in the boson popu-
lations take place over a time scale much longer than that of
the atomic Rabi oscillations decay �19,20�.

The above “dynamic collapse” effect can be overcome by
adiabatically eliminating the variables of the CPB in the
large detuning limit:


�
 = 
� − �a
 � G = ��a
2 + �b

2. �5�

This limit can always be reached, as the effective qubit spac-
ing � is adjustable by controlling the gate voltage. Using the
Fröhlich-Nakajima transformation �21,22�,

HS = exp�− S�H2 exp�S� = H2 + �H2,S� +
1

2
��H2,S�,S� + ¯ ,

�6�

with

S = G�A�+ − A†�−�/�, A = b cos � + ia sin � ,

we obtain an effective Hamiltonian

H3 � �a�A†A + B†B� + � �

2
− �	�z − �A†A�z, �7�

approximated to first-order in the small quantity G /�. Here,
�=G2 /� is the Stark shift and �=arctan��a /�b�. Besides A,
we have introduced another normal mode

B = b sin � − ia cos � .

The above effective Hamiltonian shows that when the charge
qubit can adiabatically remain in the ground state 
0�, the two
boson modes a and b evolve according to two normal modes
A and B with a frequency difference �. The nonzero fre-
quency difference � between the modes A and B results in

the coherent exchange of these boson numbers. In fact, on
account of the exact solution A�t� and B�t� of eigenmodes,
the Heisenberg equation for the natural modes can be solved
as

a�t� = a�0�F1�t� + b�0�K�t� ,

b�t� = b�0�F2�t� − a�0�K�t� , �8�

where the time-dependent coefficients are

Fk�t� = cos��t

2
	 + i�− 1�k cos�2��sin��t

2
	�exp�− i�t� ,

K�t� = sin�2��sin��t

2
	exp�− i�t� , �9�

for �=�a−� /2, and k=1,2.
Having the explicit expressions for the Heisenberg opera-

tors a and b, the algebraic technique developed in �23� can
be used to explicitly construct the wave function of the
NAMR-TRL interfacing system. When the initial state of the
joint system �NAMR and TRL� is 
��0��= 
n� � 
0�, the wave
function at time t becomes 
��t��= �a†�−t��n
0� /�n!, or


��t�� =
1

�n!
�a†�0�Fk

*�− t� + b†�0�K*�− t��n
0� . �10�

To realize a perfect interface between the NAMR and the
TRL, we need to consider whether a�0� can oscillate into
b�0� in a certain instance, and vice versa. In Fig. 2, we draw
the curves of 
K�−t�
 changing with time t for different pa-
rameters �. For �=� /4, one can easily see that 
K�−t�
 can
reach unity while 
Fk�−t�
 vanishes. This implies that a per-
fect exchange of quantum states can be implemented be-
tween the NAMR and the TRL. Mathematically, when �
=� /4, Fk�t� and K�t� define two complementary oscillations
with amplitudes ranging from 0 to 1. The simple amplitude
complementary relation

FIG. 2. �Color online� Parameter 
K�−t�
2 changes with time-
dependent variable �= t� for different � values.
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Fk�t�
2 + 
K�t�
2 = 1 �11�

and the same phase factor means a perfect transfer of quan-
tum states. Physically, �=� /4 means that the effective cou-
plings �a and �b, of the NAMR and the TLR, are the same.
Indeed, we can realize the perfect transfer of quantum infor-
mation at the moments t= �2m+1� /� for a�−t�
=b�0�exp�i�at�, i.e., the wave function can be factorized into

� cn
n� � 
0� → W � cn
0� � 
n�

by a known unitary transformation

W = diag�exp�i�at�,exp�i2�at�, . . . ,exp�in�at�� ,

which is independent of the initial state.

IV. CASE II: QUANTUM INFORMATION TRANSFER
FOR TWO NONDEGENERATE MODES

In the degenerate case we have demonstrated the perfect
transfer of quantum states between the NAMR and TLR by
connecting them via a charge qubit. In principle, it is also
possible to perform quantum information transfer between
two nondegenerate modes. In fact, the model of two nonde-
generate modes coupled to a two-level system can be solved
exactly, and the phenomenon of rapid-collapse and revival
could be shown �24�. However, it is convenient to adiabati-
cally eliminate the connecting qubit for directly transferring
quantum states between the two nondegenerate modes.

Again, we assume that the large detuning condition is still
satisfied. To directly connect the two nondegenerate modes
by adiabatically eliminating the qubit, we introduce an anti-
Hermitian operator

W = − i
�a

�
�a�+ + a†�−� −

�b

�
�b�+ − b†�−� �12�

to perform the Fröhlich-Nakajima transformation on H2 and
obtain the following effective Hamiltonian:

H4 � �aa†a + �bb†b +
�

2
�z + ��a

2

�
a†a +

�b
2

�
b†b	�z

+ i
�a�b

�
�ab† − a†b��z, �13�

with �=�+ ��a
2+�b

2� /�. The detuning

� = − �a − �b + �

is set to satisfy the conditions

�a,�b � � . �14�

The anti-Hermitian operator W satisfies the condition

H2 − H0 + �H0,W� = 0, H0 = �aa†a + �bb†b +
�

2
�z,

�15�

which means that the first-order correction vanishes and the
above approximation is second-order perturbation.

Without loss of generality, the charge qubit could be adia-
batically fixed in the ground state 
0�. As a consequence, the
dynamics of this two-boson system can be described by

H4� = �0N̂ + �2Ĵy + �3Ĵz �16�

with

�0 =
�a + �b

2
+

�a
2 + �b

2

2�
,

�2 =
2�a�b

�
,

�3 = �a − �b +
�a

2 − �b
2

�
,

and N̂=b+b+a+a. Angular momentum operators Ĵl
�l=x ,y ,z�, defined by the following Jordan-Schwinger real-
izations

Ĵx =
b+a + a+b

2
,

Ĵy =
i�b+a − a+b�

2
,

Ĵz =
a+a − b+b

2
, �17�

form a dynamic SO�3� algebra:

�Ĵz, Ĵx� = iĴy, �Ĵy, Ĵz� = iĴx, �Ĵx, Ĵy� = iĴz. �18�

Obviously, N̂ commutes with the operators Ĵz and Ĵy. This
implies that the Hamiltonian H4� describes a high-spin pre-
cession in an external “magnetic field” B= �0,�2 ,�3�, and
thus is exactly solvable �25�. The corresponding time-
evolution operator is

Û�t� = exp�−
i

�
�0N̂t	exp�−

i

�
H̃t	 ,

H̃ = �̃ exp�i�Ĵx�Ĵz exp�− i�Ĵx� , �19�

with �̃=��2
2+�3

2, and tan �=�2 /�3.
The above dynamics can be used to achieve the transfer of

an arbitrary quantum state between the two nondegenerate
modes. As a simple example, we discuss how to transfer a
single-phonon state 
1b� from the NAMR to the TLR, whose
initial state is the vacuum state 
0a�. The initial state of this
two-mode system is 
��0��= 
0a ,1b�. The wave function at
time t reads
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��t�� = Û�t�
��0�� = cos� �̃t

2�
	 + i cos � sin� �̃t

2�
	�
0a,1b�

− sin � sin� �̃t

2�
	
1a,0b� . �20�

If �3=0, a perfect transfer of quantum information is ob-

tained by setting the duration as sin��̃t / �2���= ±1. For the

generic case, �3�0, a projective measurement P̂b= 
0b��0b

acting on the NAMR is required for projecting the TLR col-
lapse to the desirable state 
1a�. The rate of this transfer is

P�t� = sin2 � sin2� �̃t

2�
	 , �21�

with the maximal value sin2 � corresponding to the duration

sin��̃t / �2���= ±1.

V. QUASICLASSICAL STATE
OF THE NANOMECHANICAL RESONATOR

Above, we have discussed how to transfer a quantum state
from the NAMR to the TLR. Now, we investigate the prepa-
ration of a quasiclassical state of the NAMR, driven by a
classical current input from the TLR. Adiabatically eliminat-
ing the connecting qubit results in an indirect coupling be-
tween the TLR and the NAMR. Via such a virtual process,
the current in TLR produces an effective linear force acting
on the NAMR mode. This force causes a quasiclassical de-
formation of the NAMR. Therefore, a coherent state, which
is described by a displaced Gaussian wave packet in the spa-
tial position, can be generated in the NAMR mode.

For this goal, we treat the driving current classically by
the Bogliubov approximation that replaces the above annihi-
lation and creation operators a and a† by the complex am-
plitudes �=
 exp�−i�� and �*=
 exp�i��, respectively,
where the real numbers 
 and � are the amplitude and phase
of the classical current, respectively. We assume, like in the
previous section, that the large detuning condition is still
satisfied. Thus one can adiabatically eliminate the connected
qubit and obtain a semiclassical Hamiltonian

He = �bb†b + i
�2

2

�e−i�b† − bei�� , �22�

with �b=�b+�b
2 /�. This Hamiltonian drives the NAMR to

evolve from a vacuum state 
0� to the coherent state


z�t�� = exp�− 
z�t�
2��
n=0

�z�t��n

�n!

n� , �23�

with

z�t� = − i
�2�

2�b
�1 − exp�− i�bt/��� .

The above coherent state �23� corresponds to a coherent os-
cillation in a normal mode of the NAMR. The square of the
coherent state amplitude represents the population rate of the
boson excitation in the transmission line.

To this end, we require a classical TLR current in a single
mode, which plays a similar role as the classical pump laser
in optical masers. While switching on the coupling with the
off-resonance charge qubit for a while, the charge qubit re-
sults in a virtual process as an effective linear force on a
NAMR mode. It thus causes a quasiclassical deformation of
the NAMR, described by a coherent state, which is a dis-
placed Gaussian wave packet in the spatial position. This
physical mechanism is very similar to that of the pulsed
atomic laser �26�.

Even without adiabatic elimination for large detuning, we
can still achieve the same qualitative conclusion for the state
preparation. In the two cases: �a� �b=�, and �b� �a=�b, the
achieved semiclassical Hamiltonian

Hc =
�

2
�z + �bb†b + ���bb + i�a���+ + H.c.� �24�

describes a driven Jaynes-Commings model. Now, we can
uniquely deal with both cases as follows. If we define the
displaced boson operator

B� = b + i�a� ,

Hc becomes the standard Jaynes-Commings Hamiltonian
with interaction �b�B��++H.c.�, but its ground state experi-
ences a symmetry breaking. Let 
n�z��=D�−z�
n� be the dis-
placed Fock state defined by the coherent state generator
D�z�=exp�zb†−z*b�. The ground state of the NAMR-CPB
composite system is just a product state 
�= i�a�� � 
g�, ba-
sically consisting of a coherent state of the NAMR. This
simple observation reveals that the charge-qubit-based prepa-
ration of the quasiclassical state of the NAMR is robust.

VI. CONCLUDING REMARKS

In summary, we propose a mechanism to interface a trans-
mission line resonator �TLR� with a nanomechanical resona-
tor �NAMR� by commonly coupling them to a charge qubit,
a Cooper-pair box with a controllable gate voltage. Inte-
grated in this quantum transducer or simple quantum net-
work, the charge qubit plays the role of a controllable quan-
tum node coherently exchanging quantum information
between the boson modes of the TLR and NAMR. We have
shown that quantum information can be transferred between
these two, both degenerate and nondegenerate, boson modes.
Also, with such an interface, a quasiclassical state of the
NAMR can be created by controlling a single-mode classical
current in the TLR. Alternatively, a “Cooper pair” coherent
output through the transmission line can be driven by a
single-mode classical oscillation of the NAMR.
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