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Effects of dynamical phases in Shor’s factoring algorithm with operational delays
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Ideal quantum algorithms usually assume that quantum computing is performed continuously by a sequence
of unitary transformations. However, there always exist idle finite time intervals between consecutive opera-
tions in a realistic quantum computing process. During these dedafisrent errorswill accumulate from the
dynamical phases of the superposed wave functions. Here we explore the sensitivity of Shor's quantum
factoring algorithm to such errors. Our results clearly show a severe sensitivity of Shor’s factorization algo-
rithm to the presence of delay times between successive unitary transformations. Specifically, in the presence
of these coherent errors, the probability of obtaining the correct answer decreases exponentially with the
number of qubits of the work register. A particularly simple phase-matching approach is proposed in this paper
to avoidor suppress these coherent errors when using Shor’s algorithm to factorize integers. The robustness of
this phase-matching condition is evaluated analytically and numerically for the factorization of several inte-
gers: 4, 15, 21, and 33.
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I. INTRODUCTION A quantum computing process generally consists of a se-
o ) i i quence of quantum unitary operations. These transformations
Building a practical quantum information processor hasare ysually applied to the superposition states so that the
attracted considerable interest during the past de¢afle quantum computer evolves from an input initial state to the
With the resources provided by quantum mechanics, such aesired final state. If the two qubit levels have different en-
superposition and entanglement, a quantum computer couktgies, as is usually the case, the superposition wave function
achieve a significant speedup for certain computational taskef the quantum register undergoes fast coherent oscillations
The most prominent example is Shor’s factoring algorithmduring the finite time delay between two consecutive opera-
[2,3], which allows an exponential speedup over the knowrtions. These oscillation, if not controlled, can spoil the cor-
classical algorithms. The proposed quantum algorithms areect computational results expected from the ideal quantum
constructed assuming that all quantum operations can be petlgorithms, where operational delays are neglected.
formed precisely. In reality, any physical realization of such In principle, these coherent errors can be eitiigy
a computing process must treat various errors arising frondvoided by tuning the relevant energy splittings of the qubits
various noise and imperfectiorisee, e.g.[4]). Physically, {0 zero[10,11 or (2) eliminated by introducing a “natural”

these errors can be distinguished as two different kinds: inPhase induced by using a stable continuous reference oscil-
%’[IOH for each quantum transition in the computing process

coherent and coherent errors. The incoherent errors originat 21 Indeed iol h v th b
from the coupling of the quantum information processor to.12)- Indeed, a possible approach to study the present prob-

an uncontrollable external environment, which is StOChaStiésecrnerzzgldsuf:?\nzlsdgacgé?nguzgchorogsigﬂfub(iatrirr?r{v?/“cgopl)ﬂ?/gﬁ:%l
and results in decoherence. Coherent errors usually ar'sqeubits via’|O>—>|Ol>+|10>, I1)—|01)~|10) s that both states
ideal t | luti p i tor. So f have the same energy. We prefer to use (ouite differen

\deal tempora evoku lons o %qga?] um t():ompu er. 50 darapproach presented here because it does not involve increas-
most previous workssee, e.9.[5-9]) have been concerne ing the number of physical qubits to encode a logical qubit.

W'th quantum errors arising from_ the decoherence due Shis increase can involve increased complexity in the device
interactions with the external environment and external op-

ional | focti H f . q . a?nd in its operation. Also note that qubits in solid-state sys-
erational Impertections. Here, we focus Instead on INteMaje g are never truly identicéin contrast with trapped ions

ones. The coherent errors we consider here are related to tiﬂ\ﬁ)
intrinsic dynamical evolution of the qubitbetweenopera-
tions.

nidentical qubits limit the applicability of the above en-
coding approach. Without using a few physical qubits to en-
code a logical qubit, we show in the present work that the
discussed coherence errors can be efficiently avoided by a
phase-matching strategy, by setting the total delay between
*Permanent address: Center of Theoretical Physics, Physics Dsuccessive operations On the other hand, experimentally—
partment, Center for the Study of Complex Systems, University offor example, in NMR systemésee, e.g.[3,13])—the above
Michigan, Ann Arbor, Michigan 48109-1120, USA. coherence errors were usually corrected by introducing two
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additional operations before and after the delay to reverse
each undesired free evolution.

In this paper we perform a quantitative assessment of the ! vV
effects of the dynamical phases in Shor’s algorithm by real-
istically assuming that operational delays, between succes-
sive unitary transformations, exist throughout the computa-
tion. We explore a phase-matching approach to deal with the
dynamical phase problem. We show that coherent “errors”
due to these phases, acquired by the dynamical evolution of
the superposed wave function during the operational delays,
may be avoided by properly setting thetal delay. We then
carefully evaluate the robustness of such a phase-matching FIG. 1. Quantum circuit for implementing Shor’s algorithm with
condition, focusing on its dependence on the number of qutime delays7(j=1,2,3 between the successive operations. Here
bits, the length of the delay, and the fluctuations in the qubit! refers to a Hadamard gate, whiterefers to a quantum Fourier
energy splitting. Our discussions are in the context of Shorgransformatlon. Each bI(_)ck operation is assumed to be exactly per-
algorithm, but can be extended to other quantum algorithmgrmed in a very short time interval (so that phases accumulated
such as the phase estimation and other algoritfids For during the opergtlons are either accounted for by the operations
simplicity and clarity, here we assume that the influence of'€mselves or simply neglected
the environmental decoherence and the gate imperfections on
the computing process are negligible. order is done, while the values of the functifix) are stored

The paper is organized as follows. In Sec. Il, we present & the auxiliary registe’A with L’ qubits. The sizes of the
decomposition of Shor’s algorithm and explain how we in-work and auxiliary registers are chosen as the integers satis-
corporate the dynamical phases into the realization of thiying the inequalitiesN?<qg=2-<2N2 and 2'“1<N<2.'.
algorithm. The usual decompositions of quantum algorithmsHere q is the Hilbert space dimension of the work register.
into consecutive elementary gates are strictly limited by the As shown in Fig. 1, a realistic implementation of Shor’s
short decoherence time. Here, we reconstruct the standaedgorithm can be decomposed into the following unitary
Shor’s algorithm out of four functional unitary transforma- transformations.
tions and only consider the operational delays between these (1) Initialize the work register in an equal-weight super-
larger building blocks. We assume that each block can bgosition of all the logical states and the auxiliary register in
exactly performed by only one-time evolution as a multiqu-its logical ground stat@),. Initially, each work qubit is in its
bit gate (see, e.9.[15,16]), avoiding the existing idle time logical ground stat¢0). Assuming that a Hadamard gadeis
inside it. It is shown that the effects of dynamical phases arapplied to each qubit in the work register at one time, the
not negligible, even in this primary or “coarse-grained” de-computational initial state of the system becomes
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composition. In Sec. lll, we analytically and numerically -1
evaluate several examples to illustrate the phase-matching |‘P(O)>—i2 i ® [0)
condition and establish a clear relationship between this con- - \e“Ej:O Iw A

dition and the equivalence of the Schrédinger picture and the

interaction picture description of a physical system. We alsdiere, the subindeMV stands for the work register state and
demonstrate the robustness of the phase-matching conditiéhe subindexA for the auxiliary register. After a finite-time
by varying the number of qubits involved, the delay duration,delay 7, and right before the second unitary transformation is
and distribution of qubit energy splitting. Finally, in Sec. IV applied, the initial stat¢¥(0)) of the whole system evolves
we present some conclusions and discussions from our nte

merical studies. -1
W)= =3 ey €0, (D)

Il. FOUR-BLOCK DECOMPOSITION OF SHOR'’S VQj=0
ALGORITHM WITH OPERATIONAL DELAYS with E; being the energy of statg) and7=1. Here, 7,(m

We study the dynamical phase problem in the context of:1'2’3"“)_ denotes th_e tmle interval _between m_ Dth
Shor’s factoring algorithm. In Shor’s algorithf@], the fac- ~ andmth unitary operationsry=7,+ € with €<y, being the
torization of a given numbeN is based on calculating the operational time of thenth unitary transformation, .here as-
period of the functiorf(x)=a*modN quantum mechanically sumed to be ex+t_remely small qompared to other time scales.
for a randomly selected numbar(1<a<N) coprime with In other words 7, refers to the time interval between the end
N. Herey modN is the remainder whew is divided byN. of (m-1)th operation and the e_nd of threth operauon._ In
The orderr of amodN is the smallest integer such that what ff)”OWS' t_he global dynamical phas_e éX*EOTl)_ will
a’ modN=1. Oncer is known, factors oN are obtained by P€ omitted as it does not have any physical meaning.
calculating the greatest common divisorMfandy/2+1. A (2) Calculate the functiorfy 4(j)=a modN and then en-
quantum computer can findefficiently by a series of quan- tangle the work{|j)w} and auxiliary registersf.n(s))a by
tum operations on two quantum regist&vsandA. One isthe  applying a joint operatioV. After another finite-time delay
work registeW with L qubits, in which the job of finding the 7, before the next stefi.e., the third unitary transformatign
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the entangled state of the whole system becomes exp(2misk/ w
a) , o
L 1 gk = W; EX[{— IEqr+gT+ 27Tl|ka] .
+ V =0
(W + 1) = =2 [w® [Da, )
Vls=0 After another delay timer,—i.e., right before applying the
where fifth unitary transformation—the work register evolves into
|p)a=exd—iEs_ 97llfan(S)a 1 4t ,
| U+ m)w= =2 g(Ke k). (4)
and VO k=0
w (5) Finally, we carry out a measurement on the work reg-
lhw= >, exr - iErsg (1 + ) ]I + Sy, ister in the computational basi§)y} and derive the desired
1=0

orderr satisfying the conditio@” modN=1. This measure-

with w=[(gq-s-1)/r] being the largest integer less than Ment yields the stati), with probability
(q—s—1)/r. The dynamical phases of the qubits in the work

register, before and after the joint operatddncan be added P(k) =
directly, as this operator is diagonal in the logical basis. qw+1)
(3) Measure the auxiliary registdp), in its computa-
tional basis{|j)}. After this operation, the state of the whole which is independent of the free evolution during the last
system become® (7] +75)) =| (7 + T3))w® | p(7; + 75))a. In  delay 7,. Notice that hereP(k) only depends on théotal
other words, the work and auxiliary registers disentangle anéffective delay timer=7]+7;+7;, but not directly on the
the work register collapses to one of its periodic statesndividual time intervalsz,,, m=1,2,3,4.
[ 7]+ 75)hw- In this decomposition of Shor’s algorithm we have in-
For example, if the measurement on the auxiliary registeeluded time delays only in between the various unitary op-
|)a gives a valueA;=a®modN, then the work register im- erations, which were implemented by independently using
mediately becomes various one-time evolutiongl5,16. Note that only the de-
lays from the initial Hadamard gates to the finishing Fourier
) transformation may result in physical effects. Fortunately, all
[Ury + T)w= ﬁ; exXf = iE(r+g(71 + ) IlIF + Sy the operators during these delays are either diagonal or at
X =0 least not affecting the phase accumulation. Therefore, the
After the third unitary transformation is applied, there is aphases in each qubit simply add up.
third time delayrs. The statdy(r; + 75))y how evolves to If each unitary transformation is itself composed of sev-
eral consecutive steps, with delays between these internal
steps, we assume these delays to be negligible. This condi-

2

)

w
r
> exp[— iE(rgT+ 2wi|ka]

=0

w

w

+ + _ H + + . R . . K .
[(7y + 73+ T = —W—+12 eXH—IE (reg) (7 + 75 + 79)] tion implies that the internal time delays occurring between
v =0 steps within each unitary operation should be so short that
X|Ir + Sy (3) their accumulated phases are negligible. Such a condition is

. ) possibly difficult to satisfy experimentally. However, our re-
Because of the collapse of the wave functjiif(+7,)) in  gyits below show that even under such a restrictive condition
Eq.(2), the dynamical phases accumulated by the wave funghe interference effects due to dynamical phases between
tion [$) of the auxiliary register do not affect the algorithm syccessive unitary transformation are already too significant
anymore, as the relevant phase [eaiﬁfaN(s)rz] becomes a o be ignored.
global phase. ' For the ideal situation without any delay,,=0), the
(4) Perform the fourth unitary transformation: the quan-probability distributionP(k) in Eq. (5) reduces to that in the
tum Fourier transforntF transformation on the work regis- original Shor’s algorithm[2]. However, Eq.(5) clearly
ter[¢)w, so that information regarding the ordeof amodN  shows that the expected probabilistic distribution may be
(i.e., the smallest integer such thata’ modN=1) can be  strongly modified by the interferences due to the dynamical
more easily extracted. After tHe transformation the state of phases of the superposition wave function, which would con-
the work register becomes sequently lead to a lower probability for obtaining the de-
q-1 sired final output.

1
| D))w= ?E a(K)[Kw,
VO k=0 IIl. EFFECTS OF DYNAMICAL PHASES

with In order to study the effects of dynamical phases, we need
to computeP(k). The probability P(k) in Eqg. (5) can be
computed if the energie€ . for the various states
being the time after applying the fourth unitary transforma-|Ir +s),, involved are known exactly. These will be computed
tion and below.

+ + +
TETtT,t Ty
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A. Phase-matching condition for eliminating the coherent no effect. However, at the end of a calculation, physical mea-
errors due to operational delays surements have to be performed to read out the computa-

As a first approximation we assume that all qubits in gtional results, and these measurements are generally per-

quantum computer system possess identical energy spectfa'Mmed in the laboratory framethe Schrédinger picture
Such an approximation is valid for naturally identical sys-" Which the dynamical phases reappear. More specifically,
tems like trapped ions. In this ideal case, when all the qubithe measurement of an observallle can be expressed

have the same energy splitting between ground and excitegs (y(t)|O|ys(t)) =y (1) expliH ot/ /) O exp(=iH gt/4)| ¢(1))
states, different quantum states with the same number of ex- A . :
cited qubits will acquire the same dynamical phase. For ex: (h(D]OV]4(1). In other words, if we prefer calculating

: the expectation value of a time-independent operator, it has
ample, the four-qubit staté$30,0,0,) and|050,0,1,) would ) s , - o
acquire the same dynamical phase (exPeot—ie;t) during a :ch) bz dqn% '?. thle Stcproﬁ;]ngeg ﬁl(?’.tg.re'm'(ﬂ)t_ziaif'.n :S at
delay timet. Hereey ande; are the energies of a single qubit € desired Tinal state, the schrodinger picture final state

corresponding to the ground std@ and the excited state would take the form

|1), respectively. Under this approximation, E&) can be (1) = SE T\ — —imy A
. (M) =2 a5y = 2 aje™™™j). ®
rewritten as J. ! J. ]

2 Therefore, the phase-matching conditi6f) would render

' the phases expim;7A]=1, so that it enforces the equiva-
lence of the interaction picture and Schrodinger picture
A=¢€ - €, (6)  states, which ensures that the coherent error arising from the
free evolution during the delay can be effectively eliminated.
In what follows, we illustrate our discussion with a few
instances of Shor’s algorithm.

P(k)

> exp[ 2’7Ti|ké:| exd—im7A]

- qw+1) |5

whereA is the qubit energy splitting and is the number of
qubits in the logical statgl) for the number statfr +s). A
global factor exp-iLey7] has been neglected. Obviously,
when thetotal effective delay timer(7=1;+ 7, +73) satisfies

) o B. Analytical example for factoring a small composite number
the phase-matching condition vt P g P

Let us first consider the factorization of the smallest com-
TA=(e-€)T=2nm, n=123,.., (7)  posite number 4, which uses a two-qubit work register, a
two-qubit auxiliary register, an@d=3. After going through
the four steps of Shor’s algorithm as discussed above, the
final work register statEq. (4)] is

the above probability distributioR(k) equals that of an ideal

computation process withkA=0, asm, is always an integer

number. This implies thathe interference due to the fast

evolution of the dynamical phases can be suppressed peri- 1 ) 1

odically so that the correct results are obtained at the delay#(7+ 74))w= —r{?(|01>w+ e 1)w) ® —=[]0pw

points indicated in Eq(7). V2 (N2 V2
Physically, this phase-matching condition is related to the i

transformation of the wave function from the interaction to + &7 Iohw]

the Schrodinger pictures. Theoretical derivatigsse, e.g.,

[17]) for realizing quantum computation are usually in the 1 i imA
interaction picture, in which the Hamiltonian for the qubit _\;_?3[§|0>W+§|1>W-"e H2pw+ e dul,
free evolution does not appear and the oscillation of the su-

perposed wave function does not exist. More specifically, if a (9)

system HamiltoniarH can be written as a sum of a free with {=1+e™ and ¢=1-e7™. Here, |y refers to the
oscillator part and an interaction patt=Hq+V, so that the logical stateswith «=0,1) of the kth (with k=0,1) qubit in

time-dependent Schrédinger equation can be writtefiras the work register. In the other handD)y=[0:00)w,|Dw
the so-called Schrédinger picture where operators are timg|0110),[2w=[1100), and[3)w=[1;1phw.

independent while states evolve with time To derive Eq.(9), the measurement on the auxiliary reg-
ister is the projectioPy=|1),(1|5. Measuring the work reg-
iﬁiw/s(t)) = (}:|0+\“/)|¢,S(t)>, ister in the computational basis, the stégcollapses to the
ot expected one: eithd0),y or |2),y, with probability p.=|ZJ?

one can introduce the interaction picture wave function:[1+CO$TA)]/4' This implies that the desired results.

_ 5 . - =1/2) are obtained only if the phase-matching condit{@n
|4s(t)) =exp=iHt/7)|¢4(1)), which satisfies is satisfied. Equatiof®) also shows that the dynamical phase
p . acquired by each qubit after the Fourier transform does not
iﬁﬁm(t)) =V,|¢ (1), result in any measurable physical effect.

where \A/Fexli”:'ot/ﬁ)\? exp(—iI:|ot/ﬁ). Now that |:|0 has C. Numerical examples for factoring a few integers
been eliminated from the Schrédinger equation, it seems that To quantitatively evaluate the effects of the dynamical
dynamical phases due to the qubit free evolution would havghases when running Shor’s algorithm, we introduce two
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1.0
0.15; At=0 or 2n ©
0.10] 0-87%
L]
0.00] a’ 1%
0 256 512 041 \\
0024 At=0.4n 0.2 ‘\
o0t 00— ps )
= At/m
o
0.004 P 256 512 FIG. 3. The probabilityP, of obtaining the correct results versus
0.02{ A7=(e,—€p) 7 for running Shor’s factoring algorithm in the pres-
At=r1 ence of delays. The lines far=4, 6, 10 correspond to the cases
where 4, 9, 11 work qubits, giveq=16, 512, 2048, are used to
0.014 factorizeN=15, 21, 33 witha=13, 5, 5, respectively. Note that the
expected outputs can be obtained at the phase-matching points:
0.004 Ar= 27T, 471,
0 256 512
0.02{ At=16n We plot the delay-dependef in Fig. 3 for several ex-
amples: factorizingN=15, 21, and 33, witla=13, 5, and 5,
0.014 and when using 4, 9, and 11 work qubits, respectively. As is
shown in Fig. 3, the correct results are always obtained at the
0.00. phase-matching time intervals given by E{@). For other
0 256 512 delay cases, especially near the delay points satisfying the

k condition7A = (e, - €g) 7=(2n— 1), the correct results cannot

FIG. 2. The probabilityP(k) [see Eq(6)] of observing values of D€ obtainedfor the case where the expected order is a power
k for different values ofrA=(e; - )7=0, 0.47, 7, 1.6m, and 27, ~ Of two; see, e.g., the solid line fo=4 in Fig. 3 or may be
givenN=21,q=512,a=5, and the expected order 6. Here,7is  Obtained with very low probabilitie®, (for the cases where
the total effective delay time between unitary operations. The corthe orderr cannot divide the givemy exactly; see, e.g., the
rect outputs are obtained when the phase-matching condition lines forr=6, 10 in Fig. 3. Of course, the dynamical oscil-
=27 (or the ideal caseA=0) is satisfied. The probabilities of ob- lations can also be suppressed by trivially setting up indi-
taining the correct outputs far from the phase-matching conditionyidual delaysr,, as 7A,,=2nm. The key observation here is
are very low.(See the second, third, and fourth panels. Note thethat only the total delay timeinstead of the duration for
different scales for the vertical axgs.Indeed, as shown in the every delayneeds to be accurately chosen to avoid the co-
bottom three panels, many incorrect results are produced when thferent dynamical phase error
phase-matching condition given by E) is not enforced. Classically, higher precision is usually obtained by using
more computational bits. However, this is not necessarily the
delay-dependent functiong(k) is used to quantify the case in practical quantum computation. Indeed, for Shor’s
probability of obtaining the correct resit and algorithm, after taking into consideration the influence of the
time delays between consecutive operations, the more qubits
are used, thdower the computational efficiency. For ex-

Pe= 2 pe(ke) (100 ample, if we use a work register with four qubits to factor 15,
ke a desired final state—e.¢0000—is obtained with the prob-
ability

is the probability of computing all the correct output, 1

=1 for an ideal computation process and for practical quan- pg“)(O) = [6+8 cog7A) + 2 cog27A)]. (11
tum computers at the phase-matching time intervals consis- 2

tent with Eq. (7). For other delays not satisfying E7) |t the delays are set asA=5/3 [rather than the phase-
wrong resultgyk # k) can be obtained so th&,<1. matching points(7)], we havepé4)(0):9/24. With a five-

_We now run the a_llgori'Fhm to factorizZd=21 With a=>5 qubit work register, the probability of obtaining one of the
using nine work qubits. Figure 2 shows the various Ompm%xpected resultée.g.,|00000) is

and the corresponding probabilities for different delay times .
7. 7A=0, 0.4, 7, 1.6m, and 27. It is seen from Fig. 2 that, 50 —

when the phase-matching conditi6r) is satisfied, ?he com- p(e 0= ;[20 + 30 cosrh) + 12 c0827A) + 2 cog37A)],
puted results are identical to that of an ideal computation (12)
process withrA=0. Note in Fig. 2 that the maximum value

of P(k) =0.2 at the matching condition ariRik) <0.02 away  which reduces tqt)ff’)(O):27/26 [< p(e‘”(o)] for the same de-
from it. lay of TA=57x/3. This feature is clearly demonstrated in Fig.
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0.2 T T T

, 1.000 .
(0,4,8,12) 1 i )
* pk) (a g ] : ) :
Linear Fit of Explp (k)] ] s i
0.14 (0,8,16,32) ] 0.975 7 ) .
0.08 - ] )
(0,16,32,48)
0.06 T | .
(0,32,64,96) 0.950 | .
0.04 | AT = 5n/3 (0,64,128,192) jo/<a>=0.5%
A z pe N pa g 0.925 y T T T
6.24 12.48 18.72 24.96

. . <A>T
FIG. 4. The probablhtypg‘)(ke) of obtaining one of the correct

results versus the numbkrof work qubits used to run the quantum FIG. 5. The probabilities, (for factorizingN=15 using eight
algorithm factorizingN=15 in the presence of a delayr=(e;  work qubit9 of obtaining the correct results for different phase-
—€y)7=57/3. The straight line shows that this probabilm&”(ke) matching cases‘A)r=21r, 4, 6, 8, with a common Gaussian
decreases exponentially with the numberof qubits used. The energy splitting fluctuation withr/(A)=0.5%. Note that this prob-
points on the line show the probability of obtaining one of the ability P, is higher at the phase-matching points with shorter total
correct outputsk,=(0,4,8,12 for four-qubit, (0, 8, 16, 24 for delay timer.

five-qubit, (0, 16, 32, 48 for six-qubit, (0, 32, 64, 96 for seven-

qubit, and(0, 64, 128, 192for eight-qubit cases, respectively. w 2
1 r
K=——> exp[ZwiIk—}exp{— im7({A) + 9)]
4, which shows thathe probability of obtaining any one of aw+1) |5 q
the correct results decreases exponentially when increasing w 2
the number of qupits of the work registémc.h a scenario_is - 1 s exp[zmlki] (1 _ imliT) (14)
to be expected, since the number of possible outputs in the qw+1) |5 q (A)

final measurement increases exponentially with the number
of the work register qubits, which makes the constructive

interference in Eq(5) for the probability P(k) harder to s fiyctuation results in a small deviation of the probability
achieve if 7A dewat_es from the phase-matching conditionyear the phase-matching points. Figure 5 shows that the
(7). At the exact points whefe; — o) 7=2n, the construc-  propability of obtaining correct answers decreases as the to-
tive interference of the superposition wave functions ensureg| time delayr increases. Also, Fig. 6 shows the dependence
that the computational accuracy is independent of the numyf p_ on the width of the qubit energy splitting distribution
ber of qubits involved. o, with the delay condition set gi\)r=27. As expected, a
quantum computer runs with higher efficiencies for shorter
time delaysr and for narrower distributionB(4;) of energy
. ] splittings. In essence, here we study an effect similar to in-
In the previous calculations shown above, we have ashomogeneous broadening, which is not a true dephasing ef-
sumed that all qubits possess an identical energy splittingsct. This is consistent with our focus in this paper on the

A=e - €. In reality, especially for solid-state quantum sys- coherent errors instead of the incoherent ones.
tems such as the Josephson junction qubits and quantum dot

D. Effect of energy splitting inhomogeneity

trapped spins, different qubits will have slightlyfferenten- 1.00 14— -
ergy splittings due to system inhomogeneity, in contrast to :
ions, which are perfectly identical. The logical states with the 0.994 -
same energy in the “identical qubit” assumptide.g., a®
|150,0,0) and |050,0,15)) may now have slightly different 0.98-
energies. A critical question then is how robust the phase-
matching condition(7) is for a system of multiple qubits 0971 cA»r =21
with fluctuations in the qubit energy splittings. Here we pro-
vide quantitative answers to this important question by nu- 0.96 -
merically simulating Shor’s algorithm assuming a Gaussian 55 02 04 55 08 10 12
distribution for the qubit energy splittings. In other words, ) ) 100a/<As )
the energy splittingy; of the jth qubit is chosen randomly
according to the distribution function FIG. 6. The probabilitied, (for factorizingN=15 using eight
) work qubit9 of obtaining the correct results for different fluctua-
P(A)) = —i exp{— —J—(A' —(A) ] (13) tions of energy splittingss/(A)=0.01%, 0.3%, 0.7%, 1.1%, with a
" 2me 20° common phase-matching poigt\)7=27. Note that the probability

] at the phase-matching point is still sufficiently high, even if the
around an average valu@) and widtho. Thus, near the energy splittings of the qubits exist with certain fluctuations around
delay condition set afA)7=2, we have the average valué\).
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IV. CONCLUSIONS AND DISCUSSIONS

When a real quantum computer performs a computational
task, there must be unavoidable time intervals between con-
secutive unitary operations. During these delays, the wave
function of a system with nonzero free Hamiltonian would
acquire relative dynamical phases, if the two states for each !
qubit have different energies. These dynamical phases lead to E
fast oscillations in the total wave function and modify the :

desired quantum interference required by quantum algo- E A i
rithms, which in turn reduce the probability of obtaining cor-
rect computational results. FIG. 7. Quantum circuits formed by the elementary single- and

Here we have studied the effects of the dynamical phasefo-qubit logic gates for performinga) Hadamard gate for one
in running a quantum algorithrtmore specifically, Shor’s qubit and (b) a quantum Fourier transformation for three_-qublt.
factoring algorithm. We point out that a phase-matching Here, 4(1=1,2....) and pq (k=0,1,2,..) refer to the operational
condition can potentially help allieviate the interferencedelays inside them, respectively. In the logical basis, the single-
problems caused by the dynamical phases, and this conditidtubit gateR,=explimo,/4) and the tW_O-qubit controlled-phase gate
is closely related to establishing the equivalence betweeR«=|00)(00+[01)(01+|10)(10+exp(2i/2)|11)(11] are diagonal,
guantum states in the Schrodinger picture and the interactiowhile the single-qubiR,=exp(imoy/4) is not.
picture through a quantum computation process. In the pres- . . .
ence of coherent phase errors, we have demonstrated that thi Fourier transformatigr-the proposed phase-matching

probability of obtaining the correct answer decreases expo(—:ond't'ons(In terms of the total delay time instead of indi-

nentially with increasing number of qubits of the work reg-Vidual delay times of each oper.ation.al doldgr a\{oiding
ister. In addition, Shor’s algorithm fails for the worst Casethe coherent phase errors are still valid. 'I:he key is that only

scenario ofrA=(2n-1) if the expected order is a power  two elementary nondiagonal operatidne., R in Hadamard
of 2. We have further shown that the phase-matching condigates are applied to each qubit in the work registsee Fig.
tion studied here is quite robust in the presence of smalz)- The qubit is in a product state before the first norldlagonal
fluctuations in the qubit energy splittings. Unlike the refocus-R, gate, while the delays after the second nondiag&Qah
ing technique in NMR experiments3], which deals with the corresponding Hadamard gate do not affect the results of
unwanted evolutions due to uncontrolled qubit interactionprojective measuremerisee, e.g., Eq(9)]. Therefore, the
we have shown here that by properly setting tibtal effec-  dynamical phases acquired in different effective operational
tive delay, the unwanted oscillations of the superposed wavdelays accumulate even when the operational delays inside
functions due to the free Hamiltonians of the bare qubits canhe functional steps are considered.
be effectively suppressed; thus, the desired output can be Inthe present approach, we have assumed that every qubit
obtained without additional operations. This implies that thein the work register has the same waiting tinfefor each
guantum computing may be performed in an effective intereffective operational delay. In practice, this assumption is not
action picture, in which coherent errors arising from the freenecessary. Indeed, in the elementary gate array model, the
evolution of the bare qubits during the operational delay camwaiting times for different qubits would have been different.
be automatically avoided. However, the phase-matching conditi¢d) needs only a
We emphasize that the present simplified approach onlglight modification in this case, so that it becomes a condi-
treats the delays between two sequential functional operdgion for each qubit[14]: #A=2nm, k=1,2,..., ng
tions and neglects those inside these transforms. In fact, eaefl, 2,... for each qubit. Here), and 7, are the energy split-
functional transform, which is actually equivalent to a mul- ting andtotal controllable effective delay of thith qubit in
tiqubit gate, can be, in principle, implemented exactly bythe work register, respectively.
using only one-time evolutiofil5,16]. This “coarse-grained” Our discussion has assumed that all operations in the al-
one-step implementation implies that the evolutions relatingyorithm act on the pure quantum states of the two registers.
to the various parts of the total Hamiltonian have been welln fact, in the framework of the phase estimation algorithm,
controlled. Therefore, the operational delays, relating only taShor’s algorithm can also be efficiently achieved with just
the free evolution ruled by the free Hamiltonian of the bareone initial pure control qubit and a supply of initial mixed
physical qubits, within each one of these larger functionalog, N qubits [18,19. Correspondingly, numerical simula-
building blocks are assumed to be zero. Also, the dynamicaions in Ref.[20] showed that the algorithm is still efficient
phases acquired by the superposed wave functions can le@ough if the random incoherence noise is only allowed to
added up for the operational delays before and after eachct on the mixed qubits. However, an exponential drop-off in
functional transformation. Therefore, the phase-matchinghe efficiency of the algorithm was found, if the incoherence
condition (7) exists for thetotal delay. noise is allowed to act on the pure state of the control qubit.
The present calculation is done assuming that Shor’s alfhe above discussion, on the effect of dynamical phases, can
gorithm is accomplished in five lumped steps. A simplealso be applied to this implementation. An oscillating factor
analysis can prove that, even if using an actual elementamelated to the operational delay of the control qubit can also
gate array model—e.g., shown in Fig.(for implementing  be introduced to describe the relevant dynamical phase ef-
the initializations by using the Hadamard gates and the quarfect.
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Finally, let us emphasize the differences between coheremtue to dynamical phases accumulate in the same manner in
errors due to dynamical phases, considered in this study, ardkviating from the required quantum operations. These co-
incoherent errors due to qubit decoherence. The way a quaherent errors may modify the required quantum interference,
tum algorithm is influenced by incoherent errors is very dif- but they do not destroy the coherence of the quantum register
ferent from that by the coherent errors we discussed abov¢l2]. Meanwhile, decoherence is intrinsically random and
In short, coherent errors do not cause information loss, stherefore leads to a slower but irreversible growth of inco-
that there can be a “revival” of the information when correctherent errors with increasing computing time. Overcoming
computational results can be obtained again after a period ahe type of error is not enough to guarantee the successful
time. Our analytical results, Eq&) and (9), as well as the running of quantum algorithms. Indeed, the results presented
numerical simulations, Figs. 2 and 3, clearly show that then this paper demonstrate that, even in the absence of deco-
success probability, after one run of a quantum algorithmherence, the dynamical phases of the qubits still have to be
oscillates with the dynamical phasd. On the other hand, taken into consideration in order to successfully implement
decoherence leads to a decrease of the success probabilitySiior’s algorithm.
computing by a decohering factor—e.g., an exponentially
decreasing factor of expL?t/ r) for the fastest decoherence
of anL-qubit systenj21]. Here, 74 andt are the decoherence
time of a single qubit and the computation time, respectively. This work was supported in part by the National Security
In other words, the incoherent errors due to decoherence leakgency (NSA) and Advanced Research and Development
to irreversible loss of information and have to be fixed byActivity (ARDA) under Air Force Office of Research
guantum error correction and/or decoherence-free encodingA\FOSR Contract No. F49620-02-1-0334 and by National
[22]. Phenomenologicallf23], the systematic unitary errors Science Foundation Grant No. EIA-0130383.
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