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Ideal quantum algorithms usually assume that quantum computing is performed continuously by a sequence
of unitary transformations. However, there always exist idle finite time intervals between consecutive opera-
tions in a realistic quantum computing process. During these delays,coherent errorswill accumulate from the
dynamical phases of the superposed wave functions. Here we explore the sensitivity of Shor’s quantum
factoring algorithm to such errors. Our results clearly show a severe sensitivity of Shor’s factorization algo-
rithm to the presence of delay times between successive unitary transformations. Specifically, in the presence
of these coherent errors, the probability of obtaining the correct answer decreases exponentially with the
number of qubits of the work register. A particularly simple phase-matching approach is proposed in this paper
to avoidor suppress these coherent errors when using Shor’s algorithm to factorize integers. The robustness of
this phase-matching condition is evaluated analytically and numerically for the factorization of several inte-
gers: 4, 15, 21, and 33.
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I. INTRODUCTION

Building a practical quantum information processor has
attracted considerable interest during the past decadef1g.
With the resources provided by quantum mechanics, such as
superposition and entanglement, a quantum computer could
achieve a significant speedup for certain computational tasks.
The most prominent example is Shor’s factoring algorithm
f2,3g, which allows an exponential speedup over the known
classical algorithms. The proposed quantum algorithms are
constructed assuming that all quantum operations can be per-
formed precisely. In reality, any physical realization of such
a computing process must treat various errors arising from
various noise and imperfectionsssee, e.g.,f4gd. Physically,
these errors can be distinguished as two different kinds: in-
coherent and coherent errors. The incoherent errors originate
from the coupling of the quantum information processor to
an uncontrollable external environment, which is stochastic
and results in decoherence. Coherent errors usually arise
from nonideal quantum gates which lead to unitary but non-
ideal temporal evolutions of a quantum computer. So far,
most previous worksssee, e.g.,f5–9gd have been concerned
with quantum errors arising from the decoherence due to
interactions with the external environment and external op-
erational imperfections. Here, we focus instead on internal
ones. The coherent errors we consider here are related to the
intrinsic dynamical evolution of the qubitsbetweenopera-
tions.

A quantum computing process generally consists of a se-
quence of quantum unitary operations. These transformations
are usually applied to the superposition states so that the
quantum computer evolves from an input initial state to the
desired final state. If the two qubit levels have different en-
ergies, as is usually the case, the superposition wave function
of the quantum register undergoes fast coherent oscillations
during the finite time delay between two consecutive opera-
tions. These oscillation, if not controlled, can spoil the cor-
rect computational results expected from the ideal quantum
algorithms, where operational delays are neglected.

In principle, these coherent errors can be eithers1d
avoided by tuning the relevant energy splittings of the qubits
to zerof10,11g or s2d eliminated by introducing a “natural”
phase induced by using a stable continuous reference oscil-
lation for each quantum transition in the computing process
f12g. Indeed, a possible approach to study the present prob-
lem could consider the use of simple error-avoidance
schemes, such as encoding each logical qubit in two physical
qubits viau0l→ u01l+ u10l, u1l→ u01l− u10l so that both states
have the same energy. We prefer to use oursquite differentd
approach presented here because it does not involve increas-
ing the number of physical qubits to encode a logical qubit.
This increase can involve increased complexity in the device
and in its operation. Also note that qubits in solid-state sys-
tems are never truly identicalsin contrast with trapped ionsd.
Nonidentical qubits limit the applicability of the above en-
coding approach. Without using a few physical qubits to en-
code a logical qubit, we show in the present work that the
discussed coherence errors can be efficiently avoided by a
phase-matching strategy, by setting the total delay between
successive operations On the other hand, experimentally—
for example, in NMR systemsssee, e.g.,f3,13gd—the above
coherence errors were usually corrected by introducing two
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additional operations before and after the delay to reverse
each undesired free evolution.

In this paper we perform a quantitative assessment of the
effects of the dynamical phases in Shor’s algorithm by real-
istically assuming that operational delays, between succes-
sive unitary transformations, exist throughout the computa-
tion. We explore a phase-matching approach to deal with the
dynamical phase problem. We show that coherent “errors”
due to these phases, acquired by the dynamical evolution of
the superposed wave function during the operational delays,
may be avoided by properly setting thetotal delay. We then
carefully evaluate the robustness of such a phase-matching
condition, focusing on its dependence on the number of qu-
bits, the length of the delay, and the fluctuations in the qubit
energy splitting. Our discussions are in the context of Shor’s
algorithm, but can be extended to other quantum algorithms,
such as the phase estimation and other algorithmsf14g. For
simplicity and clarity, here we assume that the influence of
the environmental decoherence and the gate imperfections on
the computing process are negligible.

The paper is organized as follows. In Sec. II, we present a
decomposition of Shor’s algorithm and explain how we in-
corporate the dynamical phases into the realization of this
algorithm. The usual decompositions of quantum algorithms
into consecutive elementary gates are strictly limited by the
short decoherence time. Here, we reconstruct the standard
Shor’s algorithm out of four functional unitary transforma-
tions and only consider the operational delays between these
larger building blocks. We assume that each block can be
exactly performed by only one-time evolution as a multiqu-
bit gate ssee, e.g.,f15,16gd, avoiding the existing idle time
inside it. It is shown that the effects of dynamical phases are
not negligible, even in this primary or “coarse-grained” de-
composition. In Sec. III, we analytically and numerically
evaluate several examples to illustrate the phase-matching
condition and establish a clear relationship between this con-
dition and the equivalence of the Schrödinger picture and the
interaction picture description of a physical system. We also
demonstrate the robustness of the phase-matching condition
by varying the number of qubits involved, the delay duration,
and distribution of qubit energy splitting. Finally, in Sec. IV
we present some conclusions and discussions from our nu-
merical studies.

II. FOUR-BLOCK DECOMPOSITION OF SHOR’S
ALGORITHM WITH OPERATIONAL DELAYS

We study the dynamical phase problem in the context of
Shor’s factoring algorithm. In Shor’s algorithmf2g, the fac-
torization of a given numberN is based on calculating the
period of the functionfsxd=ax modN quantum mechanically
for a randomly selected numbera s1,a,Nd coprime with
N. Herey modN is the remainder wheny is divided byN.
The orderr of a modN is the smallest integerr such that
ar modN=1. Oncer is known, factors ofN are obtained by
calculating the greatest common divisor ofN andyr/2±1. A
quantum computer can findr efficiently by a series of quan-
tum operations on two quantum registersW andA. One is the
work registerW with L qubits, in which the job of finding the

order is done, while the values of the functionfsxd are stored
in the auxiliary registerA with L8 qubits. The sizes of the
work and auxiliary registers are chosen as the integers satis-
fying the inequalitiesN2,q=2L,2N2 and 2L8−1,N,2L8.
Hereq is the Hilbert space dimension of the work register.

As shown in Fig. 1, a realistic implementation of Shor’s
algorithm can be decomposed into the following unitary
transformations.

s1d Initialize the work register in an equal-weight super-
position of all the logical states and the auxiliary register in
its logical ground stateu0lA. Initially, each work qubit is in its
logical ground stateu0l. Assuming that a Hadamard gateH is
applied to each qubit in the work register at one time, the
computational initial state of the system becomes

uCs0dl =
1
Îq

o
j=0

q−1

u jlW ^ u0lA.

Here, the subindexW stands for the work register state and
the subindexA for the auxiliary register. After a finite-time
delayt1 and right before the second unitary transformation is
applied, the initial stateuCs0dl of the whole system evolves
to

uCst1dl =
1
Îq

o
j=0

q−1

e−iEjt1u jlW ^ e−iE0t1u0lA, s1d

with Ej being the energy of stateu jl and "=1. Here,tmsm
=1,2,3,…d denotes the time interval between thesm−1dth
andmth unitary operations.tm

+ =tm+e with e!tm being the
operational time of themth unitary transformation, here as-
sumed to be extremely small compared to other time scales.
In other words,tm

+ refers to the time interval between the end
of sm−1dth operation and the end of themth operation. In
what follows, the global dynamical phase exps−iE0t1d will
be omitted as it does not have any physical meaning.

s2d Calculate the functionfN,as jd=aj modN and then en-
tangle the workhu jlWj and auxiliary registersufa,NssdlA by

applying a joint operationV̂. After another finite-time delay
t2 before the next stepsi.e., the third unitary transformationd,

FIG. 1. Quantum circuit for implementing Shor’s algorithm with
time delayst j

+s j =1,2,3d between the successive operations. Here
H refers to a Hadamard gate, whileF refers to a quantum Fourier
transformation. Each block operation is assumed to be exactly per-
formed in a very short time interval« sso that phases accumulated
during the operations are either accounted for by the operations
themselves or simply neglectedd.
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the entangled state of the whole system becomes

uCst1
+ + t2dl =

1
Îq

o
s=0

r−1

uclW ^ uflA, s2d

where

uflA = expf− iEfa,Nssdt2gufa,NssdlA

and

uclW = o
l=0

w

expf− iEslr+sdst1
+ + t2dgulr + slW,

with w=fsq−s−1d / rg being the largest integer less than
sq−s−1d / r. The dynamical phases of the qubits in the work

register, before and after the joint operationV̂, can be added
directly, as this operator is diagonal in the logical basis.

s3d Measure the auxiliary registeruflA in its computa-
tional basishu jlAj. After this operation, the state of the whole
system becomesuCst1

++t2
+dl= ucst1

++t2
+dlW^ ufst1

++t2
+dlA. In

other words, the work and auxiliary registers disentangle and
the work register collapses to one of its periodic states
ucst1

++t2
+dlW.

For example, if the measurement on the auxiliary register
uflA gives a valueAs=as modN, then the work register im-
mediately becomes

ucst1
+ + t2

+dlW =
1

Îw + 1
o
l=0

w

expf− iEslr+sdst1
+ + t2

+dgulr + slW.

After the third unitary transformation is applied, there is a
third time delayt3. The stateucst1

++t2
+dlW now evolves to

ucst1
+ + t2

+ + t3dlW =
1

Îw + 1
o
l=0

w

expf− iEslr+sdst1
+ + t2

+ + t3dg

3ulr + slW. s3d

Because of the collapse of the wave functionuCst1
++t2dl in

Eq. s2d, the dynamical phases accumulated by the wave func-
tion uflA of the auxiliary register do not affect the algorithm
anymore, as the relevant phase expf−iEfa,Nssdt2

+g becomes a
global phase.

s4d Perform the fourth unitary transformation: the quan-
tum Fourier transformsF transformationd on the work regis-
ter uclW, so that information regarding the orderr of a modN
si.e., the smallest integerr such thatar modN=1d can be
more easily extracted. After theF transformation the state of
the work register becomes

ucstdlW =
1
Îq

o
k=0

q−1

gskduklW,

with

t = t1
+ + t2

+ + t3
+

being the time after applying the fourth unitary transforma-
tion and

gskd =
exps2pisk/qd

Îw + 1
o
l=0

w

expF− iEslr+sdt + 2pilk
l

q
G .

After another delay timet4—i.e., right before applying the
fifth unitary transformation—the work register evolves into

ucst + t4dlW =
1
Îq

o
k=0

q−1

gskde−iEkt4uklW. s4d

s5d Finally, we carry out a measurement on the work reg-
ister in the computational basishu jlWj and derive the desired
order r satisfying the conditionar modN=1. This measure-
ment yields the stateuklW with probability

Pskd =
1

qsw + 1dUol=0

w

expF− iEslr+sdt + 2pilk
r

q
GU2

, s5d

which is independent of the free evolution during the last
delay t4. Notice that herePskd only depends on thetotal
effective delay timet=t1

++t2
++t3

+, but not directly on the
individual time intervalstm, m=1,2,3,4.

In this decomposition of Shor’s algorithm we have in-
cluded time delays only in between the various unitary op-
erations, which were implemented by independently using
various one-time evolutionsf15,16g. Note that only the de-
lays from the initial Hadamard gates to the finishing Fourier
transformation may result in physical effects. Fortunately, all
the operators during these delays are either diagonal or at
least not affecting the phase accumulation. Therefore, the
phases in each qubit simply add up.

If each unitary transformation is itself composed of sev-
eral consecutive steps, with delays between these internal
steps, we assume these delays to be negligible. This condi-
tion implies that the internal time delays occurring between
steps within each unitary operation should be so short that
their accumulated phases are negligible. Such a condition is
possibly difficult to satisfy experimentally. However, our re-
sults below show that even under such a restrictive condition
the interference effects due to dynamical phases between
successive unitary transformation are already too significant
to be ignored.

For the ideal situation without any delaystm;0d, the
probability distributionPskd in Eq. s5d reduces to that in the
original Shor’s algorithmf2g. However, Eq. s5d clearly
shows that the expected probabilistic distribution may be
strongly modified by the interferences due to the dynamical
phases of the superposition wave function, which would con-
sequently lead to a lower probability for obtaining the de-
sired final output.

III. EFFECTS OF DYNAMICAL PHASES

In order to study the effects of dynamical phases, we need
to computePskd. The probability Pskd in Eq. s5d can be
computed if the energiesEslr+sd for the various states
ulr +slW involved are known exactly. These will be computed
below.
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A. Phase-matching condition for eliminating the coherent
errors due to operational delays

As a first approximation we assume that all qubits in a
quantum computer system possess identical energy spectra.
Such an approximation is valid for naturally identical sys-
tems like trapped ions. In this ideal case, when all the qubits
have the same energy splitting between ground and excited
states, different quantum states with the same number of ex-
cited qubits will acquire the same dynamical phase. For ex-
ample, the four-qubit statesu13020100l and u03020110l would
acquire the same dynamical phase exps−i3e0t− ie1td during a
delay timet. Heree0 ande1 are the energies of a single qubit
corresponding to the ground stateu0l and the excited state
u1l, respectively. Under this approximation, Eq.s5d can be
rewritten as

Pskd =
1

qsw + 1dUol=0

w

expF2pilk
r

q
Gexpf− imltDgU2

,

D = e1 − e0, s6d

whereD is the qubit energy splitting andml is the number of
qubits in the logical stateu1l for the number stateulr +slW. A
global factor expf−iL«0tg has been neglected. Obviously,
when thetotal effective delay timetst=t1

++t2
++t3

+d satisfies
the phase-matching condition

tD = se1 − e0dt = 2np, n = 1,2,3,…, s7d

the above probability distributionPskd equals that of an ideal
computation process withtD=0, asml is always an integer
number. This implies thatthe interference due to the fast
evolution of the dynamical phases can be suppressed peri-
odically so that the correct results are obtained at the delay
points indicated in Eq.s7d.

Physically, this phase-matching condition is related to the
transformation of the wave function from the interaction to
the Schrödinger pictures. Theoretical derivationsssee, e.g.,
f17gd for realizing quantum computation are usually in the
interaction picture, in which the Hamiltonian for the qubit
free evolution does not appear and the oscillation of the su-
perposed wave function does not exist. More specifically, if a

system HamiltonianĤ can be written as a sum of a free

oscillator part and an interaction partĤ=Ĥ0+V̂, so that the
time-dependent Schrödinger equation can be written assin
the so-called Schrödinger picture where operators are time
independent while states evolve with timed

i"
]

]t
ucSstdl = sĤ0 + V̂ducSstdl,

one can introduce the interaction picture wave function

ucSstdl=exps−iĤ0t /"ducIstdl, which satisfies

i"
]

]t
ucIstdl = V̂IucIstdl,

where V̂I =expsiĤ0t /"dV̂ exps−iĤ0t /"d. Now that Ĥ0 has
been eliminated from the Schrödinger equation, it seems that
dynamical phases due to the qubit free evolution would have

no effect. However, at the end of a calculation, physical mea-
surements have to be performed to read out the computa-
tional results, and these measurements are generally per-
formed in the laboratory framesthe Schrödinger pictured,
in which the dynamical phases reappear. More specifically,

the measurement of an observableÔ can be expressed

as kcSstduÔucSstdl=kcIstduexpsiĤ0t /"dÔ exps−iĤ0t /"ducIstdl
=kcIstduÔIstducIstdl. In other words, if we prefer calculating
the expectation value of a time-independent operator, it has
to be done in the Schrödinger picture. IfucIstdl=o ja ju jl is
the desired final state, the Schrödinger picture final state
would take the form

ucSstdl = o
j

a je
−iEjtu jl = o

j

a je
−imltDu jl. s8d

Therefore, the phase-matching conditions7d would render
the phases expf−imltDg=1, so that it enforces the equiva-
lence of the interaction picture and Schrödinger picture
states, which ensures that the coherent error arising from the
free evolution during the delay can be effectively eliminated.

In what follows, we illustrate our discussion with a few
instances of Shor’s algorithm.

B. Analytical example for factoring a small composite number

Let us first consider the factorization of the smallest com-
posite number 4, which uses a two-qubit work register, a
two-qubit auxiliary register, anda=3. After going through
the four steps of Shor’s algorithm as discussed above, the
final work register statefEq. s4dg is

ucst + t4dlW =
1
Î2
H 1

Î2
su01lW + e−it4Du11lWd ^

1
Î2

fzu00lW

+ je−it4Du10lWgJ
=

1
Î8

fzu0lW + ju1lW + e−it4Dzu2lW + e−it4Dju3lWg,

s9d

with z=1+e−itD and j=1−e−itD. Here, uaklW refers to the
logical statesswith a=0,1d of the kth swith k=0,1d qubit in
the work register. In the other hand,u0lW= u0100lW, u1lW
= u0110l , u2lW= u1100l, and u3lW= u1110lW.

To derive Eq.s9d, the measurement on the auxiliary reg-

ister is the projectionP̂A= u1lAk1uA. Measuring the work reg-
ister in the computational basis, the states9d collapses to the
expected one: eitheru0lW or u2lW, with probability pe= uzu2
=f1+cosstDdg /4. This implies that the desired resultsspe

=1/2d are obtained only if the phase-matching conditions7d
is satisfied. Equations9d also shows that the dynamical phase
acquired by each qubit after the Fourier transform does not
result in any measurable physical effect.

C. Numerical examples for factoring a few integers

To quantitatively evaluate the effects of the dynamical
phases when running Shor’s algorithm, we introduce two
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delay-dependent functions:pesked is used to quantify the
probability of obtaining the correct resultke and

Pe = o
ke

pesked s10d

is the probability of computing all the correct outputs.Pe
=1 for an ideal computation process and for practical quan-
tum computers at the phase-matching time intervals consis-
tent with Eq. s7d. For other delays not satisfying Eq.s7d
wrong resultsskÞked can be obtained so thatPe,1.

We now run the algorithm to factorizeN=21 with a=5
using nine work qubits. Figure 2 shows the various outputs
and the corresponding probabilities for different delay times
t: tD=0, 0.4p, p, 1.6p, and 2p. It is seen from Fig. 2 that,
when the phase-matching conditions7d is satisfied, the com-
puted results are identical to that of an ideal computation
process withtD=0. Note in Fig. 2 that the maximum value
of Pskd<0.2 at the matching condition andPskd,0.02 away
from it.

We plot the delay-dependentPe in Fig. 3 for several ex-
amples: factorizingN=15, 21, and 33, witha=13, 5, and 5,
and when using 4, 9, and 11 work qubits, respectively. As is
shown in Fig. 3, the correct results are always obtained at the
phase-matching time intervals given by Eq.s7d. For other
delay cases, especially near the delay points satisfying the
conditiontD=se1−e0dt=s2n−1dp, the correct results cannot
be obtainedsfor the case where the expected order is a power
of two; see, e.g., the solid line forr =4 in Fig. 3d or may be
obtained with very low probabilitiesPe sfor the cases where
the orderr cannot divide the givenq exactly; see, e.g., the
lines for r =6, 10 in Fig. 3d. Of course, the dynamical oscil-
lations can also be suppressed by trivially setting up indi-
vidual delaystm as tDm=2np. The key observation here is
that only the total delay time, instead of the duration for
every delay,needs to be accurately chosen to avoid the co-
herent dynamical phase error.

Classically, higher precision is usually obtained by using
more computational bits. However, this is not necessarily the
case in practical quantum computation. Indeed, for Shor’s
algorithm, after taking into consideration the influence of the
time delays between consecutive operations, the more qubits
are used, thelower the computational efficiency. For ex-
ample, if we use a work register with four qubits to factor 15,
a desired final state—e.g.,u0000l—is obtained with the prob-
ability

pe
s4ds0d =

1

24f6 + 8 cosstDd + 2 coss2tDdg. s11d

If the delays are set astD=5p /3 frather than the phase-
matching pointss7dg, we havepe

s4ds0d=9/24. With a five-
qubit work register, the probability of obtaining one of the
expected resultsse.g., u00000ld is

pe
s5ds0d =

1

25f20 + 30 cosstDd + 12 coss2tDd + 2 coss3tDdg,

s12d

which reduces tope
s5ds0d=27/25 f,pe

s4ds0dg for the same de-
lay of tD=5p /3. This feature is clearly demonstrated in Fig.

FIG. 2. The probabilityPskd fsee Eq.s6dg of observing values of
k for different values oftD=se1−e0dt=0, 0.4p, p, 1.6p, and 2p,
given N=21, q=512,a=5, and the expected orderr =6. Here,t is
the total effective delay time between unitary operations. The cor-
rect outputs are obtained when the phase-matching conditiontD
=2p sor the ideal casetD=0d is satisfied. The probabilities of ob-
taining the correct outputs far from the phase-matching conditions
are very low.sSee the second, third, and fourth panels. Note the
different scales for the vertical axes.d Indeed, as shown in the
bottom three panels, many incorrect results are produced when the
phase-matching condition given by Eq.s7d is not enforced.

FIG. 3. The probabilityPe of obtaining the correct results versus
Dt=se1−e0dt for running Shor’s factoring algorithm in the pres-
ence of delays. The lines forr =4, 6, 10 correspond to the cases
where 4, 9, 11 work qubits, givenq=16, 512, 2048, are used to
factorizeN=15, 21, 33 witha=13, 5, 5, respectively. Note that the
expected outputs can be obtained at the phase-matching points:
Dt=2p ,4p.
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4, which shows thatthe probability of obtaining any one of
the correct results decreases exponentially when increasing
the number of qubits of the work register. Such a scenario is
to be expected, since the number of possible outputs in the
final measurement increases exponentially with the number
of the work register qubits, which makes the constructive
interference in Eq.s5d for the probability Pskd harder to
achieve if tD deviates from the phase-matching condition
s7d. At the exact points whense1−e0dt=2np, the construc-
tive interference of the superposition wave functions ensures
that the computational accuracy is independent of the num-
ber of qubits involved.

D. Effect of energy splitting inhomogeneity

In the previous calculations shown above, we have as-
sumed that all qubits possess an identical energy splitting
D=e1−e0. In reality, especially for solid-state quantum sys-
tems such as the Josephson junction qubits and quantum dot
trapped spins, different qubits will have slightlydifferenten-
ergy splittings due to system inhomogeneity, in contrast to
ions, which are perfectly identical. The logical states with the
same energy in the “identical qubit” assumptionse.g.,
u13020100l and u03020110ld may now have slightly different
energies. A critical question then is how robust the phase-
matching conditions7d is for a system of multiple qubits
with fluctuations in the qubit energy splittings. Here we pro-
vide quantitative answers to this important question by nu-
merically simulating Shor’s algorithm assuming a Gaussian
distribution for the qubit energy splittings. In other words,
the energy splittingD j of the j th qubit is chosen randomly
according to the distribution function

PsD jd =
1

Î2ps
expF−

sD j − kDld2

2s2 G s13d

around an average valuekDl and width s. Thus, near the
delay condition set atkDlt=2p, we have

Pskd =
1

qsw + 1dUol=0

w

expF2pilk
r

q
Gexpf− imltskDl + ddgU2

.
1

qsw + 1dUol=0

w

expF2pilk
r

q
GS1 − iml

d

kDl
tDU2

. s14d

This fluctuation results in a small deviation of the probability
near the phase-matching points. Figure 5 shows that the
probability of obtaining correct answers decreases as the to-
tal time delayt increases. Also, Fig. 6 shows the dependence
of Pe on the width of the qubit energy splitting distribution
s, with the delay condition set atkDlt=2p. As expected, a
quantum computer runs with higher efficiencies for shorter
time delayst and for narrower distributionsPsD jd of energy
splittings. In essence, here we study an effect similar to in-
homogeneous broadening, which is not a true dephasing ef-
fect. This is consistent with our focus in this paper on the
coherent errors instead of the incoherent ones.

FIG. 4. The probabilitype
sLdsked of obtaining one of the correct

results versus the numberL of work qubits used to run the quantum
algorithm factorizingN=15 in the presence of a delayDt=se1

−e0dt=5p /3. The straight line shows that this probabilitype
sLdsked

decreases exponentially with the numberL of qubits used. The
points on the line show the probability of obtaining one of the
correct outputske=s0,4,8,12d for four-qubit, s0, 8, 16, 24d for
five-qubit, s0, 16, 32, 48d for six-qubit, s0, 32, 64, 96d for seven-
qubit, ands0, 64, 128, 192d for eight-qubit cases, respectively.

FIG. 5. The probabilitiesPe sfor factorizingN=15 using eight
work qubitsd of obtaining the correct results for different phase-
matching cases:kDlt=2p, 4p, 6p, 8p, with a common Gaussian
energy splitting fluctuation withs / kDl=0.5%. Note that this prob-
ability Pe is higher at the phase-matching points with shorter total
delay timet.

FIG. 6. The probabilitiesPe sfor factorizingN=15 using eight
work qubitsd of obtaining the correct results for different fluctua-
tions of energy splittings:s / kDl=0.01%, 0.3%, 0.7%, 1.1%, with a
common phase-matching point:kDlt=2p. Note that the probability
at the phase-matching point is still sufficiently high, even if the
energy splittings of the qubits exist with certain fluctuations around
the average valuekDl.
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IV. CONCLUSIONS AND DISCUSSIONS

When a real quantum computer performs a computational
task, there must be unavoidable time intervals between con-
secutive unitary operations. During these delays, the wave
function of a system with nonzero free Hamiltonian would
acquire relative dynamical phases, if the two states for each
qubit have different energies. These dynamical phases lead to
fast oscillations in the total wave function and modify the
desired quantum interference required by quantum algo-
rithms, which in turn reduce the probability of obtaining cor-
rect computational results.

Here we have studied the effects of the dynamical phases
in running a quantum algorithmsmore specifically, Shor’s
factoring algorithmd. We point out that a phase-matching
condition can potentially help allieviate the interference
problems caused by the dynamical phases, and this condition
is closely related to establishing the equivalence between
quantum states in the Schrödinger picture and the interaction
picture through a quantum computation process. In the pres-
ence of coherent phase errors, we have demonstrated that the
probability of obtaining the correct answer decreases expo-
nentially with increasing number of qubits of the work reg-
ister. In addition, Shor’s algorithm fails for the worst case
scenario oftD=s2n−1dp if the expected orderr is a power
of 2. We have further shown that the phase-matching condi-
tion studied here is quite robust in the presence of small
fluctuations in the qubit energy splittings. Unlike the refocus-
ing technique in NMR experimentsf3g, which deals with
unwanted evolutions due to uncontrolled qubit interaction,
we have shown here that by properly setting thetotal effec-
tive delay, the unwanted oscillations of the superposed wave
functions due to the free Hamiltonians of the bare qubits can
be effectively suppressed; thus, the desired output can be
obtained without additional operations. This implies that the
quantum computing may be performed in an effective inter-
action picture, in which coherent errors arising from the free
evolution of the bare qubits during the operational delay can
be automatically avoided.

We emphasize that the present simplified approach only
treats the delays between two sequential functional opera-
tions and neglects those inside these transforms. In fact, each
functional transform, which is actually equivalent to a mul-
tiqubit gate, can be, in principle, implemented exactly by
using only one-time evolutionf15,16g. This “coarse-grained”
one-step implementation implies that the evolutions relating
to the various parts of the total Hamiltonian have been well
controlled. Therefore, the operational delays, relating only to
the free evolution ruled by the free Hamiltonian of the bare
physical qubits, within each one of these larger functional
building blocks are assumed to be zero. Also, the dynamical
phases acquired by the superposed wave functions can be
added up for the operational delays before and after each
functional transformation. Therefore, the phase-matching
condition s7d exists for thetotal delay.

The present calculation is done assuming that Shor’s al-
gorithm is accomplished in five lumped steps. A simple
analysis can prove that, even if using an actual elementary
gate array model—e.g., shown in Fig. 7sfor implementing
the initializations by using the Hadamard gates and the quan-

tum Fourier transformationd—the proposed phase-matching
conditionssin terms of the total delay time instead of indi-
vidual delay times of each operational delayd for avoiding
the coherent phase errors are still valid. The key is that only

two elementary nondiagonal operationssi.e., R̂x in Hadamard
gatesd are applied to each qubit in the work registerssee Fig.
7d. The qubit is in a product state before the first nondiagonal

R̂x gate, while the delays after the second nondiagonalR̂x in
the corresponding Hadamard gate do not affect the results of
projective measurementfsee, e.g., Eq.s9dg. Therefore, the
dynamical phases acquired in different effective operational
delays accumulate even when the operational delays inside
the functional steps are considered.

In the present approach, we have assumed that every qubit
in the work register has the same waiting timet j

+ for each
effective operational delay. In practice, this assumption is not
necessary. Indeed, in the elementary gate array model, the
waiting times for different qubits would have been different.
However, the phase-matching conditions7d needs only a
slight modification in this case, so that it becomes a condi-
tion for each qubit f14g: tkDk=2nkp, k=1,2,…, nk
=1,2,… for each qubit. Here,Dk andtk are the energy split-
ting andtotal controllable effective delay of thekth qubit in
the work register, respectively.

Our discussion has assumed that all operations in the al-
gorithm act on the pure quantum states of the two registers.
In fact, in the framework of the phase estimation algorithm,
Shor’s algorithm can also be efficiently achieved with just
one initial pure control qubit and a supply of initial mixed
log2 N qubits f18,19g. Correspondingly, numerical simula-
tions in Ref.f20g showed that the algorithm is still efficient
enough if the random incoherence noise is only allowed to
act on the mixed qubits. However, an exponential drop-off in
the efficiency of the algorithm was found, if the incoherence
noise is allowed to act on the pure state of the control qubit.
The above discussion, on the effect of dynamical phases, can
also be applied to this implementation. An oscillating factor
related to the operational delay of the control qubit can also
be introduced to describe the relevant dynamical phase ef-
fect.

FIG. 7. Quantum circuits formed by the elementary single- and
two-qubit logic gates for performingsad Hadamard gate for one
qubit and sbd a quantum Fourier transformation for three-qubit.
Here,dlsl =1,2,…d and rkl sk=0,1,2,…d refer to the operational
delays inside them, respectively. In the logical basis, the single-

qubit gateR̂z=expsipsz/4d and the two-qubit controlled-phase gate
Rk= u00lk00u+ u01lk01u+ u10lk10u+exps2ip /2kdu11lk11u are diagonal,

while the single-qubitR̂x=expsipsx/4d is not.
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Finally, let us emphasize the differences between coherent
errors due to dynamical phases, considered in this study, and
incoherent errors due to qubit decoherence. The way a quan-
tum algorithm is influenced by incoherent errors is very dif-
ferent from that by the coherent errors we discussed above.
In short, coherent errors do not cause information loss, so
that there can be a “revival” of the information when correct
computational results can be obtained again after a period of
time. Our analytical results, Eqs.s6d and s9d, as well as the
numerical simulations, Figs. 2 and 3, clearly show that the
success probability, after one run of a quantum algorithm,
oscillates with the dynamical phasetD. On the other hand,
decoherence leads to a decrease of the success probability of
computing by a decohering factor—e.g., an exponentially
decreasing factor of exps−L2t /tdd for the fastest decoherence
of anL-qubit systemf21g. Here,td andt are the decoherence
time of a single qubit and the computation time, respectively.
In other words, the incoherent errors due to decoherence lead
to irreversible loss of information and have to be fixed by
quantum error correction and/or decoherence-free encoding
f22g. Phenomenologicallyf23g, the systematic unitary errors

due to dynamical phases accumulate in the same manner in
deviating from the required quantum operations. These co-
herent errors may modify the required quantum interference,
but they do not destroy the coherence of the quantum register
f12g. Meanwhile, decoherence is intrinsically random and
therefore leads to a slower but irreversible growth of inco-
herent errors with increasing computing time. Overcoming
one type of error is not enough to guarantee the successful
running of quantum algorithms. Indeed, the results presented
in this paper demonstrate that, even in the absence of deco-
herence, the dynamical phases of the qubits still have to be
taken into consideration in order to successfully implement
Shor’s algorithm.
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