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Using the Born-Oppenheimer approximation, we derive an effective Hamiltonian for an optomechanical
system that leads to a nonlinear Kerr effect in the system’s vacuum. The oscillating mirror at one edge of the
optomechanical system induces a squeezing effect in the intensity spectrum of the cavity field. A near-resonant
laser field is applied at the other edge to drive the cavity field in order to enhance the Kerr effect. We also
propose a quantum-nondemolition-measurement setup to monitor a system with two cavities separated by a
common oscillating mirror based on our effective Hamiltonian approach.
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I. INTRODUCTION

Recently, experimental and theoretical investigations have
been carried out to demonstrate the coherent optomechanical
coupling between a quantized cavity field and the mechani-
cal motion of a mirror located at one end of an optical cavity
�e.g., see Refs. �1–4��. Many efforts have been made to pro-
pose new devices �5� and explore the quantum-classical tran-
sition �e.g., see Refs. �6–9�� based on such optomechanical
systems. It was also discovered that such systems possess
nonlinear optical properties. Our study here focuses on an-
other aspect of optomechanical coupling that can realize the
Kerr nonlinear optical effect in a vacuum rather than in a
conventional dispersive medium �10,11�.

The Kerr effect usually appears in nonlinear dispersive
media �12� due to the third-order matter-light interaction.
Instead of resulting from higher-order light-matter interac-
tions, we now realize the nonlinear Kerr effect from the ra-
diation pressure on an oscillating mirror. This oscillating mir-
ror, located at one end of a Fabry-Pérot �FP� cavity, is driven
by an input laser field at the other end. The oscillating mirror
is modeled as a quantum-mechanical resonator, whose tiny
oscillations are controlled by the radiation pressure of the
cavity field. Indeed, it has been pointed out �13,14� that the
vacuum cavity with a movable mirror might mimic a Kerr
medium when the cavity field is driven by a coherent light
field.

In this Brief Report, we use the Born-Oppenheimer �BO�
approximation to derive a Kerr-medium-like Hamiltonian,
which shows the underlying nonlinear mechanism more
clearly than other �equivalent� approaches. We shall first
point out that in the conventional BO approximation for a
molecule the �slower� nuclear variables are adiabatically
separated from the �faster� electronic variables. The stability
of the molecular configuration requires the effective potential
to have a minimum value. However, the generalized BO
theory �15� for spin-orbit systems or cavity QED systems
�16� does not have this requirement and the effective force
could be either attractive or repulsive.

II. INDUCED KERR NONLINEARITY AND BORN-
OPPENHEIMER APPROXIMATION

As shown in Fig. 1�a�, we study a FP cavity with an
oscillating mirror at one end acting as a quantum-mechanical
harmonic oscillator. The cavity is driven by a laser field with
frequency �D. We first study an ideal case without consider-
ing the losses of both the cavity field and the oscillating
mirror. The total Hamiltonian

H = HP + HM + HI �1�

contains three parts as

HP = ��0a†a − �ga†ax , �2a�

HM =
p2

2m
+

1

2
m�2x2, �2b�

HI = i���a†e−i�Dt − aei�Dt� . �2c�

The cavity field with frequency �0 is described by bosonic
operators a and a†. The symbols m, �, x, and p denote,
respectively, the mass, frequency, displacement, and momen-
tum of the oscillating mirror �hereafter, we just call it “the

(a) (b)

FIG. 1. �Color online� Schematic diagram of �a� a Fabry-Perot
cavity with an oscillating mirror �green� in one end and �b� two
Fabry-Perot cavities sharing a common oscillating mirror. The mir-
rors in �a� and �b� are modeled as quantum-mechanical harmonic
oscillators. The red sinusoidal curves inside the cavities and the
spring schematically represent the cavity field and the harmonic
oscillator, respectively. The cavity is driven by an input laser field
shown as an �brown� arrow on the left. The two oscillating mirrors
have very small displacements, x, around their equilibrium
positions.

PHYSICAL REVIEW A 80, 065801 �2009�

1050-2947/2009/80�6�/065801�4� ©2009 The American Physical Society065801-1

http://dx.doi.org/10.1103/PhysRevA.80.065801


mirror”�. The coupling strength � between the cavity field
and the driving laser field is related to the input laser power
P and the decay rate � of the cavity field via the relation
���=�2P� /��D. The interaction constant g=�0 /L between
the cavity field and the mirror stems from a very small
change x of the FP cavity length L.

Usually, the characteristic frequency of the cavity field is
about 1014 Hz, which is much higher than the nanomechani-
cal resonator frequency 109 Hz achieved by current experi-
ments. Nonlinear effects appear when a classical driving
field is applied to the cavity. Let us consider the case when
the driving field frequency �D is close to the cavity field
frequency �0. We also use the “rotating frame of reference”
defined by a unitary transformation W�t�=exp�−i�Da†at�,
which is very similar to the NMR experiments used to dem-
onstrate the Berry phase �17�. In the rotating frame of refer-
ence, the effective form HR=W†�t�HW�t�− iW†�t���W�t� /�t�
of the Hamiltonian H in Eq. �1� reads

HR = HC + HMR
R , �3�

with the effective Hamiltonians

HC = ��a†a + i���a† − a� �4�

and

HMR
R =

p2

2m
+

1

2
m�2x2 − �ga†ax . �5�

Here, the detuning �=�0−�D is the effective frequency of
the cavity field in the new frame. Clearly, � can be con-
trolled by tuning the frequency �D of the driving field.
Therefore, the effective frequency � of the cavity field can
be tuned to be much smaller than that of the mechanical
resonator. Under such condition, the mechanical resonator
can be treated as the fast variable and the BO approximation
can be employed �18�.

We first study Hamiltonian �5� of the fast variables x and
p of the mirror �in the rotating frame� by taking the “slow
variables” a and a† of the cavity field as constants �in the
rotating frame�. Then Hamiltonian �5� can be rewritten as

HMR
R = ���A†A +

1

2
� −

�2g2

2m�2 �a†a�2, �6�

where the creation operator A† of the cavity field is defined
by

A† =�m�

2�
�x −

ip

m�
� + � , �7�

with �=−��g2N2 /2m�3. Here, N=a†a is considered as a c
number in the first step of the Born-Oppenheimer approxi-
mation. Equation �6� shows that the mirror variables are
shifted by the amount � due to its interaction with the cavity
field. It is clear that the ground state of the effective Hamil-
tonian in Eq. �6� can be obtained via the ground state of the
Hamiltonian HM in Eq. �2b� for a harmonic oscillator with
displacement operator

D��� = exp�i�A† − i��A� . �8�

The eigenvectors and the eigenvalues of the mirror, corre-
sponding to Hamiltonian �6�, are, respectively,

�n	 =
1

�n!
�A†�nD����0	 
 �n�a†a�	 �9�

and

Vn�a†a� = ���n +
1

2
� −

�2g2

2m�2 �a†a�2. �10�

Equations �9� and �10� show that �n	 and Vn�a†a� are func-
tions of the slow variables of the cavity field. Equation �9�
also shows that the ground state of the fast variables �x and
p� of the mirror is a coherent state D����0	 resulting from
radiation pressure.

According to the lowest-order generalized BO approxima-
tion, the total eigenfunction �		 of the coupled system of the
cavity field and the mirror can be factorized as �		
= �
n���	�n�a†a�	, where �
n���	 satisfies the Schrödinger
equation with the effective Hamiltonian

Hph
R = ��a†a + i���a† − a� + Vn�N�

= ��a†a − ���a†a�2 + i���a† − a� + const. �11�

The BO adiabatic separation provides an effective potential
Vn�a†a� for the “slow” motion of the cavity field. This po-
tential contains a typical

Kerr nonlinear term = ���a†a�2, �12�

where the parameter

� = �
g2

2m�2 �13�

plays the role of the phenomenological third-order suscepti-
bility as in usual Kerr media.

III. VALIDITY OF THE BO APPROXIMATION

We now verify the validity of the generalized BO approxi-
mation applied to the optomechanical system through the
squeezing effect, which is induced by the Kerr interaction.
This squeezing effect can be demonstrated by the output in-
tensity spectrum SI�� ,��. Following the definition of the
SI�� ,�� in Ref. �14� and the linearization technique of the
Langevin equations governed by the Hamiltonian in Eq. �11�,
we obtain the intensity spectrum under the BO approxima-
tion

SI��,�� = �1 −
2�

D��,��
�A−��,�� + iB��,��ei2������2

,

�14�

where

A��,�� = − i� + i�� � 4i��s����2� + � , �15a�

B��,�� = 2�s���2� , �15b�
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D��,�� = A+���A−��� − �B��,���2, �15c�

tan
����

2
=

1

�
��� − 2���s����2� , �15d�

with renormalized detuning ��=�−� and the steady-state
value �s��� of the amplitude of the cavity field. Here, the
cavity loss � has been taken into account. The BO approxi-
mation requires that the photons in the cavity can survive a
sufficiently long time, which is equivalent to the condition
���0.

If there is no Kerr interaction induced by the radiation
pressure ��=0�, SI�� ,�� can be simplified to SI�� ,��=1.
When the Kerr interaction is induced ���0�, the intensity
spectrum can be less than 1, which displays a squeezing
effect �20,21� of the cavity field. Here, B�� ,�� plays an
important role in the reduction of the output intensity fluc-
tuation. Hence, the squeezing effect could be observed ex-
perimentally by measuring the intensity spectrum of the out-
put laser.

Figure 2 shows the squeezing of the cavity field in the
intensity spectrum with a blue solid curve, where the maxi-
mum squeezing occurs in the vicinity of �� /���0. We con-
sider that the oscillating mirror has mass m=100 ng, fre-
quency � /�=40�, and a normalized damping rate � /�
=0.06. Figure 2 is plotted for the driving field frequency
�D /2�=282 THz, the optical cavity length L=10−2 m, fi-
nesse F=1.9�105, and decay rate �5�105 s−1; a driving
laser wavelength �=1064 nm, normalized frequency �D /�
=3.54�107, and power P=500 �W. The temperature T of
the cavity field and the mechanical resonator is assumed to
be zero as in Ref. �19�. Then at a particular frequency �̄
�chosen at the position where SI�� ,�� is minimum�, the in-
tensity spectrum has the squeezing effect shown in Fig. 2.

Now, we also study the intensity spectrum without the BO
approximation. Starting from the total Hamiltonian in Eq.
�3�, a full derivation shows that the intensity spectrum has a
similar form as in Eq. �15� except that the renormalized de-
tuning �� and the Kerr interaction strength � are replaced,
respectively, by �−gxs and ��2����. Here, xs=��as�2 is the

steady-state value of the oscillation amplitude of the mirror
and

���� =
1

�2 − �2 − i��
�16�

is the mechanical susceptibility of the oscillating mirror. The
maximum squeezing effect in the intensity spectrum, plotted
by the red dashed curve in Fig. 2, can also be observed in the
vicinity of �� /���0. We use the same parameters for calcu-
lating the intensity spectrum under the BO approximation.
Therefore, the BO approximation is valid when the fre-
quency of the oscillating mirror � is much larger than the
frequency of the light field �.

The effect of the BO approximation can also be under-
stood via ����. If the mirror frequency � is much larger than
the detuning � of the cavity field in the rotating frame of
reference, ���� plays an important role in the vicinity of �
��. When the BO approximation is valid under the condi-
tion ���, and when the macroscopic displacement xs is
extremely small, the mechanical susceptibility is approxi-
mately equal to

���� � 1/�2, �17�

which leads the intensity spectrum to have the same form as
in Eq. �14�.

IV. QUANTUM NONDEMOLITION MEASUREMENT
WITH TWO-MODE INDUCED KERR EFFECT

Within the BO approximation, the cavity field inside the
flexible Fabry-Pérot cavity, driven by an input laser, exhibits
a Kerr-like nonlinear property. It is not difficult to generate a
two-mode induced Kerr interaction, which is useful for quan-
tum nondemolition �QND� measurements �22�.

As shown in Fig. 1�b�, we consider two FP cavities, re-
ferred to below as the left and the right cavities with subin-
dexes L and R, sharing one common oscillating mirror. This
mirror is assumed to oscillate with a very small displacement
x around its equilibrium position. Thus, two cavity fields,
with frequencies �L and �R in the laboratory reference
frame, indirectly interact with each other via this oscillating
mirror.

In the rotating frame of reference, using the BO approxi-
mation discussed above, we can derive the induced effective
interaction between the two cavity fields

Heff�nL,nR� = − ���LnL
2 + �RnR

2 + 2��L�RnLnR� , �18�

where the

�i = �gi
2/�2m�2� �19�

and ni with i=L, R denote the photon number operator of the
left and the right cavity fields. To perform a QND measure-
ment, the self-modulation term �ini

2 of the probe field can be
ignored �22�. The parameters �i result from the nonresonant
mechanical states transition. If the oscillating mirror has an
actual level ���L+�R�, only the two-mode Kerr term domi-
nates the resonant process and both two self-modulation
terms are off-resonant. Here, �L=�L−�D and �R=�R−�D

FIG. 2. �Color online� Intensity spectrum SI��̄ ,� /�� versus
normalized detuning � /� for the value �= �̄. Analytical results for
the full Hamiltonian are shown with a red dashed curve, while the
BO approximation results are shown with a blue solid curve. Note
that squeezing occurs when SI��̄ ,� /���1, and the baseline
SI��̄ ,� /��=1 is shown with a horizontal black dot-dashed line.
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are the detunings of the left and right cavity fields relevant to
the frequency �D of the driving field. Under this condition,
the system Hamiltonian for the QND measurement can be
written as

HQND = ��LaL
†aL + ��RaR

† aR + 2��aL
†aLaR

† aR. �20�

The Kerr interaction in Eq. �20� satisfies the QND mea-
surement conditions �22�. Since this two-mode Kerr interac-
tion commutes with the free Hamiltonians of both cavities,
we can nondestructively measure the photon number by ob-
serving the other cavity’s conjugate observable.

V. CONCLUSION

We have studied the Kerr nonlinearity in the vacuum in-
duced by the radiation pressure in typical optomechanical
systems. Such nonlinear interaction can be explicitly ob-
tained via a BO approximation for an ideal case. Through a

squeezing effect, which should be experimentally observable
via the intensity spectrum, we verify the validity of the gen-
eralized BO approximation by taking into account the dissi-
pation and fluctuation of the cavity field. Furthermore, we
propose a two-mode Kerr interaction between two cavity
fields for quantum nondemolition measurements, which can
be realized by using two cavities sharing one oscillating mir-
ror. It is possible to nondestructively measure a cavity pho-
ton number by observing another cavity’s conjugate observ-
able.
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