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Theoretical considerations of Bell-inequality experiments usually assume identically prepared and indepen-
dent pairs of particles. Here we consider pairs that exhibit both intrapair and interpair entanglement. The pairs
are taken from a large many-body system where all the pairs are generally entangled with each other. Using an
explicit example based on single mode entanglement and an ancillary Bose-Einstein condensate, we show that
the Bell-inequality violation in such systems can display statistical properties that are remarkably different
from those obtained using identically prepared independent pairs. In particular, one can have probabilistic
violation of Bell’s inequalities in which a finite fraction of all the runs result in violation even though there
could be no violation when averaging over all the runs. Whether or not a particular run of results will end up
being local realistically explainable is “decided” by a sequence of quantum �random� outcomes.
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I. INTRODUCTION

Entanglement has for decades attracted interest and
caused controversy in the physics literature �1�. Studies on
this subject usually involve discussions of Bell’s inequality
�or inequalities� �2�, where measurement results cannot be
described by a local realistic model. One typically thinks of a
Bell-test experiment in terms of a large number of identical
pairs, each of which is composed of two particles. One can
usually understand such an experiment by analyzing the be-
havior of a single pair. The single-pair analysis is then cast in
statistical terms in order to deduce the outcome of the whole
experiment as is usually done in quantum mechanics �By
“whole experiment” we mean an experiment that involves
repeating the single-pair procedure a large number of times,
thus obtaining statistical information about the measurement
outcomes.�

Here we are interested in the situation where the pairs that
are measured for the Bell test are nonidentical and further-
more entangled with each other. We start by pointing out that
although most studies assume identically prepared and inde-
pendent pairs in the Bell test, no such requirement is used or
needed in the derivations of Bell’s inequalities. We then ana-
lyze the intrapair quantum correlations that can be observed
in the presence of interpair quantum correlations. This analy-
sis is somewhat related to but clearly distinct from recent
studies that generalize Bell’s inequality in order to probe
multipartite entanglement �3,4�. Using a specific physical en-
tangled state as an example, we show that rich statistical
properties can be obtained in the presence of interpair en-
tanglement, in particular a probabilistic violation of Bell’s
inequalities �of the bipartite form�. We discuss whether this
probabilistic violation can be used to exclude explanations
based on local-hidden-variable �LHV� models.

II. ASSUMPTION OF IDENTICAL INDEPENDENT PAIRS
IN A BELL TEST

We start by noting the point that most studies of entangle-
ment assume the preparation of identical independent pairs,
whereas in practice the pairs are typically generated by the
same source and can in principle be correlated. The question
is therefore whether the preparation of the pairs by a single
source constitutes any “loophole” in interpreting the viola-
tion of Bell’s inequalities as evidence against local realism.
Inspection of the derivation of Bell’s inequalities �5�, how-
ever, shows that no particular assumption is made on the
possibility of correlations between the different pairs. Inter-
pair correlations or entanglement therefore do not constitute
any conceptual hurdle to the interpretation of a Bell-
inequality violation as evidence against local realism.

A subtler point, which will be illustrated by an example
below, arises in the case when the ensemble average over a
large number of experiments does not violate Bell’s inequal-
ity but a finite fraction of the experimental runs �each one of
which involves a large number of pairs� do violate the in-
equality. As long as the number of pairs in a given run is
large enough to render the expected statistical fluctuations
around the mean negligible, such a probabilistic violation
can be used as evidence to exclude LHV models. The crucial
point here is that within the single experimental runs that are
accepted, no pairs are excluded �e.g., based on the measure-
ment settings or the outcome of their measurements as in the
detection loophole�. One must also keep in mind that here we
are talking about a finite fraction of all the runs resulting in
violation, whereas statistical fluctuations can explain a vio-
lation in a small fraction of the runs and the size of this
fraction decreases and approaches zero for large numbers of
pairs in each run. In short, LHV models would predict that
no violation of Bell’s inequality can be observed in any ex-
perimental run �in the limit that the number of pairs in one

PHYSICAL REVIEW A 80, 062106 �2009�

1050-2947/2009/80�6�/062106�6� ©2009 The American Physical Society062106-1

http://dx.doi.org/10.1103/PhysRevA.80.062106


run approaches infinity�, and therefore a violation in only a
finite fraction of the runs can be used to exclude LHV mod-
els. One can also say that typical sub-ensemble-selection
loopholes in Bell-inequality tests involve the assumption that
the rejected runs would have produced the same correlations
as the accepted runs if they had been recorded properly. In
contrast, here we are incorporating all the runs �both the
accepted and rejected ones� into our analysis, somewhat
similarly to what was done in Ref. �6�.

III. STATISTICS OF BELL-TEST RESULTS

We now briefly discuss the statistical properties of the
Bell-test violation. We use the version of the Bell test where
the ideal pair state is the state

��� =
1
�2

��10� + �01�� , �1�

and the measurement bases are taken to be ��0� , �1�	
�to which we refer as a and b, depending on the
subsystem on which the measurement is performed� and
�cos�

3 �0�+sin�
3 �1� , sin�

3 �0�−cos�
3 �1�	 �to which we refer as a�

and b�� �5�. This choice of bases, which is illustrated in Fig.
1, simplifies the analysis below �7�. A large number M of
pairs are generated and measured in randomly chosen pairs
of bases. Correlation functions given by the statistical aver-
ages

C�,� = 
����� �2�

are recorded, where �� and �� are the Pauli operators along
the directions � and � �note that the first and second opera-
tors affect the first and second modes, respectively; note also
that symbols such as �� in our notation are sometimes ex-
pressed as �� ·�� etc. in the literature�. One then evaluates the
quantity �5�

S = �− Ca,b + Ca,b� + Ca�,b + Ca�,b�� . �3�

Bell’s inequality �in the Clauser-Horne-Shimony-Holt form�
is now expressed as

S � 2. �4�

The state in Eq. �1� gives the expectation value S=5 /2, thus
violating the inequality �7�. Because of the statistical nature
of S, one expects to obtain a different value every time the
experiment is performed �with each single experimental run
involving a number M of pairs�. However, if the number of
pairs M in a single run is sufficiently large and the pairs are
identical and uncorrelated, the experimentally obtained value
of S will, with high probability, be very close to the theoreti-
cally calculated single-pair expectation value, with statistical
variations in the order of 1 /�M. In this case, S becomes
essentially predictable deterministically. In the situation that
we consider in this paper, however, all the pairs are en-
tangled with each other. As a result, we are interested in the
statistics of the S values that one can expect to obtain in
individual experimental runs.

IV. SPECIFIC SYSTEM: SINGLE-PARTICLE
ENTANGLEMENT

From now on we focus on a specific physical system as a
demonstrative example of the interesting statistics that can
be obtained using a multipartite entangled state. The system
that we consider possesses so-called mode entanglement
�8–12�. Our starting point is the single-particle state given in
Eq. �1� where the first and second quantum numbers now
represent the number of particles in two modes that are lo-
calized at two spatially separated and ideally distant loca-
tions �see Fig. 2�. We refer to such delocalized particles as
flying particles since we imagine these particles being emit-
ted from a common source somewhere between the two mea-
surement locations. For the purposes of the present analysis,
we consider the case where these flying particles cannot be
created or annihilated. In other words, there is a conservation
law constraining the total number of particles of the flying-
particle species to be fixed. As discussed in Refs. �9,10�, we
imagine that a flying particle can excite a two-level target

FIG. 1. �Color online� The measurement bases used in the Bell
test. The states �� � are defined as �� �= ��0�� �1�� /�2. The ideal
entangled state is ��10�+ �01�� /�2. The measurement bases for the
first mode �represented by the first symbol inside the ket� are de-
noted by a and a�, and the measurement bases for the second mode
�represented by the second symbol inside the ket� are denoted by b
and b�. Note that the measurement bases shown above, which we
choose in order to simplify our numerical calculations below, differ
from the ones that produce maximal violation of Bell’s inequality
�7�.

FIG. 2. �Color online� A schematic diagram of the setup under
consideration. After “passing through a beam splitter” �BS�, a flying
particle is in a quantum superposition of being in one of two out-
going paths. At each of the two possible final destinations of the
flying particle there is a target particle that is initially in its ground
state �g� and is only driven to its excited state �e� if the flying
particle arrives at its location.
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particle from its ground state to its excited state. By placing
one target particle on each side of the proposed setup, one
can prepare the state

��� =
1
�2

��10� � �eg� + �01� � �ge�� . �5�

One can wonder whether the preparation of the state in Eq.
�5� poses any difficulties related to the nonconservation of
energy. In principle, energy conservation is not a fundamen-
tal difficulty here: one can imagine that the presence of the
flying atom modifies the energy levels of the target atom,
such that an applied laser field is resonant with the target
atom only when the flying atom is on the same side of the
apparatus. One can also imagine alternative scenarios where
there is no energy difference between the states �g� and �e�.

If one performs a measurement on the target particles, the
outcome will be consistent with a reduced density matrix
where the flying-particle degrees of freedom are traced out.
In the basis ��gg� , �ge� , �eg� , �ee�	, Eq. �5� gives the density
matrix

	TP =
1

2�
0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0
� . �6�

This density matrix describes a statistical mixture of the
states �ge� and �eg� with no phase coherence between them,
i.e., with no entanglement. The reason for the lack of phase
coherence is the fact that the which-path information about
the location of the excited target particle is also carried by
the flying particle.

A. Bose-Einstein condensate as an ancillary phase reference

We now consider an additional resource in the form of a
number N of particles of the same species as the flying par-
ticle. These ancillary particles are prepared in the state

��BEC� = 

j=0

N

�Pje

j�j,N − j�anc, �7�

where the two quantum numbers represent the number of
ancillary particles in two modes, each of which is localized
on one side of the setup �the subscript Bose-Einstein conden-
sate �BEC� indicates that we are generally assuming N to be
a large number, thus forming a Bose-Einstein condensate�.
For the case where the two condensates form a single BEC
state with equal weights on the two sides and zero relative
phase between them �13�, the distribution function in Eq. �7�
is given by

Pj =
1

2N

N!

j ! �N − j�!
�8�

and the phases 
 j =0.
The state of the entire system is now given by

��� = 

j=0

N

�Pj�j,N − j�anc �
1
�2

��10� � �eg� + �01� � �ge�� .

�9�

Following the procedure proposed in Ref. �9�, one can ma-
nipulate the state in Eq. �9�, controllably and coherently in-
jecting the flying particle into the condensate of particles that
are indistinguishable from the flying particle �the application
of the injection operation is conditioned on the state of the
target atom, ensuring that unitarity is not violated� and obtain
the state

��� = 

j=0

N �Pj

2
��j + 1,N − j�anc � �eg� + �j,N − j + 1�anc

� �ge�� . �10�

If we now trace out the state of the BEC, we find that the
target particles are described by the reduced density matrix

	TP =
1

2�
0 0 0 0

0 1 � 0

0 � 1 0

0 0 0 0
� , �11�

where for large N �and, somewhat coincidentally, for N=1�

� = 1 −
1

2N
. �12�

This state is entangled and allows the violation of Bell’s
inequality �the violation is obtained even for N=1 as was
explained in detail in Ref. �10��. It is worth mentioning that
for density matrices of the form of Eq. �11� the concurrence
�14� is equal to �.

The above results describe the preparation of a single pair
of entangled target particles. We now consider what happens
when the same BEC is used �or rather reused� to prepare
additional pairs of entangled target particles as illustrated in
Fig. 3. Tracing out the target-particle degrees of freedom
from Eq. �10� results in a mixed state of the BEC. As was
discussed in Refs. �9,10�, however, if the measurement on
the target particles is made in the ��g� , �e�	 basis, each one of
the two possible final BEC states has the same power as the
original BEC in terms of generating entangled pairs. As a
result, any time the measurement basis ��g� , �e�	 is used �even
if it is only for one particle in the pair�, the BEC is unaf-
fected for the purpose of preparing more entangled pairs.
Only when the rotated basis is used for both particles does
the BEC undergo nontrivial evolution �averaging over the
different outcomes results in the same entangling power as

FIG. 3. �Color online� A schematic diagram of a single ancillary
BEC that is reused to transfer the mode entanglement of a stream of
flying particles to the internal states of the target particles.
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the original BEC �15��. We analyze this evolution next.
To illustrate the evolution of the ancillary resource fol-

lowing the measurement of the first pair �or pairs� in the
system, instead of a BEC we take a single ancillary particle
in the state ��10�+ �01�� /�2. Equation �10� now takes the
form

��� =
1

2
��20�anc � �eg� + �11�anc � �eg� + �11�anc � �ge�

+ �02�anc � �ge�� . �13�

The reduced density matrix for the target-particle pair there-
fore corresponds to a mixed state of the form of Eq. �11� with
�=1 /2, which means that the first pair is entangled with
concurrence equal to 1/2. If one or both of the target particles
are measured in the ��g� , �e�	 basis, the ancillary modes are
projected onto the state ��20�+ �11�� /�2 or the state
��11�+ �02�� /�2, depending on the outcome of the measure-
ment. Obviously, each one of these states has the same num-
ber distribution as the original ancillary state apart from an
overall shift �thus these states have the same entangling
power as the original ancillary state�. Let us consider, how-
ever, what happens if both target particles are measured in
the ��g�� �e�� /�2 basis. �Note that this basis is different from
the one that we use for analyzing the Bell-test experiment
but are simpler to analyze in this argument.� If the same
measurement outcome is obtained for both target
particles of the first pair �a situation that occurs with prob-
ability 3/4�, the ancillary modes are projected onto the state
��20�+2�11�+ �02�� /�6. This state can then be used to prepare
a second target-particle pair with �=2 /3, i.e., higher than the
value of � for the first pair. The ancillary resource is there-
fore enhanced when this outcome is observed. If, on the
other hand, opposite measurement outcomes are obtained for
the two target particles of the first pair �this situation occurs
with probability 1/4�, the ancillary modes are projected onto
the state ��20�− �02�� /�2. This state would give �=0 for the
second pair, i.e., the second pair would show no sign of
entanglement. Thus, although averaging over a large en-
semble gives the same value of � for the second pair �note
here that 3

4 �
2
3 + 1

4 �0= 1
2 �, knowledge of the first-pair mea-

surement outcome gives additional information about the en-
tanglement in the second pair. This phenomenon is a clear
indication of correlation between the different pairs. Natu-
rally, this argument applies to all other pairs that are prepared
later in a long sequence as well.

B. Bell test without an ancillary condensate:
Probabilistic violation

We now turn from the above argument concerning two
correlated pairs to analyzing a full Bell-test experiment in-
volving M entangled pairs. We first note that for the three
choices �a ,b�, �a ,b��, and �a� ,b� �which are defined in Fig.
1�, the measurement outcomes do not depend on the value of
� and they give

− Ca,b + Ca,b� + Ca�,b = 2, �14�

up to statistical fluctuations of order 1 /�M that we ignore
here. The condition for the violation of Bell’s inequality
therefore reduces to

Ca�,b� 
 0. �15�

We now consider a single ancillary particle, and we take a
stream of flying particles used to produce a large number of
entangled target-particle pairs �note that the same ancillary
particle, along with the flying particles that are injected into
the same modes, are reused to prepare all the entangled
pairs�. The probability distribution for the values of the cor-
relation function Ca�,b� that would be observed in experiment
is shown in Fig. 4. Unlike the prediction �depicted by the
triangles� for identical, independent pairs described by Eq.
�11� with �=1 /2, the distribution is broad and the width
reaches a constant value for large M �we have verified this
statement by comparing the results for M =200, 400, and
800�. The average value of Ca�,b� is the same for both cases,
as expected from the fact that, on average, the ancillary re-
source is neither enhanced nor destroyed after repeated use
�9,10�.

We next consider the case where no ancillary particles are
used �N=0; see Fig. 5�. This case is perhaps the most rel-
evant one to the probabilistic violation of Bell’s inequality,
which is the main topic of this paper. In this case one would
observe a violation in approximately 40% of the runs and no
violation in approximately 60% of the runs, with the average
over all the runs being on the nonviolation side. We empha-

−1 −0.5 0 0.5 1
0

1

2

3

4

5

C
a’,b’

P
(C

)

FIG. 4. Probability density P�C� for obtaining a given value of
the correlation function Ca�,b� in a Bell test following our procedure
of reusing the ancillary source �squares�. Positive values of Ca�,b�
correspond to a violation of Bell’s inequality. Here the ancillary
source has N=1, i.e., a single ancillary particle shared between the
two sides of the setup. For comparison we show the probability
density if a new ancillary particle was used for each entangled pair
�triangles�. The results were obtained by constructing a histogram
from 104 runs, with M =400 entangled pairs generated in each run
�In the calculation we have assumed that exactly one fourth of these
pairs are measured in the a�-b� bases�. Doubling the value of M
reduces the width of the curve that corresponds to the case of inde-
pendent pairs �triangles� by a factor of �2 but leaves the curve that
corresponds to the case of correlated pairs �squares� essentially
unchanged.
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size here that each run can involve an arbitrarily large num-
ber M of pairs. Each run therefore qualifies as a large statis-
tical ensemble for purposes of the Bell test. A violation that
is observed with finite probability �for an essentially infinite
number of pairs� is therefore sufficient to preclude any LHV
explanation of the observed results. Since testing LHV theo-
ries is precisely the purpose of performing the Bell test, this
probabilistic violation constitutes a successful violation of
Bell’s inequality.

The above argument regarding the interpretation of the
probabilistic violation affects mainly the case N=0. The rea-
son is that averaging over a large number of runs results in a
violation for any finite N, leaving no caveats about the ob-
served violation. The same reason, however, makes the case
N=0 of special importance for the present discussion of in-
terpreting the probabilistic violation. Even though averaging
over many runs shows no violation of Bell’s inequality, the
probabilistic violation is sufficient to preclude LHV theories
and therefore constitutes a successful violation of Bell’s in-
equality, as mentioned above. It is also worth emphasizing
here that when N=0 no nonlocal ancillary resource is used at
all; any correlations between the two observers are carried
solely by the flying particles.

One might wonder whether the finite violation probability
observed in our numerical calculations for N=0 is a result of
the fact that the number of pairs M was finite �under 1000 in
all of our numerical calculations�. It is straightforward to
verify, however, that this is not the case. As mentioned
above, every time a pair is measured and the results of both
measurements are known, the state of the ancillary resource
evolves according to these measurement outcomes. If one
starts with N=0 and takes the experimental runs where the
first pair to be measured in the a�-b� bases gives �a��b�=
+1, one finds that the ancillary resource evolves into a state
equivalent to ��10�+ �01�� /�2 �the only possible difference
from this state is the existence of some additional particles

whose location is known with certainty, which would happen
when the first few measurements are performed in bases
other than a�-b��. With this new initial state of the ancillary
resource, one finds that the ensemble average of all subse-
quently prepared pairs will have �=1 /2 �i.e., on the violation
side of the inequality�. Taking into consideration the fact that
the range of Ca�,b� is finite �from −1 to 1�, one can see that
the only way for the average over all the runs in this finite
subensemble to be on the violation side of the inequality is to
have a finite fraction of all these runs being on the violation
side. Thus the finite violation probability for an infinite num-
ber of runs is proved.

So far we have discussed a sequence of measurements
using the same ancillary resource. We now express explicitly
how the above analysis can be cast in terms of multipartite-
entangled states. If a large number M of target-particle pairs
are prepared before performing any measurement, the state
of the entire system would be given by

��� = 

n1=0

1

¯ 

nM=0

1



j=0

N � Pj

2M� j + 

k=1

M

nk,N − j + M

− 

k=1

M

nk�
anc

� �n1,1 − n1� � ¯ � �nM,1 − nM� ,

�16�

where, for notational simplicity, the target-particle states �g�
and �e� are now expressed as �0� and �1�, respectively. For
purposes of analyzing the outcomes of measurements per-
formed on the target particles, the flying-particle and ancil-
lary degrees of freedom can be traced out, which still results
in a multipartite entangled state for the target particles. As
the measurements proceed on target-particle pairs, the state
of the remaining pairs evolves according to the initial mea-
surement outcomes, resulting in the observed probabilistic
violation. In other words, the entanglement within the un-
measured pairs increases or decreases, depending on the
measurement outcomes for the measured pairs.

V. CONCLUSION

In conclusion, we have considered the question of per-
forming Bell-type experiments using pairs that are entangled
with each other. We have presented a multipartite entangled
physical system where a violation of Bell’s inequality would
be obtained probabilistically, with the violation or lack
thereof being decided by a sequence of quantum �random�
outcomes. This probabilistic violation is sufficient to pre-
clude local-realistic models.
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FIG. 5. Same as in Fig. 4, but with N=0, i.e., no ancillary
particles are used. Note that the finite violation probability in the
case of independent pairs �triangles� is a result of the fact that we
use a finite number of particles in the numerical calculations. This
probability decreases and approaches zero if the number of particles
is increased. We have verified, however, that the shape of the curve
defined by the squares is essentially unchanged if we change the
number of particles �provided that this number is much larger than
one�.
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