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Abstract. A number of many-body problems can be formulated using
Hamiltonians that are quadratic in the creation and annihilation operators.
Here, we show how such quadratic Hamiltonians can be efficiently estimated
indirectly, employing very few resources. We found that almost all the properties
of the Hamiltonian are determined by its surface and that these properties
can be measured even if the system can only be initialized to a mixed state.
Therefore, our method can be applied to various physical models, with important
examples including coupled nano-mechanical oscillators, hopping fermions in
optical lattices and transverse Ising chains.
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1. Introduction

There has been considerable interest in the problem of Hamiltonian identification through
indirect probing, thereby developing various quantum mechanical versions of classical system
tomography or classical ‘inverse scattering’ problems [1]. For certain types of interaction, it was
found [2]–[7] that only a few resources are required to obtain an accurate model of the system.
Indirect Hamiltonian estimation is therefore an interesting problem for both pragmatic purposes
and fundamental insights. We are interested in the following questions. How can we obtain
precise information about a Hamiltonian under restricted access? What can we learn about the
‘inside’ of a large system by only looking at a subsystem of it? Under what conditions is such
indirect probing possible? When is it efficient?

Recent studies have focused on this problem for cases of chains and networks of spin-
1/2 particles. The common question addressed can be formulated as follows—can we estimate
all parameters, such as coupling strengths and local fields, by accessing only one or a few
spins? It should be emphasized that even direct Hamiltonian estimation or, more generally,
process tomography, is hard, because the required number of measurements and the complexity
of the post-processing both scale exponentially with the system size. However, in realistic
situations, we usually have a priori knowledge based on the underlying physics. It has been
shown that such knowledge can be used to develop compressed sensing protocols [8, 9], which
greatly reduce the complexity of process tomography. Various works on indirect Hamiltonian
estimation have relied on similar assumptions; namely, that the dynamics is restricted to a
subspace of polynomial dimension [2]–[4]. In [2], the efficiency of the estimation in terms
of the required time and the number of measurements is discussed. An interesting example that
does not rely on a subspace was analysed by Di Franco et al [5]. We will see here that this
is a special case of the generic estimation of quadratic Hamiltonians, which can be estimated
efficiently due to a simple description of their dynamics in the Heisenberg picture. Di Franco
et al [5] also found that the estimation is quite robust against noise. In [3], the one-dimensional
(1D) methods were generalized to arbitrary graphs, and the possible elimination of degeneracies
was discussed. Also, Wieśniak and Markiewicz [4] went beyond the simplest subspace in order
to study quasi-1D systems. Table 1 summarizes the results obtained so far in terms of the
settings and assumptions considered. However, the analysis of physically important cases, such
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Table 1. Overview of indirect Hamiltonian estimation schemes. The interaction
types represent the Pauli matrices involved in the spin–spin coupling, e.g.
X X + Y Y + 1Z Z + Z stands for a Hamiltonian of the form∑

n,m Anm(X X + Y Y + 1Z Z)n,m +
∑

n Bn Zn.

Interaction type Needs preparation Geometry Obtain Reference

X X + Y Y + 1Z Z Specific state 1D Couplings [2]
(1 + γ )X X + (1− γ )Y Y

γ 6= 1,−1
No 1D Couplings [5]

X X + Y Y + 1Z Z + Z Specific state Arbitrary Couplings and fields [3]
X X + Y Y + Z Specific state Quasi-1D Couplings and partial topology [4]
a†a + γ aa + h.c.
(fermions or bosons); and
(1 + γ )X X + (1− γ )Y Y + Z

Arbitrary state Arbitrary Couplings and fields This paper

Figure 1. Indirect classical system tomography of a quadratic Hamiltonian.
In this example, the spring constants ki and masses mi of a chain of coupled
harmonic oscillators can be determined by monitoring the dynamics of a single
particle at the chain end (in red). See [1] for details.

as the transverse Ising model and the XY model with a magnetic field, has remained open. The
solutions to both cases will be presented in this paper.

Our main goal in this paper is to develop a method to perform indirect quantum tomography
for many-body systems of identical particles. Even though the method is analogous to the
spin case, the Hamiltonians considered here have a higher number of parameters, and it is
surprising that they can still be estimated in a similar fashion. The class of Hamiltonians we
study here comprises those of quadratic form in bosonic or fermionic operators. There has
been tremendous progress in experiments on quantum random walks [10], optical lattices [11],
coupled cavities [12], nano-mechanical oscillators [13], etc, which can be modelled by such
quadratic Hamiltonians. Thus, the indirect estimation scheme we present here will be of use
in reducing the necessary resources for modelling such systems. For the case of bosons, it is
the most direct translation of the work by Gladwell [1] to the quantum case. Gladwell studied
how the spring constants and masses of coupled classical harmonic oscillator chains can be
estimated by looking at the movement of only one particle (see also figure 1). Furthermore, our
protocol gives a natural generalization of spin chain estimation, since quadratic Hamiltonians
of fermions also describe a certain class of spin system, such as the transverse Ising model.

The main method of indirect estimation is summarized as follows. Firstly, the system
is initialized to an arbitrary but fixed state. This can even be, for example, a thermal state,
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Figure 2. Schematic overview of our estimation scheme for a chain of length N .
The main requirements are (i) relatively fast single-qubit rotations and
measurements on the first site and (ii) a decoherence time of at least N 2.

which can be reached naturally via relaxation. Then, some simple single-particle properties are
initialized and, after some quantum evolution, measured again. Finally, the accumulated data
are Fourier transformed, and the parameters are extracted through a set of linear equations.
This simple method is outlined in figure 2 for the 1D case. The procedure is analogous to an
‘inverse scattering’ problem because the perturbation introduced in one edge of the sample (e.g.
rotation of the first qubit) propagates through the sample, ‘scattering’ with the inner structure
of the Hamiltonian and then this information encodes the structure of the system. While it
is obvious that this procedure provides some information on the system, the surprising result
here is that all information can be uniquely identified from observed data without relying on
inconclusive methods, e.g. fitting curves on plots. Since this paper extends the applicability
of our earlier results in [2, 3] to a much wider class of Hamiltonians, the present method
inherits robustness against errors in measurements, numerics and decoherence. The problem
of Hamiltonian estimation is thereby mapped to a standard problem of Fourier analysis and data
processing.

The paper is structured as follows. Firstly, in section 2 we introduce the necessary notation
for quadratic Hamiltonians and some techniques for their diagonalizations. Although these
are well-established methods, we present them to facilitate the discussion of the estimation
procedure in the following part. Readers who feel familiar enough with them can simply skip
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this section. In section 3, we first discuss the simplest case of estimation, namely when the
system is a chain of hopping particles, and then generalize it to arbitrary graphs. Finally, in
section 4 we discuss how the results apply to 1D chains of spins and conclude in section 5.

2. Notation and diagonalization

The most general quadratic Hamiltonian of N indistinguishable particles is written as

H =
N∑

n,m=1

Anma†
nam +

1

2

N∑
n,m=1

(
Bnma†

na†
m + B∗nmaman

)
, (1)

where a†
n and am are creation and annihilation operators and A and B are matrices describing

the parameters we would like to estimate. For H to be Hermitian, we must have A = A† and
BT
=−εB, where we introduced the parameter ε = 1 for fermions and ε =−1 for bosons. We

will mostly follow the notation of [14], although we shall write all vectors in Dirac notation. At
first, we put all Hamiltonian parameters into the Hermitian 2N × 2N matrix

M ≡

(
A B
−εB∗ −ε A∗

)
, (2)

and introduce the column vector operator

α ≡



a1
...

aN

a†
1
...

a†
N


,

so that equation (1) can be expressed up to a constant as

H = (1/2)α† Mα.

Throughout this paper, we make the following technical assumptions. Firstly, all coupling
strengths are real and their sign is assumed to be known. Although some phases of these matrix
elements are easy to determine and others are physically insignificant, this requires complicated
studies of gauge invariance that do not seem to be worthwhile. In many practical cases all
elements are real and positive. Secondly, the ratio Bn,n+1/An,n+1 = γ (anisotropy) is assumed to
be constant and known. This means, similar to the models in [2, 3], that the type of interaction
is known from the underlying physics, and what remains to be estimated are the interaction
strengths. Finally, for the bosonic case we assume that the matrix M is positive definite.
Again, in principle this can be generalized, but this way we avoid difficulties of symplectic
transformations [14].

As in [3], the efficiency of our method depends on how many entries of M are a priori
known to be zero, that is, on knowledge of the coupling graph. If such knowledge is not
available, we have to carry out measurements on all but one of the qubits. If the graph is known
to be highly sparse (for instance a chain) we only need to access a single qubit. But before
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going into the details of Hamiltonian identification, let us briefly review the diagonalization
of the Hamiltonian equation (1) and thus the dynamics, introducing some notation. For more
detailed descriptions on the diagonalization procedure, see e.g. [14].

For quadratic Hamiltonians of the form in equation (1), there exist quasi-particle creation
and annihilation operators b†

k and b`, with which the Hamiltonian can be represented by the
simple form of non-interacting modes,

H =
N∑

k=1

Ekb†
kbk + const. (3)

For this reason, quadratic Hamiltonians are also referred to as ‘quasi-free’ interactions. We
need to know the transformation T that maps the operators a and a† for particles to b and b† for
quasi-particles, i.e. β = T α, where β is defined by

β ≡



b1
...

bN

b†
1
...

b†
N


.

In order to ensure the canonical commutation relations for the operators bk and b†
k , T must

satisfy T−1
= ηT †η, where

η =

(
1 0
0 ε1

)
.

The Hamiltonian is now written as

H = 1
2β

†η(T ηMT−1)β + const.

It can then be shown that ηM is diagonalized by T as

T ηMT−1
=

(
E 0
0 −E

)
,

where E = diag{E1, . . . , EN }, to have the desired form of equation (3). Note that the energy
eigenvalues appear in pairs of positive Ek and negative Ek+N ≡−Ek values (k = 1, . . . , N ).

The matrix T consists of the right eigenvectors |Ek〉 of ηM as

T ≡ η

 〈E1|

...

〈E2N |

 η,
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and the inverse of T is given by

T−1
= (|E1〉 · · · |E2N 〉).

For bosons, the matrix ηM is not Hermitian and making a distinction between right and left
eigenvectors is necessary. This gives rise to a few further peculiarities, such as the modified
normalization and completeness relationship (see below). Fortunately, in this paper we are
solving an inverse problem and do not have to discuss how to find these vectors and how
numerically stable the corresponding algorithms are.

It is worth pointing out that the |Ek〉 are not representing physical states but are just
introduced here as a part of solving the Heisenberg equation of motion for the creation and
annihilation operators. The completeness relationship is given by

N∑
k=1

|Ek〉〈Ek|η + ε|Ek+N 〉〈Ek+N |η = 12N×2N , (4)

and the vectors |Ek〉 are chosen to fulfil the normalization relationship

〈Ek|η|Ek′〉 = ηkk′ . (5)

For convenience, let us also introduce vectors |n〉 as the canonical basis vectors:

|n〉 ≡



0
...

0
1
0
...

0


← n th row.

Due to the structure of the matrix M, the upper and lower eigenvectors of ηM are related as

〈n|Ek⊕N 〉 = 〈n⊕ N |Ek〉
∗,

where ⊕ is the addition modulo 2N . The dynamics of the original operators α can be found
from βn(t)= e−iEn tβn(0) as

αn(t)=
∑
m,k

s(m, k)e−iEk t T−1
nk

(
T−1

)†

km
αm(0), (6)

where we have introduced a sign function s(m, k) through

s(m, k)= 1 (m = 1, . . . N ; k = 1, . . . N ),

s(m, k)= ε (m = 1, . . . N ; k = N + 1, . . . 2N ),

s(m, k)= ε (m = N + 1, . . . 2N ; k = 1, . . . N ),

s(m, k)= 1 (m = N + 1, . . . 2N ; k = N + 1, . . . 2N ).
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3. Estimation method

3.1. Experimental requirements

Let us first consider a 1D chain of interacting particles, meaning that A and B are tridiagonal.
Also assume that we can initialize the chain in a fixed state ρ0. This state could, for instance, be
a thermal state, but we do not require to have the exact form of ρ0: we just have to be able to
repeatedly initialize the chain to the same state ρ0. As before [2, 5], we perform initializations
followed by measurements at the first site. The quantity we need to measure at the first site
is a1± a†

1 for different times up to N 2 [2]. In order to eradicate the dependence on the initial
state ρ0, we measure two sequences of 〈a1(t)〉 after preparing the first site to give two different

initial values, i.e. 〈a1(0)〉 = c1 and 〈a1(0)〉 = c2. Using 〈an〉 = 〈a
†
n〉, and thus 〈a†

1(0)〉 = c∗i , and
subtracting the measurement results, we obtain a quantity that only depends on 1c ≡ c1− c2. It
is given through equation (6) by

〈a1(t)〉c1
−〈a1(t)〉c2 =

[
2N∑

m,k=1

s(m, k)e−iEk t T−1
1k (T−1)

†
km 〈αm(0)〉

]
1

−

[
2N∑

m,k=1

. . .

]
2

=1c
2N∑
k=1

s(1, k)e−iEk t
|T−1

1k |
2 + 1c∗

2N∑
k=1

s(N + 1, k)e−iEk t T−1
1k (T−1)

†
k,N+1.

(7)

This initialization can be performed by a von Neumann measurement or, as long as the reduced
density matrix at site one is not maximally mixed, by applying different single qubit rotations
(in some experiments von Neumann measurements are hard). As we see in equation (7), the
dependence on the initial state is completely removed. This is thanks to the absence of the inter-
actions between particles: they (almost) do not see each other, so the information on the
‘injected’ particle can be extracted by subtracting the influence from others.

For the spin chain case the eigenfrequencies are non-degenerate and T−1
1k =〈1|Ek〉 6=0

(∀k) [2, 3]. For the present case of quadratic Hamiltonians, we were unable to prove this, but
could confirm it numerically. Hence, a Fourier analysis provides us with the frequencies Ek

and the amplitudes 1c |T−1
1k |

2 + 1c∗ε T−1
1k (T−1)

†
k,N+1. Summing these amplitudes gives the value

of 1c,

N∑
k=1

(
1c |T−1

1k |
2 + 1c∗ε T−1

1k (T−1)
†
k,N+1

)
+ ε

2N∑
k=N+1

(
1c |T−1

1k |
2 + 1c∗ε T−1

1k (T−1)
†
k,N+1

)
=1c 〈1|1〉+ 1c∗ε 〈1|N + 1〉 =1c,

where we used the completeness relationship equation (4). Equation (7) still contains mixtures
of the coefficients |T−1

k1 | and T−1
1k (T−1)

†
k,N+1. We can separate them by measuring another pair

of initializations c′i : as long as 1c′ 6= r1c (r ∈ R), we can solve the linear equation for |T−1
k1 |.

Without loss of generality, we choose |〈1|Ek〉| = |T
−1

1k | = T−1
1k = 〈1|Ek〉 (∀k) by arranging the

global phase of each eigenstate |Ek〉. In conclusion, a few random rotations or initializations of
the first qubit, followed by measurements, provide us with Ek and 〈1|Ek〉, as well as 〈N + 1|Ek〉.
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Figure 3. The coupling graph that represents M for a 1D chain as an adjacency
matrix.

Let us now describe how to obtain the parameters of M from these observed data. We have
to distinguish between the generic case where the off-diagonal couplings An,n+1 and Bn,n+1 are
distinct and the special case where they are equal.

3.2. Different off-diagonal couplings

As we have seen above, what we diagonalized is the 2N × 2N matrix ηM , so it is helpful to
regard M as a representation of a graph consisting of 2N nodes (see figure 3). Its off-diagonal
entries correspond to the coupling strengths between nodes, whereas the diagonal elements
represent the intensity of the ‘field’ at each node. We can then start with a recursive algorithm
similar to [1]–[3] by applying M to the local states at sites 1 and N + 1. To do this, let us
introduce the following notation:

|n±〉 ≡
1
√

2
(|n〉± |n + N 〉) , n = 1, . . . , N .

Because the elements 〈1±|Ek〉 are already known from the procedure in the previous subsection,
we learn A11 and B11, as

〈1∓|ηM |1±〉 = A11± B11,

where the lhs can be evaluated by inserting equation (4). Noting that Bnn 6= 0 only for bosons
(ε =−1), we have

Mη|n±〉 = (An−1,n ± εBn−1,n)|n− 1∓〉+ (Ann ∓ Bnn)|n
∓
〉+ (An+1,n ± εBn+1,n)|n + 1∓〉

= (1± εγ )An−1,n|n− 1∓〉+ (Ann ∓ Bnn)|n
∓
〉+ (1∓ γ )An+1,n|n + 1∓〉, n = 1, . . . , N ,

(8)

where we set A01 = AN ,(N+1) = 0. In some sense, this equation is very similar to a 1D chain
case. Then, for n = 1, we obtain

Ek〈1
±
|Ek〉 = 〈1

±
|ηM |Ek〉

= (A11∓ B11)〈1
∓
|Ek〉+ (1∓ γ )A21〈2

∓
|Ek〉. (9)
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Therefore, the only unknown in equation (9) is A21〈2±|Ek〉, from which we obtain A21〈2|Ek〉,

A2
21 =

N∑
k=1

|A21〈2|Ek〉|
2 + ε |A21〈2|Ek+N 〉|

2
= known.

In order to separate them, we use the completness relation (4). Since A21 is assumed to be real
with known sign, we determine A21. Then, from equation (9), we acquire the values of 〈2±|Ek〉.

Now that we have 〈1±|Ek〉, 〈2±|Ek〉, Ek and all Amn, Bmn for m, n = 1, 2, we can proceed
to a similar set of equations for the next site 〈2±|ηM |Ek〉. By induction, all matrix elements
of A and B can be obtained, as desired. We will now look at the cases with equal off-diagonal
couplings in more detail, because such physical systems are often encountered, for example
transverse Ising for fermions and coupled harmonic oscillators for bosons.

3.3. Equal off-diagonal couplings

When γ = 1, the above method fails, because the term (1− γ )A21〈2−|Ek〉 in equation (9)
vanishes and we cannot estimate 〈2−|Ek〉. This is the case for interacting harmonic oscillators
without the rotating wave approximation [15] and for quantum Ising models, and is therefore
of interest in a number of practical situations. The diagonal elements Ann and Bnn are always
different if there is a transverse field (fermions) or if the masses are finite (bosons). The necessity
of a non-zero transverse field for the Ising model is also a result of the physical property that
excitations do not propagate along the chain without the field.

Equation (8) above now becomes

Mη|n±〉 = (1± ε)An−1,n|n− 1∓〉+ (Ann ∓ Bnn)|n
∓
〉+ (1∓ 1)An+1,n|n + 1∓〉, n = 1, . . . , N ,

where A01 = AN ,(N+1) = 0 again. As before, we learn A11 and B11 from 〈1∓|ηM |1±〉 = A11±

B11, and A21 and 〈2+
|Ek〉 from 〈1−|ηM |Ek〉 through normalization. For bosons, we obtain

A22− B22 = 〈2+
|ηM |2−〉 through the completeness relation, followed by 〈2−|Ek〉 through

Ek〈n
+
|Ek〉 = 〈n

+
|ηM |Ek〉 = (Ann − Bnn)〈n

−
|Ek〉. (10)

For A22 and B22, equation (4) can be used again for

A22 + B22 = 〈2
−
|ηM |2+

〉.

On the other hand, for fermions, the information on A22 and 〈2−|Ek〉 is attained from

Ek〈2
+
|Ek〉 = 〈2

+
|ηM |Ek〉 = 2A12〈1

−
|Ek〉+ A22〈2

−
|Ek〉,

as above. Knowing all parameters at site 2, we can then proceed through induction.

3.4. Estimation of general graphs

We now briefly describe how the linear case is generalized to arbitrary graphs. This is almost
identical to [3], so we will not repeat the details. Similar to the spin case, in the general graph
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setting, measurements on a single spin do not suffice: we need to consider transport in the
network. Depending on the network topology, we choose a set C of ‘infecting’ [3] nodes, which
are the ones we will perform initializations and measurements on. For clarity, let us recall the
definition of graph ‘infection’. Suppose that a subset C of nodes of the graph is ‘infected’ with
some property, e.g. the flu. This property then spreads, infecting other nodes, by the following
rule: an infected node infects a ‘healthy’ (uninfected) neighbour if and only if it is its unique
healthy neighbour. If eventually all nodes are infected, the initial set C is called ‘infecting’.

Similar to the measurements described in section 3.1, initializing the site m ∈ C and
measuring the `th node after some time, we can obtain

〈a`(t)〉 =
N∑

n=1

2N∑
k=1

[
s(n, k)e−iEk t T−1

lk (T−1)
†
kn〈an(0)〉+ s(N + n, k)e−iEk t T−1

lk (T−1)
†
k,N+n〈a

†
n(0)〉

]
.

(11)

Again, the dependence on the initial state ρ0 may be removed by subtracting data for different
initial conditions on the site m. Starting from some element in C, say m = `= 1, we can get
T−1

1k , as described in section 3.1. Then we initialize in m and measure at a different site ` ∈ C,

obtaining T−1
`k including its phase from equation (11). Hence, all Tk` with k, ` ∈ C can be learnt

from simple experiments on the set C . The 1D estimation and infection are then used to infer
the remaining parameters, as described in more detail in [3].

4. Application to one-dimensional spin chains

Naturally, the above scheme can be applied directly to many cases of Hamiltonian identification
for systems of spin-1/2 particles. A typical example is the XY chain of spin-1/2 particles,

H =
N−1∑
n=1

cn,n+1[(1 + γ )Sx
n Sx

n+1 + (1− γ )Sy
n Sy

n+1] +
N∑

n=1

bn Sz
n,

as it can be transformed into quasi-free fermions by means of the Jordan–Wigner
transformation. As has been noted already in [5], the estimation for this model can be done
without initialization of the entire chain. In the Jordan–Wigner picture, this becomes very clear.
That is, after locally measuring an eigenstate of X1 = a1 + a†

1, thus making 〈Z1〉 = 0, the initial
expectation values of the an and a†

n n > 1 are all zero. This is because the Jordan–Wigner
transformation of an (n > 1), i.e. an = σ +

n

∏
m<n Zm, always contains Z1 in the product. One

might say that the local initialization in the spin picture corresponds to a global initialization in
the fermionic picture. Combined with the weak dependence of local observables on the initial
condition that comes from the quasi-free interaction, the state dependence of the measurements
at the first site is completely removed. Hence, our scheme is a proper generalization of [5] to
include magnetic field and the transverse Ising case, which is important in various physical
systems, for example superconducting (flux) qubits [16], NMR, etc. Such models have also
attracted attention in the context of indirect quantum control recently [17, 18], where our
estimation scheme is crucial.

New Journal of Physics 13 (2011) 013019 (http://www.njp.org/)

http://www.njp.org/


12

5. Conclusions

We found a simple and efficient method to identify the Hamiltonian of a system of coupled
bosons or fermions. While the methods are completely analogous to the spin case [2, 3], it is
surprising that the higher number of parameters in the Hamiltonian that arises from the non-
conservation of excitations can still be estimated using the same resources. Similarly to [5], we
can deal with very weak system initialization, such as thermal states. Therefore, our methods
can drastically reduce the required resources for system identification. As for the effect of errors
in the procedure, such as the state preparation, the measurements, and decoherence, thanks to the
linearity of the equations we need, eventual errors in the estimated parameters are also bounded
linearly. This is one of the notable advantages of our protocol over other methods that rely on
ad hoc algorithms, such as fitting. Also, to grasp a more intuitive picture, see [2] for an example
of numerical simulations in which the method is applied to a spin chain with random coupling
strengths. Although the simulation in [2] is for an excitation-preserving chain, the necessary
numerical calculations here for quadratic Hamiltonians are essentially the same.

From the theory side, the present study once more confirmed a type of ‘holographic
principle’ for estimation: looking only at the surface of short-range interacting systems can
help us to determine their Hamiltonian completely. It would be interesting to see whether this
has direct connections with area laws of entanglement [19]. While the efficiency of our method
relied on the quadratic form of the Hamiltonian, we conjecture that even for models with true
interaction terms, for example quartic terms in the Hamiltonian, all system parameters remain
discoverable on the surface in principle.
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