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Abstract. We present a theoretical analysis of the selective darkening method
for implementing quantum controlled-NOT (CNOT) gates. This method,
which we have recently proposed and demonstrated, consists of driving two
transversely coupled quantum bits (qubits) with a driving field that is resonant
with one of the two qubits. For specific relative amplitudes and phases of the
driving field felt by the two qubits, one of the two transitions in the degenerate
pair is darkened or, in other words, becomes forbidden by effective selection
rules. In these driving conditions, the evolution of the two-qubit state realizes a
CNOT gate. The gate speed is found to be limited only by the coupling energy
J, which is the fundamental speed limit for any entangling gate. Numerical
simulations show that at gate speeds corresponding to 0.48J and 0.07/, the
gate fidelity is 99% and 99.99%, respectively, and increases further for lower
gate speeds. In addition, the effect of higher-lying energy levels and weak
anharmonicity is studied, as well as the scalability of the method to systems of
multiple qubits. We conclude that in all these respects this method is competitive
with existing schemes for creating entanglement, with the added advantages
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of being applicable for qubits operating at fixed frequencies (either by design
or for the exploitation of coherence sweet-spots) and having the simplicity of
microwave-only operation.
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1. Introduction

An important step towards the realization of a quantum computer is to implement a set of
universal gates from which all other operations can be composed. The quantum controlled-NOT
(CNOT) gate is a prominent example of a two-qubit universal gate, requiring only the addition
of single-qubit gates to form a complete universal set. The physical implementation of a gate
depends on the type of qubit that is used, but even for a specific qubit type a certain gate can
often be implemented using a variety of methods. The ideal method delivers a gate that is fast
compared to qubit decoherence times, has a high fidelity, is simple to implement and does not
introduce constraints that compromise the coherence time of the qubits or the implementation
of other gates.

One classification of two-qubit gates is based on the required nature of the interaction
between the qubits [1]. When the interaction term contains diagonal elements in the single-qubit
energy eigenbasis, often referred to as longitudinal or zz-coupling, the transition frequency of
one qubit depends on the state of the other qubit. Although this spectroscopic shift enables
simple resonant driving for all operations [2, 3], the shift also leads to continuously evolving
phases that must be compensated for by refocusing schemes [4]. In contrast, for transverse
coupling the energy splitting of one qubit does not depend on the state of the other qubit. In this
respect, the system can be described as a set of effectively uncoupled qubits [5, 6]. The desired
entangling evolution can then be induced by dynamic manipulation of the system. Clearly, the
degeneracy due to the lack of a spectroscopic splitting forbids any method based on frequency
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selectivity. Focusing on superconducting qubits [7—15], previous methods used either additional
coupling elements [16-29], extra qubit states outside the computational basis [25, 30-32] or
shifting levels in and out of resonance by dc [33-35] or strong ac fields [5, 36-38].

Another important consideration is that a method can require certain bias conditions of the
qubits, which might not always be compatible with optimal coherence time conditions, or the
implementation of other gates. This is particularly important for qubits with a so-called sweet-
spot, an optimal bias point at which the qubit is rendered insensitive to specific noise channels,
and coherence times can improve by orders of magnitude. For some qubit types and coupling
schemes, these sweet-spots are intrinsically connected to having a transverse coupling. Previous
work [5, 6, 21, 36, 39—41] has specifically focused on two-qubit quantum gates that can be fully
implemented at sweet-spots.

In this work, we theoretically analyse a CNOT gate based on the selective darkening (SD)
method proposed and demonstrated in [39]. This method is for transversely coupled qubits
and requires driving two qubits simultaneously with a single frequency, with specific relative
amplitudes and phases. The method was developed in the context of superconducting qubits,
but can also be used for any other coupled-qubit system with pure transverse coupling [42]. The
basic principle of the gate is explained in section 2, for both small and large coupling energies. In
section 3, we briefly discuss the relation of SD to other comparable methods. The time-domain
evolution of the gate is investigated in section 4, including the possible gate errors caused by ac-
Stark shifts due to off-resonant driving of other transitions in the system. A numerical study of
the gate evolution, gate errors and gate speed is presented in section 5. The influence of possible
higher-lying levels is analysed for weakly anharmonic qubits in section 6. Lastly, the scalability
of the method to systems of multiple qubits is studied in section 7, and the paper ends with the
conclusions and discussion of the results.

2. Selective darkening

2.1. Basic principle

SD provides an entangling operation between two coupled qubits. To operate the gate, one
drives both qubits with a common frequency, but individually tuned amplitudes and phases. In
this section, we first give an intuitive explanation of the method, and for simplicity assume a
coupling energy between the qubits that is much smaller than the other energies in the system.

The SD method is suitable for any coupled-qubit system where the effective coupling
term is purely transverse, i.e. where the matrix describing the interaction, written in the energy
eigenbasis of the uncoupled system, does not contain any diagonal elements. Here, we consider
a system of two transversely coupled qubits that is described by the Hamiltonian

T ] o
Hoy=—1 (860 +A62) + 16060, (1)

where A; is the single-qubit energy splitting of qubit i, J is the qubit—qubit coupling energy
and 6x(f)y,z are the Pauli spin matrices (6x(,1y)~,z =6,,.®1, 6)5,2;@ =1®046,,..). Note, however,
that other (effective) Hamiltonians with pure transverse coupling, i.e. with any combination of
61)6%) coupling terms, would not change the principle of the method. The same remark holds
for systems where the coupling is not direct between the two qubits, but mediated by an extra
coupling element such as a harmonic oscillator [43] or a superconducting quantum interference

device (SQUID) [22]. In figures 1(a) and (b), two relevant example systems are depicted.
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Figure 1. Selective darkening. (a) Schematic diagram of two inductively coupled
flux qubits and two antennas for individual driving. (b) Schematic diagram of
transmon or charge qubits, coupled via a harmonic oscillator, and with two
antennas for individual driving. (c) Energy-level diagram of the coupled qubit
system. Arrows of the same colour indicate transitions of the same qubit and
are degenerate in frequency. (d) The normalized transition strengths of the four
transitions in (c) as a function of the net driving amplitudes a,/(a; +a,) for
¢2 — ¢ = 0. For ¢, — ¢ = m the dashed and solid lines are interchanged. The
black dotted lines indicate the condition for which the corresponding transition
is darkened.

As afirst step, we treat the coupling strength J as a perturbation, taking J << |A; — A;|. We
also assume that [A; — A,| < Ay, A, so that we can ignore terms containing the ratio J/A ;.
With no loss of generality, we also take A; > A,. To first order in perturbation theory, the four
energy eigenstates are given by

0) = 100},

J
1) = 101) = ———110).

1— A2

, @
2) =10) + ——— |01) ,
2)=110) + o)

3) =[11).

The energies are unaffected by the perturbation to first order. In other words, E; — Ey =
Es—FE,= A and E, — Ey = E; — E, = A,. (In the next section it is shown that the relations
E,—Ey=E;—E, and E|, — Ey = E; — E; hold to any order.) The energy levels are shown
schematically in figure 1(c). The arrows indicate the transitions of interest; the blue and red
arrows describe the transitions of qubits 1 and 2, respectively. As mentioned above, each pair
of transitions is degenerate, which is typical of transverse coupling’. Let us now add a driving
term of frequency w, resonant with one of the degenerate pairs of transitions, that couples with

7 For simplicity, we label the states as if the qubits were uncoupled, although the single-qubit states are mixed
by the coupling. This state mixing is central to the SD method. Note that in the case of fixed coupling, this state
mixing needs to be taken into account when defining a suitable readout scheme.
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amplitude @, and phase ¢, to qubit 1 and a, and with ¢, to qubit 2:

H yive = a; cos(wt + (pl)(}x(l) +a, cos(wt + (pz)(}x@
g+ iwt 7 — —iwt
=H drive e +H drive € ’ (3)
where
~ a . a .
£ _ % Fgi s | P2 iy 2 (2)
drive_Ee o, +—¢ o, (4)

The amplitudes a; and a, are real and positive, and the phases ¢; and ¢, are real. If we
choose w = A,/h (in our first-order approximation), we match the transition frequency for
flipping the state of the second qubit, i.e. we should drive the transitions |0) <> [1) and
|2) <> |3) (corresponding to red arrows in figure 1(c)). We now evaluate the transition strengths
Tio = (| H drive|K) Of both transitions, i.e. the matrix elements that govern the Rabi frequencies
of the oscillations (wr = 2|T|/1). The term H gye represents the (time-independent) co-rotating
field, meaning that we take the rotating wave approximation, giving H give = H . for k >/
and H drive = ~dn-ve for k <[. (Derivation of the co- and counter-rotating terms is done in
appendix A.) The resulting transition strengths are

~ aq J s ay .
UHgiel0) = — ————e ¥+ — e, 5
(11H grive|0) N e (5a)
(3 Harive 12) = sA_ T e 2 e (5b)
rive B Al—Az ) .

Crucially, the two transition strengths are not equal. Figure 1(d) shows the normalized |T| =
|T'|/(a; +a,) as a function of a;/(a; +a,) for a fixed phase difference ¢, — ¢; = 0. The blue
lines correspond to the two transitions of qubit 2. The difference in transition strength leads to
a different evolution for the two corresponding transitions. This can be conveniently visualized
using a Bloch sphere representation, as shown in figure 2(a). The black and grey arrows both
represent the state of the qubit that is resonantly driven (in our example, qubit 2), where black
(grey) indicates that the other qubit is in state |0) (|1)). The transition strength is a complex
number and both the amplitude and the phase are relevant for the evolution of the state.
Difference in the amplitudes of the two transition strengths leads to different Rabi frequencies
of the oscillations (wr | # wr ). Difference in the phases of the transition strengths leads to
different rotation axes (¢r.| # ¢r.2)-

We now make some simple observations. A single-qubit gate is a gate that changes the
state of one qubit with the change being independent of the state of the other qubit(s). In the
Bloch sphere picture this means that when a rotation is induced on one qubit, the rotation speed
and the orientation of the rotation axis do not depend on the other qubit being in state |0) or
|1). This situation is indicated in figure 2(d). This occurs only when the driving field couples
exclusively to the qubit that is resonant with the driving field; in our case this corresponds
to a; =0 (or a;/(a; +a,) =0, see figure 1(c)). All other settings of the driving field lead to
entangling evolution of the system, and can be used to create entangling gates. Note that if
one intends to perform a single-qubit gate, and the drive is not applied exclusively to that
qubit, the two-qubit evolution that is aimed at in this work should be taken into account as a
possible source of errors, unless the system has a tunable coupling that can be reduced to zero
[16, 24, 44].
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(a) general (b) selective darkening (c) cross resonance (d) single-qubit gate
0} o) o) o)

Figure 2. Bloch sphere representation of the evolution of a resonantly driven
degenerate transition for different driving conditions. The black and grey arrows
show the evolution of the state of the target qubit, for the control qubit in state |0)
and state |1), respectively. (a) The general case. The two state vectors rotate with
different Rabi frequencies and around different axes. (b) Selective darkening.
Rotation of one of the state vectors is fully suppressed. The other state vector
has a non-zero Rabi frequency. (c¢) Cross resonance. The state vectors rotate
around the same axis, with equal Rabi frequency but in opposite directions.
(d) Single-qubit gate. The state vectors rotate around the same axis, with equal
Rabi frequency and in the same direction.

Even though many different settings of the driving field can be used to create entangling
gates, two special cases stand out. The first is where the driving field resonant with one qubit is
exclusively applied to the non-resonant qubit (a, =0, a,/(a; +a,) = 1). This driving scenario
will lead to equal rotation speed of both state vectors, but opposite direction. This case will be
discussed further in section 3.

The second special case is the main focus of this paper, where one of the transition strengths
is equal to zero (depicted in figure 1(d) by the black dotted lines). Here one transition is fully
suppressed, i.e. darkened, while the other transition has a finite transition strength. Specifically,
if we choose

ay J

aq o Al — Az ’
and ¢, — ¢; = 0, we find that the Rabi oscillation frequency for the transition |0) <> |1) is zero,
so that we only drive the transition |2) <> |3). This condition provides exactly what is required
for a CNOT gate: for the appropriate driving duration the state of the second qubit is flipped if
the first qubit is in state |1), whereas it remains unaffected if the first qubit is in state |0). The
0-CNOT gate, where the second qubit is flipped only if the first qubit is in state |0), is achieved
by taking equation (6) and ¢ — @y = 7.

The speed of the gate is determined by the transition strength of the non-darkened
transition, which is now given by

(6)

J
A=Ay
One must take care that both a; and a, are small enough to not excite other transitions by off-
resonant excitation. As a simple estimation of the maximum gate speed, we take the driving

(31 H grive|2) = ar = a (7)

New Journal of Physics 14 (2012) 073038 (http://www.njp.org/)
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amplitudes such that for all the off-resonant transitions the transition strength is smaller than
the detuning of the transition frequency with the driving field: (/ |H grive k) < |hw — haojoy]. In
this case the transitions |0) <> |2) and |1) <> |3) provide the tightest restrictions ((2|ﬁ arive|0) &
(3|ﬁdrive| 1) ~ a,/2), giving a;/2 < (A; — A,). The resulting estimate for the maximum Rabi
frequency of the CNOT transition is

a)R,max ~ 4]/h (8)

This means that the maximum gate speed is determined by J, which is the fundamental upper
limit on performing a two-qubit gate; a two-qubit gate cannot be faster than the coupling strength
in the system [45]. How close the gate can get to this estimate for the maximum speed (for a
given fidelity) is studied numerically in section 5.

2.2. Strong coupling

In the simplified calculations of the previous subsection, the energy eigenstates are easily
identifiable as being almost equal to the states of the computational basis. However, the
Hamiltonian (equation (1)) is simple enough that it can be diagonalized without approximations:

|0) = cos(6,/2) |00) —sin(6,/2) [11),
[1) = cos(6,/2) |01) —sin(6,/2) |10},
9
|2) = cos(6,/2) |10) +sin(6,/2) |01) ,
|3) = cos(8;/2) |11) +sin(6;/2) |00} ,
where
2J
tand) = —, tanfh=———. (10)
A+ Ay A — Ay
For compactness of the following equations, we also define
91 + 92 92 — 91
= . 0= ) 11
N > 7 (11)
We now find that
(1 Haiel0) = — % e~ sin 6, + % e cos 6, (12a)
(3| Hael2) = + % e sin 6, + % e cos 6_, (12b)
and
- a a i -
(2| H grive|0) = Ee M cos@++3e ¥25in6_, (12¢)
(3 Hapel 1) = % e cos 6, — % e sin_. (12d)
The condition for SD of qubit 2 transitions is then given by
a _ sin O, ’ (13)
a; coso_
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with ¢, — ¢; = 0 for the 1-controlled CNOT gate (1-CNOT) and ¢, — ¢; = 7 for the 0-CNOT
gate. This condition generalizes equation (6), which was derived for the weak-coupling limit.
The condition for SD of qubit 1 transitions is

a, coso,

= , 14
a; sin6_ (19

with ¢, — ¢; = 7 for the 1-CNOT gate and ¢, — ¢; = 0 for the 0-CNOT gate. In this case (i.e.
with arbitrary values of Ay, A, and J), the transition frequencies are given by

E\—Ey=Es—Ey=1 (\/4J2 (A + A — AT+ (A — A2)2> . (15a)

Ey— Eg=Ey—E =1 (\/4J2+ (A1 + 02 +/4T2+ (A, — AQ)Z) . (15b)

Note that this derivation shows that the SD gate can also be used when A| = A,, giving a; = a,
for the required amplitude ratio for both qubit 1 or 2 as the target qubit. In this special case,
the SD method is equivalent to the method proposed by Beige et al [46] and has recently been
demonstrated experimentally [47].

3. Relation to other gates

Independently of our work on SD, a cross resonance (CR) scheme for realizing two-qubit gates
for transversely coupled qubits was proposed in [40]. The CR coupling scheme relies on driving
one qubit (the control qubit) at the resonance frequency of the other qubit (the target qubit) and
has the result of driving Rabi oscillations in the target qubit in one of two opposite directions
based on the state of the control qubit. Even though at first sight the driving condition and
resulting dynamics might seem to be very different from those of the SD scheme, the two
schemes are related by a simple rotation. This relation can be inferred from figures 2(b) and
(c) and by noting that in both cases the two-qubit dynamics involve rotations of the target-qubit
state about a single axis. As a result, the two-qubit evolution commutes with any single-qubit
rotation about the same axis. One can therefore convert any CR-like operation into an SD-
like operation by applying a single-qubit rotation designed to cancel one of the two possible
CR rotations. Crucially, because the single-qubit and two-qubit rotations commute, they can be
applied simultaneously. Starting from the CR scheme as a reference point, one could say that
the driving field applied to the target qubit in the SD scheme is designed to oppose one of the
two rotations in the CR scheme, thus producing CNOT-gate dynamics.

It is interesting in this context to look further back into the history of coupling schemes
for superconducting qubits. After the proposal of the FLICFORQ coupling scheme [5], it
was shown that this scheme is a special case of a family of coupling schemes using the
physics of double resonance [36, 37]. In particular, even though the coupling scheme used
in [38] might seem very different from FLICFORQ, they are both special cases of the double-
resonance family of coupling schemes. The general condition that needs to be satisfied for
double resonance is given by

+/(hor — A2 +ad £\ (heoy — A2 +03 = oy — ooy, (16)

It is interesting to note that the condition for the CR [40] and SD gates [39], i.e. driving
both qubits at the frequency of one of them with small amplitudes, satisfies the double-resonance
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condition. One can then wonder whether these coupling schemes can also be seen as two more
(closely related) members of the double-resonance family.

The CR and SD schemes can indeed be seen as special cases of double resonance. However,
they also involve some qualitative differences to the previously studied cases, such as the
FLICFORQ and ac-Stark-shift-induced resonance, making them more like distant relatives
of the conventional double-resonance schemes. (It is worth noting here that another different
scheme of the same family was discovered in the numerical results in [37]). One difference
between the more conventional double-resonance schemes and the CR and SD schemes
becomes apparent if one plots the energy-level diagrams of the two driven qubits in the dressed-
state picture. In the schemes of [5, 38], one transition between dressed states of qubit 1 becomes
resonant with one transition between dressed states of qubit 2. As a result, a swap-like operation
takes place with the two single-qubit transitions driven in opposite directions, such that the total
energy is conserved. In the case of CR and SD, two pairs of transitions are resonant and are
involved in the gate operation, as can be seen from figures 1 and 4 of [40]. The result turns out
to be a conditional operation: the well-known CNOT-gate dynamics in the SD case and a CNOT
gate combined with a single-qubit rotation in the CR case.

Classification of different gates can also be done using the geometric representation of
[1, 48, 49]. Being related by simple single-qubit gates, the CR and SD-CNOT gates correspond
to exactly the same dynamics of the Makhlin parameters. The more conventional double-
resonance class of gates, as well as the gate of [50], all exhibit oscillations corresponding to
the iISWAP gate. As a result, the Makhlin parameters exhibit similar behaviour for these cases.

In [51], a scheme is discussed to control the individual states in degenerate subspaces of
three qubits coupled in a loop. That scheme is based on the same principles as the SD and CR
methods. The gate proposed in [50] is similar to the CR and SD methods in the sense that it also
provides a microwave-only entangling gate between two qubits and does not involve shifting
the dressed states into resonance by strong driving. This gate, however, requires a coupling type
that is at least partially longitudinal. Creating entangling evolution between two coupled qubits
by tuning the amplitudes and phases of a driving field is also discussed in [52, 53].

Another intimately related effect to SD is illustrated by the dark states encountered in
circuit quantum electrodynamics. When two qubits are both coupled to a harmonic oscillator
and the qubits are biased to have equal splitting, the energy levels exhibit an anti-crossing. Some
of the transitions are typically found to be forbidden. This effect can be interpreted as SD, as
the condition for SD to occur for two qubits of equal splitting is when both the qubits are driven
with equal amplitude [47] (see section 2.2). Recently, it was proposed and demonstrated that
these properties can be exploited further by defining a new logical qubit from two conventional
qubits, using only two of the four original states [54—56]. Within this definition, the coupling to
the resonator can be treated as tunable, and the qubit itself can be shielded from decay through
the resonator.

4. Time-domain evolution of the gate and spurious driving of other transitions

To compare different methods for creating entangling gates or to design the optimum parameters
for a certain experiment, it is important to know the potential sources of errors and how these
errors depend on the various parameters in the system. The first potential source of errors that
we study is related to the ac-Stark effect, i.e. the energy shift that the driving field can induce
on the non-resonant transitions in the system. Specifically, the applied driving field is resonant
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with the qubit that is to be flipped (the target qubit of the CNOT gate), but the same field also
drives the control qubit, which typically has a different transition frequency. This off-resonant
driving leads to a predictable but unwanted deviation from the pure CNOT-type evolution of the
system.

4.1. Ideal gate evolution under rotating wave approximation

The time evolution of the system is best studied in a suitable rotating frame. In this case,
the driving term H drive 1 equation (3) can be conveniently split into a (time-independent) co-
rotating term V' and a (time-dependent) counter-rotating term W (see appendix A). For the co-
rotating term V, we find the matrix elements given in equations (12a)—(12d) with H gjve = V.

We now make the rotating wave approximation: the counter-rotating term W oscillates
very fast (at frequency 2w) and is therefore approximated by its average value, zero. The gate
we would like to perform is the usual CNOT gate, with qubit 2 as the target qubit. We therefore
choose

ha):E3—E2:E1—E0

:%(VQAI+Ag2+412—v«Ar—Ag2+4J§, (17a)
a _ sin 6, (17b)
a, cos6_’

@2 —¢1 =0. (17¢)

We are now left with

-1 0 00

. -1 0 0

Ho=1J/(A)— Ay)2+4J2 o 10l (18)
0 0 01

(11V]0) =0,

(ﬂVmw:%«am&+gnamn&)awn

(3|V 2) = a; sinf, e ¥, (19)

@BIVI1) = % (cos 0, —sin 6, tan6_) e ¥,

WIVL) = GIVID*.
In a first approximation, we ignore the matrix elements Vo and V3, (and their Hermitian
conjugates). We then find the effective Hamiltonian

00 0 0

. 00 0 0

H=H,+ 00 0 Vi (20)
00 Vyp O
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These two terms commute, and their effects can be easily superimposed. If the Hamiltonian
is allowed to operate for a time t = h/(4|V3,|) = h/(4a, sin6,), the first term produces the
transformation

eimt/z 0 0 0
0 oin/ (B1=22)2+4721 /2 0 0
0 0 e—in/(A1—20)2+472 /2 0 ; (21)
0 0 0 e—i«/mz /2
and the second term produces the transformation
1 0 0 0
01 0 0 o)

00 0 —ie i

0 0 —1e" 0
These transformations are given in the rotating frame. They can be transformed back to the
laboratory frame to give

e 0 0 0 \({1O0O 0 0
0 e 0 0 [[o1 o o
0 0 e 0o [[oo o —iew 3)
o 0o 0 e )loo —iem 0

The leftmost matrix represents the Larmor precession of the system in the laboratory frame.
Taking ¢; = 0, the rightmost matrix is exactly the CNOT gate, up to a single-qubit phase gate
and a global phase factor (meaning that the Makhlin parameters [48] are equal to those of the
standard CNOT gate).

4.2. Single- and two-qubit errors caused by the ac-Stark effect

We now include the two (or four including the conjugate terms) matrix elements that we have
ignored in the previous subsection:

2IV]0) = % (cos 6, +sinf, tanf_) e ¥, (24q)

(3] \7| 1) = % (cos 6, —sinf, tan6_) e !, (24Db)

These matrix elements produce an ac-Stark shift on qubit 1 (the control qubit). If 6, and 6_ are
small, the above two matrix elements are approximately equal to a;/2 (up to a phase factor).
This matrix element then causes a shift of a12 /2(E, — Ey — hw). This frequency shift can be
incorporated easily into the transformation given in equations (A.3)—(A.7), simply modifying
the energies that enter equation (A.1).

Note, however, that the two matrix elements above are slightly different, so that the
ac-Stark shift of qubit 1 depends on the state of qubit 2. This situation would induce an
unwanted controlled-phase (CPHASE) gate. If we take A;/h =6GHz, A,/h =5GHz and
J/h =0.1 GHz, we find that 8; = 0.00587 and 6, = 0.0637, which gives the ratio between
the matrix elements:

(2|V]0) _ cosf, +sin6, tanf_
(3|V|1) ~ cosf, —sinf, tan_

—1.02. (25)

New Journal of Physics 14 (2012) 073038 (http://www.njp.org/)


http://www.njp.org/

12 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

This means that for the given parameters, the two different values for the ac-Stark shift will
differ by about 4%. This 4% difference of the frequency shift should therefore be designed such
that it causes an overall phase shift much smaller than 27 over the gate time of typically a few
nanoseconds. It can then be neglected. Otherwise, it could harm the fidelity of the gate. Even for
extremely strong driving (a;/h = 1 GHz), which gives a large ac-Stark shift (about 0.5 GHz),
over a gate time of 4 ns, we obtain an unwanted CPHASE rotation by an angle of 0.167. For
weaker driving this unwanted angle will be smaller.

Note that in our case, this CPHASE-type error can also be corrected relatively easily using
single-qubit gates. In this case the SD-CNOT part of the gate is intentionally made to deviate
slightly from a perfect CNOT gate by using a longer or shorter gate time, such that the evolution
of the state-vector overshoots or undershoots the normal m-rotation. If the correction to the
gate time is chosen appropriately, the combined evolution of the unwanted CPHASE gate and
the intentionally driven CNOT gate can be transformed into a perfect CNOT gate using single-
qubit gates before and after the two-qubit driving. This effect is related to the well-known fact
that a CPHASE gate can be transformed into a CNOT gate using only single-qubit gates [57].
This type of correction will be demonstrated in section 5.

A more rigorous analysis (see appendix B), where the driving field is treated quantum
mechanically, confirms the single-qubit and two-qubit errors found here. In addition, even
though we mostly look at the high driving limit where the classical description of the field
gives accurate results, some phenomena can be identified more easily. Specifically, it is shown
that for increasing amplitudes of the driving field not only the levels of the control qubit are
shifted, but also the transitions of the target qubit are no longer perfectly degenerate. In this
case no transition can be fully darkened. The result is a single-qubit-type error on the target
qubit. As mentioned above, single-qubit errors can be corrected relatively easily. It should be
noted, however, that this error can slow down the CNOT gate. A perfect SD-CNOT gate requires
the state vectors in the example of figure 2 to be on opposite sides of the Bloch sphere at the
end of the gate, and co-rotation of the transition that should be darkened leads to a saturation of
the effective gate speed. This will also be considered in section 5.

5. Numerical simulation of gate dynamics for two-level qubits

To quantify the fidelity of the SD-CNOT gate, the evolution of the system was simulated
numerically. We take the driving conditions derived from the simple weak driving case given in
section 2: the frequency of the driving field was chosen to be w = (E| — Ey)/h = (E; — E») /A,
and the amplitude ratio as given in equation (13). The amplitudes are ramped up and down
using the half-sine envelope function sin(s /), with ¢ running from O to the total gate time
teae- Note that we chose to gradually turn on and off the driving field rather than using step
functions, because in many cases the steep edges can lead to undesired excitations in the system.
This approach increases the gate time with a factor of /2 compared to the minimum gate time
where the driving amplitude is turned on and off abruptly. Other envelope shapes would give
similar correction factors.

For a given maximum amplitude a,, the evolution of the system was simulated. The
evolution operator at the end of the gate was evaluated according to its overlap with the ideal
CNOT gate, which is quantified using the fidelity F = Tr(Mgye.Mcnor) /4. Here My, is the
(unitary) matrix of the simulated gate and Mcnor the ideal CNOT gate from equation (23)
(which includes the phase factors i). This calculation is performed for 20 different gate
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Figure 3. Numerical simulation of an SD-CNOT gate for two-level qubits. Panels
(a) and (b) are calculated for coupling strengths of J/h = 100 MHz and (c) and
(d) for J/h = 25 MHz. Blue circles represent the results for the SD-CNOT gate,
incorporating only corrections for Larmor precession and ac-Stark shift of the
control qubit. The other two data sets represent the SD-CNOT gate including
error corrections using single-qubit phase gates (black diamonds) and arbitrary
single-qubit gates (red squares). In panels (a) and (c), the gate error 1 — F is
plotted against the driving strength. Panels (b) and (d) give the corresponding
gate speed, expressed as the effective coupling strength J.¢ divided by the natural
coupling strength, for which fidelity F is achieved. The black lines indicate the
expected dependence from equations (12a)—(12d). The values used for the qubit
splittings are A;/h =6 GHz and A,/h =5 GHz.

times around an estimated optimum. An interpolating polynomial function was used to fit the
dependence of the fidelity on the gate time, providing the final accurate estimate for the optimum
gate time. The gate was recalculated using this gate time, giving the final result for the fidelity.
This sequence is repeated for different driving amplitudes a; (with a, adjusted to the ratio
given in equation (13)). The qubit splittings used are A;/h =6 GHz and A,/h =5 GHz and
the phases of the driving fields are ¢; = ¢, = 0.

The results of the simulations are shown in figure 3. Figures 3(a) and (b) were calculated
for a coupling strength J/h = 100MHz, and figures 3(c) and (d) for J/h =25MHz. The
blue circles give the result of the procedure as described above, using the lowest number
of corrections. We only take into account the Larmor precession and for the control qubit
the ac-Stark and Bloch—Siegert shift due to the (off-resonant) driving, disregarding for the
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level shifts any effects related to the coupling. The bare SD-CNOT gate is calculated first
and the corrections are applied afterwards as phase gates. The required phase for the ac-
Stark and Bloch-Siegert shift corrections is calculated analytically from the energy shifts
8Eac—Stark = Cl%/Z(Ez — EO — ha)) and SEBloch—Siegert = 6112/2(E2 — EO + ha)) and the gate time
foare» taking into account the envelope shape. The correction for the Larmor precession is given
by the conjugate of the leftmost matrix in equation (23). Note, however, that all these corrections
often do not have to be implemented physically in an experiment. The internal phase evolution of
a microwave source that is set to the resonance frequency will automatically follow the Larmor
precession of the qubit, and a single-qubit phase gate can often be incorporated easily in the
preceding or following single-qubit gates.

For the black diamonds and red squares we performed the same procedure, but in addition
we allowed single-qubit phase gates (black diamonds) or arbitrary single-qubit rotations (red
squares) before and after the two-qubit gate. For each simulation of the two-qubit gate an
optimization algorithm is used to find the single-qubit gates that optimize the fidelity of the
gate. This approach allows for correcting certain error types, such as the CPHASE-type error
discussed in section 4.2. Note that in all three cases, the corrections influence not only the
maximum fidelity of the gate, but also for which #y,. the maximum is found.

We characterized the gate speed as the effective coupling strength Joir = h/tgye - 77/2, where
the factor 7 /2 takes into account the envelope function of the driving field. In figures 3(b)
and (d), the black lines represent the expected gate speed as given in equations (12a)—(12d).
For low driving strengths the gate speed follows exactly the linear behaviour as expected from
the transition strength. The gate error (given by 1 — ), increases monotonically with driving
strength, except for the case with arbitrary single-qubit corrections where the error is ~1073
throughout the whole range and is limited only by the accuracy of the numerical calculation.
The low error in the latter case shows that the errors in the SD-CNOT gate are either single-qubit
errors or two-qubit errors that can be incorporated into the combined evolution to form a perfect
CNOT gate, such as the CPHASE-type errors discussed in section 4.2. Also, in experiment this
would be an attractive way to enhance the gate performance.

The slowdown of the gate for the results with arbitrary single-qubit gates (red squares)
at higher driving frequencies can be explained by the error types discussed in the previous
sections. If the transition |0) <> |1) is not fully darkened and the state vector rotates in the same
direction as the |2) <> |3) (CNOT) transition, a longer gate time is required to achieve maximum
separation of the two state vectors (to achieve a perfect CNOT gate the alignment of the two
state vectors should be exactly opposite). Alternatively, a CPHASE-type error can require a
slight overshoot of the CNOT gate evolution to achieve the best fidelity when including the
single-qubit gates. Both processes are likely to contribute to the observed slowdown of the gate.

At higher driving strengths the gate speed starts to deviate from the linear dependence of
the weak-driving limit. In particular, where the error is larger than 0.1, the gate fidelity becomes
less well behaved. For J = 25 MHz, the effective coupling strength even seems to exceed the
natural coupling strength, but this can be explained simply by the fact that the performed gate is
no longer close to the desired gate. Also for J =25 MHz, we see an improvement when using
the single-qubit phase corrections (black diamonds).

Even without the extra gate optimizations (blue circles), we find a high fidelity at relatively
high gate speeds. For the coupling strength of J = 100 MHz, gate speeds corresponding to
0.48J and 0.07J give a gate fidelity of 99% and 99.99% respectively. The exact numbers will
depend on the system parameters. Note that these results were obtained using a fixed driving
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frequency and amplitude ratio, obtained from simple analytic equations, and using a fixed pulse
shape. Using more advanced optimization schemes, for example using the derivative removal
by adiabatic gate (DRAG) method [58, 59], these numbers can probably be enhanced further.

6. Weakly anharmonic qubits

The above analysis of the SD-CNOT gate and the possible errors is accurate for true two-level
qubits. However, many qubit implementations are in fact multi-level systems. In this case, a
nonlinear level structure allows the system to be used as an effective two-level system, where
only two out of a manifold of levels are used as the (computational) qubit states. When dealing
with weakly anharmonic qubits, i.e. qubits where the transition frequencies between consecutive
energy levels differ only slightly, the additional energy levels have to be taken into account,
as they can significantly influence the dynamics of the system. For example, one obvious
complication that arises in this case is the leakage to these additional states.

We take the computational basis to be formed by the lowest two energy states of the qubits,
labelled |00), |01), |10) and |11), and the states outside the computational basis are labelled [02),
|20), etc. Taking into account the third level of each qubit, and making the approximation of
weak coupling (J < A; — A;) and weak anharmonicity (§; = hwi oo, j — hwoe1,; K A — As;
note that under this definition §; is negative for phase and transmon qubits and positive for
capacitively shunted flux qubits), we find the following approximate expressions for the energy
eigenstates:

0) = 100),
J
1) =101) — — |10},
1) =101) = 5—=—-110)
J
2) =110) + — |01),
2) =110} + 1 ——-101)
2J 2J
|3>=|11>+L|02>—L|20>,
Al —Ar—6, Al — Ar+ 5
V2J
4) =102) — ——|11), 26
[4)=102) - = 111) (26)
2J
=20+ 20y,
Al—A2+(S]
2J
|6) =|12) + 121),
Ay —Ay—8—6
2J
17) = 121) + 112),
Al—A2+81—82
8) = 122).
The respective approximate energies are given by
Ay A,
Ey= - -2,
2 2

A1+A2 J?
2 2 A=A
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A A, J?
+ +—
2 2 A=A
A Ay N 2J? 2J?
2 2 Al—Ary—6 Al—A2+81’

Ay 37 2J?
Ejm =21y =0 7)
2 T2 A —DNr—0,
3A A 2J?
E5— —1——2+51+ y
2 AI—A2+81
Ar 3A, 4J?
E6— —+—+52— y
2 AL —NAy+68; — 6,
A Ay 4J?
E; —+—+46 + ,
2 2 A — Ay +81 =6
3A7 3A,
Eg=+—+—.
2 2

Note that the labels are ordered for increasing energy of the states, except for the interchange of
labels 3 and 4. This interchange causes states 0-3 to correspond to the two-level qubit case and
makes it easier to compare the two cases.

Let us consider the CNOT gate with qubit 2 being the target qubit. In the qubit basis, this
means that the |0) — |1) transition is to be darkened, and the |2) — |3) transition provides the
CNOT gate dynamics. The required relation between the driving amplitudes is again given by
equation (6) and ¢, — ¢; = 0. For simplicity, in the expressions we also take ¢; = ¢, = 0. The
transition strengths of the darkened and CNOT-gate transition are now given by

J J
(L0 1 2s010y~ 2 ( + =0, (28a)
2 2 2 A=Ay A=Ay
2J J J 2J?
B1L6M 4+ Ls@ 1y~ D (] - ; + A
2 2 2 Aq —A2+81 Al — A, Al — A, (A] —Az)z
J 31 J?
~a " ), (28b)
Ar—2 \A1— Ay (A1 —4Ay)
where 6V =6, ® 1 and 6@ = 1 ® 6, are redefined using
0 1 O
G.=1 0 V2. (29)
0 v2 0

From these equations we can recognize the first consequence of the additional levels: the
transition strength of the |3) <> |2) (CNOT) transition is reduced by a potentially significant
factor. This reduction is a consequence of the mixing between the states |11) and |20), which
introduces a new term into the matrix element (3| 46" + 26 ® |2). For systems where both the
anharmonicity and the coupling energy are small compared to the detuning between the qubits,
the speed of the gate will be greatly suppressed. So in order to achieve large gate speeds with
weakly anharmonic qubits, one must design the system with one or both of these two factors
relatively large.
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Next we analyse the leakage to the states outside the computational basis. The largest
leakage arises from the transitions |1) — |4) and |3) — |6), because qubit 1 (the control qubit)
is driven the strongest. The corresponding matrix elements and energy detunings are given by

Joo1 5 J?
@260+ 260y ng— (-2 . (30a)
2 (A

+
2 "'A =02 —Ay) (A= Ay)?
J 2
6] L6004+ L@ 3) ng— 2 1+ Y2\, (30b)
2 2 A — A, 4
and
N 2725,
(E4—E1)—(E1—E0)~52—m (31a)
(Eg— E3) — (E3 — E2) = § 377 (31b)
6 3 3 2) — 02 AI_AZ-

To avoid leakage, the transition strengths of the unwanted transitions should be lower (possibly
much lower) than the detuning with the driving fields (similarly to section 2.1): (I |ﬁ arive|[k) <
|hw — hw, . |. Both leakage transitions have approximately equal energy splitting (= §,). The
|3) <> |6) transition clearly has the highest transition strength. Using this transition, we find the
estimate for the maximum allowed Rabi frequency of the CNOT transition:

w—82[8‘+12] (32)
B e V22 LA = Ay " (A= A2 ]

How close one can get to this estimated maximum is simulated numerically, and will be
discussed soon.

A third issue that one needs to keep in mind when dealing with weakly anharmonic
qubits is that the additional energy levels cause frequency shifts that break the symmetry
E; — E, = E| — Ey. In particular, the energies of state 4 (= |02)) and state 5 (= |20)) will be
close to the energy of state 3 (= |11)). Fortunately, they cause shifts in opposite directions and
almost cancel. The net shift is given by (see the expressions for the energies above)

2J? 2J? N 2J%(8,+87)
TA A =8 A =M+ (A =AY
This frequency shift is not specific to the SD method, but is typical of weakly anharmonic qubits,
and it results in an always-on interaction that drives a CPHASE gate.

We again perform numerical simulations to determine the total fidelity of all the
combined errors. First we start with simulations where we vary the anharmonicity in
order to see its effect on the gate speed and fidelity. We use three different combinations
of anharmonicity: (8;/h = —400MHz, §,/h = —-360MHz), (§;/h =—-200MHz, §,/h =
—180MHz) and (§;/h =—100MHz, 6,/h = —-90MHz). The other qubit parameters are
Ay/h=6GHz, A,/h=5GHzand J/h =25 MHz.

The results are shown in figure 4. At low driving strength, the gate speeds have good
correspondence with the expected dependence from the transition strength (equation (280)),
confirming the slowdown of the SD-CNOT gate for decreasing anharmonicity. This implies that
for weakly anharmonic qubits it is recommended to design the detuning between the qubits to

SE; (33)
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Figure 4. Numerical simulation of an SD-CNOT gate for three-level qubits with
weak anharmonicity. Black diamonds represent the SD-CNOT gate including
single-qubit phase gate corrections and the red squares represent the SD-CNOT
gate including arbitrary single-qubit gates. Panels (a), (b) are calculated for
anharmonicities of §;/h = —400 MHz, §,/h = —360 MHz, (c), (d) for §;/h =
—200MHz, §,/h =—180MHz and (e), (f) for 6;/h =—100MHz, §,/h =
—90 MHz. In panels (a), (c), (e) the gate error 1 — F is plotted against the driving
strength a;. Panels (b), (d), (f) give the corresponding gate speed J.i/J for
which fidelity is achieved. Dashed lines indicate the expected dependence from
equation (28b). The qubit parameters used are A;/h =6GHz, A,/h =5GHz
and J/h =25 MHz.

be relatively small, so the negative impact on the gate speed due to weak anharmonicity can
be minimized. Due to the low gate speeds, all the energy shifts induced by the driving and the
higher-lying levels are also more significant. For this reason, the simple analytical calculation
of the ac-Stark and Bloch—Siegert shifts of the control qubit (as was used for the calculation of
the data represented by the blue circles in figure 3) no longer gives useful results. Therefore we
do not plot the corresponding results in figure 4.

Another prominent feature is the decrease of the gate speed at high driving amplitudes.
One possible explanation for this effect is a competition between the SD-CNOT gate and an
ac-Stark-induced CPHASE gate. For figure 4(d) a plateau is observed at low driving strength.
This plateau is related to the CPHASE evolution caused by level shifts induced by the higher
energy levels of the qubits, and is therefore independent of the driving amplitude. As mentioned
before, a CPHASE-type error can be corrected by altering the duration of the two-qubit driving
and using single-qubit rotations. The plateau indicates that the CPHASE contribution to the final
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CNOT gate even dominates over the SD contribution. The origin of the plateaus in panels (d)
and (f) at high driving power is not known. The same holds for the sharp sudden increase in
error. Note, however, that at these points the driving strength is already higher than would be
advisable given the anharmonicity of the qubits.

A common approach to improving the gate speed and fidelity for weakly anharmonic qubits
is to use pulse shaping (see, for example, the DRAG method [58, 59]). This approach could lead
to improved gate speed and fidelity, but will not be discussed here.

In the experiment described in [41], a CR gate is performed. Given the close relationship
between the SD and CR methods, we calculate, for comparison, the SD performance for
the described system. The qubit parameters in this case are A;/h =5.854GHz, A,/ h =
5.528 GHz, §,/ h =225MHz, §,/ h = 255 MHz and J/ h = 6 MHz. The coupling J is estimated
from the values provided in [41]. Figure 5 shows the result of the simulations. The gate speed
in the simulations is in good agreement with the typical gate speeds in the experiment. With
these system parameters one achieves a relatively high effective coupling, primarily thanks to
the small detuning between the qubits. At very low driving strength we see a similar plateau
as that in the previous parameter set and attribute this again to the level shifts due to the states
outside the computational basis. From the fidelity data in figure 5(a), we conclude that the
leakage to these states is negligible at these driving strengths: if there were significant leakage to
these levels, the results obtained using the arbitrary single-qubit corrections, represented by red
squares, could not lead to the gate improvement observed, because the single-qubit corrections
we apply in the calculations cannot transfer back any state population that is lost during the
SD gate. The increase of gate error for the results with arbitrary single-qubit gate corrections at
a;/h = 0.1 GHz has not yet been understood. Also we do not see significant slowdown of the
gate at high driving strength as was measured in the experiment. A possible explanation for this
is that different pulse shapes were used, that in the experiment DRAG-type [58, 59] pulses were
also applied or that the presence of the resonator has an additional influence that is not covered
by our direct coupling model. Nevertheless, the calculation illustrates that a similar performance
can be expected for both the SD and CR methods.

7. Scalability

Let us now consider the scalability of the SD-CNOT gate to systems of more than two qubits.
We take a system composed of a one-dimensional (1D) chain of N transversely coupled qubits
and use the Jordan—Wigner transformation to turn it into a system of fermions occupying a 1D
lattice with N sites. The transformation is given by

6 =Ta-2éepa, (34a)
j<i

69 =Ta-2éepd. (34b)
j<i

60 =1-2¢¢, (34c)

where ¢ and ¢' are annihilation and creation operators,

SR
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Figure 5. Numerical simulation of an SD-CNOT gate for three-level qubits with
parameters similar to these of the experiment in [41]. The qubit parameters
used are Ay/h=5.854GHz, A,/h=5.528GHz, §,/h =225MHz, §,/h =
255MHz and J/h =6 MHz. Black diamonds represent the SD-CNOT gate
including single-qubit phase gate corrections and the red squares represent the
SD-CNOT gate including arbitrary single-qubit gates. In panel (a) the gate error
1 — F is plotted against the driving strength a,. Panel (b) gives the corresponding
gate speed J.¢/J for which fidelity is achieved. The black line indicates the
expected dependence from equation (28b).

and 6}, =11®1? . @6, ...®1W. This transformation transforms our original
Hamiltonian, i.e.
NooA N-1
- N A () A (41
H 22—7 Z(l)+ZJi,i+IO)C(l)O)C(l+ ), (36)
i=1 i=1
into
N N-1
7 AT A AT A A A AT At A A
H = Z Aic;ci + Z Jii41(C] Ci1 + €/, Ci + €[ €, + Ciy1C;) + coOnst. (37)

i=1 i=1

This Hamiltonian does not look much simpler than the original one. In order to obtain something
simple out of it, we now write the Hamiltonian as

H=(,...,¢,¢1....¢eN)MC,...,¢n, ¢ .. &) 4 const, (38)

where M is a 2N x 2N matrix. It is always possible to define new operators p; (with i =

1,2,..., N) that also obey Fermi statistics and for which the Hamiltonian takes the simple
form
I:I = ()/)fa ey '}/}]3-]9 ‘}/}1’ ey )/}N)M(‘j}la ey );Na )/}11-7 ey ),}Ij-l)transpose-i-consu (39)

with a diagonal matrix M (note that this step can be carried out by diagonalizing the matrix M).
In other words,

N
H= Z E; f/l.T ¥; + const. (40)
i=1
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The physical meaning of the above Hamiltonian is the following. We have defined new
creation and annihilation operators, which are combinations of the creation and annihilation
operators for the original fermions. With the new definition, the Hamiltonian has turned into a
Hamiltonian of non-interacting fermions. By diagonalizing the matrix M, we therefore obtain
the available single-particle energy levels for these newly defined particles. This transformation
can be interpreted as going from a description using the bare qubit states to a picture where
the states are dressed by the qubit—qubit coupling energies. For a system with fixed qubit—qubit
couplings, the dressed states are the most natural and physically relevant states to describe the
dynamics [60].

The total energy of the entire system is obtained by identifying which single-particle energy
levels are occupied and taking the sum of the energies of these levels. In other words, any energy
eigenstate can be expressed as f/f )7; e )A/kT |G), where i, j, ..., k denote the occupied single-
particle states and |G) is the ground state of the system. This derivation provides a somewhat
intuitive explanation to the result of [61], namely that the Larmor frequency of a given qubit
is independent of the states of the other qubits. Since the original Hamiltonian is equivalent to
a Hamiltonian that describes non-interacting fermions, it is natural that the change in energy
induced by the addition of one particle into a certain energy level is independent of whether
the other energy levels are occupied or not. This statement is independent of the strength of
the coupling: even for strong coupling, where the energy eigenstates of the spin system are
very involved (which corresponds to the fermion energy eigenstates having a large extension
in space), the symmetric energy-level structure is still preserved. The only requirement is a 1D
chain with a Hamiltonian of the form given in equation (36).

Now let us turn to the eigenstates of the Hamiltonian. In general, determining these
eigenstates is harder than determining the eigenvalues, because even the ground state has a
complicated form. The ground state |G) is defined by the set of conditions

vi1G) =0 (41)

for all values of i. In other words, there are no 7 fermions in the ground state. However, in the
language of the ¢ fermions, the above set of equations are not transparent at all and do not have
any simple solution in general. This difficulty could make calculations complicated. However,
we are mostly interested in the practical situation where the typical scale of the coupling energies
(J) 1s small compared to the typical energy scale of the difference between different qubit
splittings (§A). We can therefore perform perturbation-theory calculations where we start by
considering the case J = 0 first and then analyse the effect of adding a small coupling term.

In the case of zero coupling (J = 0), the matrix M is already diagonal, which means that
the 7 fermions coincide with the ¢ fermions. This means that each (single-particle) energy level
is localized at one lattice site with no tunnelling between these sites. The state of the entire
system is defined simply by specifying the occupation (0 or 1) of the different lattice sites. We
now add a small coupling term (J # 0). For simplicity, we first consider the condition that the
coupling strength is very small compared to the qubit Larmor frequencies (J < A; note that
here we use A, not §A) and make a rotating wave approximation, meaning that the terms in
equation (37) that create or annihilate two ¢ fermions are ignored:

N—-1
H~= Z Aléjél + Z Ji,i+1 (é\zé\iﬂ +63-+16i) + const. 42)

i=1 i=1
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This approximation leads to a conceptual simplification, because we now know that creating
a y fermion in a given energy level corresponds to creating a ¢ fermion in a quantum state
that is (in general) spread over the entire lattice, with no involved mixing between creation and
annihilation operators. Another important result of the above approximation is that the ground
state reduces to a very simple form. Regardless of the exact form of the operators y; in terms
of the operators ¢;, the set of conditions p; |G) = 0 leads to the set of conditions ¢; |G) =0,
such that the ground state corresponds to zero occupation of all the single-particle states in both
languages. Note that the number of particles is also the same for any state in both languages
(X ele=> 7).

With the above approximation, we have turned the Hamiltonian into a Hamiltonian that
conserves the number of particles (even in the language of the ¢ operators). Note also that
there are no interaction terms in the Hamiltonian. We can therefore proceed to calculate the
form of the operators ; by considering a single-particle problem. (This is allowed because
in the absence of interactions the form of the different single-particle wave functions will be
insensitive to whether other wave functions are occupied or not.) For this purpose we imagine
that there is only one particle in the system, and this particle can hop (i.e. tunnel) between the
different lattice sites.

When calculating the form of the single-particle wave functions, we use the condition
J < 8A. This condition implies that although the ¢ fermions can hop between different lattice
sites, the hopping matrix elements are small compared to the detuning between neighbouring
sites. As a result, the different single-particle states (i.e. those described by the y fermions) will
each be concentrated around one lattice site (recall that when J = O the states are completely
localized at individual lattice sites). One can calculate the spread of the states using perturbation
theory. Writing

N
=Y _¥i()é, (43)
j=1
we find that
J 2
i )=1+0 | — ’
Vi (i) + (M)
Ji J\°
w,-(i:I:I):’—il+0< )

Ai—Aim \8A
Jiiz1Jiz1i J\*
Pl = L g (E) ,
(A = Aix) (A — Aixo) (44)
J li—Jl
%(J)N((S—A) when |i — j| > 1.
Note that the above relation can be inverted straightforwardly:
N
&= ¥ (45)
j=1
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In principle, the localization situation changes when two or more lattice sites are degenerate.
For example, in the case of twofold degeneracy and an otherwise symmetric environment, the
(single-particle) energy eigenstates will be symmetric and antisymmetric superpositions of the
particle being at one of the two sites. However, provided that these degeneracies occur only
for largely separated lattice sites, the effective tunnelling matrix element will be exponentially
small at the distance between the two sites in question: (assuming j > i)

Jiivt Jiv1,iv2 Jia -1
X X PRI x _—
A=Ay A=A A — A

We can therefore ignore such long-range tunnelling and focus on the practically relevant case
when the 7 fermions and the ¢ fermions are almost equal, with exponentially decaying tails
describing the spread of the y fermions. This situation is related to the phenomenon of Anderson
localization, where disorder causes the single-particle states to be localized with exponentially
decaying tails.

We can now start performing the calculations for the Rabi frequencies. Before going into
long expressions, we make the following observation. If a driving signal is applied to qubit i,
the driving term in the Hamiltonian can be expressed in the language of fermions as

Hyge = [ [(1=2658)(é; +¢]) cos(at). (47)

j<i

X Jj—l,j- (46)

J, ij,effective ™

The relevant matrix elements for the purposes of evaluating the Rabi frequency of qubit k
therefore have the form

OPudn 9 | 7 [ [ =265 +ED) | 97+ Dl pal0), (48)
J<i

where the index i represents the driven qubit and the operators on the far right and far left
(i.e. those with indices m, n, ..., p) describe the state of the surrounding qubits. Let us now
assume that i and m are separated by a large distance. From the above localization argument,
we know that the fermion created by the operator 7, is concentrated mostly on one side of
site i (i.e. to the right if m > i and to the left if m < i), with only a very small probability of
occupying site i or crossing to the opposite side. As mentioned above, this probability decreases
exponentially with the distance between i and m. We can therefore make the approximation
that the operators (¢; +cA,.T) and 7' anti-commute and that the operators [] jai(l— 26;5 ;) and
p either commute or anti-commute, depending on whether m > i or m < i. Note that here
the operator [ | j<i(l— 26;5 ;) counts the number of particles to the left of site i and produces a
sign factor =1 depending on that number. This approximation, along with the anti-commutation
relations between the different y operators, allow us to move the operator ! from the far right of
the above expression to just right of the operator 7,,, with only a minus sign appearing whenever
m < i. The combination 7,7, applied to (0| does not affect the state, and these two operators
can be ignored. We conclude therefore that the effect of occupation of a distant single-particle
state is exponentially small and can be ignored. We now have to decide where to draw the line
between the states we will consider and the states we will ignore. Since we are interested in
the lowest-order corrections, we shall consider only the effect of the nearest-neighbour states,

which will produce the lowest-order corrections.
As a first step, let us consider the Rabi frequency of qubit i when driving only that
qubit. Since under our approximation we consider only the effect of occupation of the two
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neighbouring sites, we only need to consider a three-qubit system (the algebra can be easily
generalized to longer chains). It is straightforward to show that for driving qubit 1, we have

(0171(61+€D10) = (017271 (61 +ED P4 10) = (017371 (61 +ED) 4 10)
= (0127371 (E1 +EDNP3 75 10) = ¥ (1), (49)

and a similar relation applies to driving qubit 3. For driving qubit 2 we have

(0195 (1 = 26581) (65 +€5)[0) = v,(2), (50a)

O 721 = 26166+ ED910) ~ Y (2) | 1+ 20/, (505)
—_ — c ~ -

Vvl T e T am 2 (A1 — D) (Bs— A)(A — Ay )
. 2J% J2

01737, (1 = 2876 (6, + EDPTI0Y ~ ¥ (2) | 1 12723 : 50
(Oly3y2(1 = 2¢,c1)(C2+C3) v510) = Y )|: +(A1—A2)(A2—A3)(A1—A3)2 (50¢)
— 01717392 (1 =281 (@ + EDPIPT10) = ¥ (2). (50d)

Therefore the Rabi frequencies of qubits 1 and 3 (which are at the end of the chain) do not
depend on the state of the other qubits (this result holds even for longer chains and can be shown
rigorously using Wick’s theorem), while the Rabi frequency of qubit 2 shows some dependence
on the states of the surrounding qubits, with a spread that is of the order of (J/§A)*. These
results agree with the numerically derived results of [61].

We now turn to the Rabi frequencies when driving two qubits simultaneously in order to
implement the SD-CNOT gate. We now have driving terms applied to two qubits. As a result,
in addition to the expressions calculated above, we need to evaluate expressions of the form

O w7 | 7 [ [ =281 @a+EL) [ 9]+ DIPnl0). (51)
Jsi
As above, we ignore all the distant qubits. We consider a four-qubit chain with the driving
applied to qubit 3 such that qubit 2 changes its state (i.e. i = 2 in equation (51)). Here we take
a chain of length four, to incorporate also the influence of the nearest neighbour of the driven
qubit. The relevant matrix elements are given by

O [T —2¢1¢)) (@ +ED10) = 23, (52a)

J<2

— 1917, [ J(1 = 281¢))(@5+EDP/10) = 42 (3) + 2911 (4)

J<2
< 1121223-]34 ’ (52b)
(A1 — A3) (A — A3)(Ar — Ay) (A — Ay)
(01942 [ J(1 =281, +EDP10) = 42(3) + 2 (Y (3) ¥ (2), (52¢)

2
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— 017192 | [ =265+ DP9, 10) = ¥2(3) + 29 (¥ 3)¥2(2), (52d)

J<2
and similar expressions for the case when the operator 3 appears, e.g.
— (0171 P7aP [ J(1 = 2658)) (5 +ED P 1 7/10) = v (3). (53)
2

We therefore arrive at the main result of this section:

(O [ [(1 =261/ +E1)10) = ¥2(3), (54a)

j<2
J 6
—<0|ﬁ192j]1(1 —2¢58)(E5+ED7)10) = 2 (3) (1 +0 (ﬂ) ) : (54b)
. o J\?

<0|)>4J72j]:£(1 —26581)(&+ED7,10) = ¥, (3) (1 +0 (E) ) : (54¢)
o n A At atn 7\

—(01P1 792 | (1 = 2876+ D 7/10) = ¥(3) (1 +0 (S—A) ) : (54d)

j<2

and similar expressions for the case when the operator y; appears.

The relative error in the CNOT gate will therefore be of the order of (J /8 A)?. This result is
in agreement with the numerical calculations in [61], where also a spread of (J/8A)? is found
in the matrix elements for flipping qubit i when driving qubit i + 1, depending on the states of
the surrounding qubits.

The scaling of the error with (J/8 A)? is comparable to the other schemes for implementing
entangling of two-qubit gates. The SD-CNOT gate has, however, the added advantage that
the qubit level splittings need not be shifted. The shifting of energy levels gets increasingly
complicated in multi-qubit systems, where the multitude of levels makes it harder to avoid
crossing resonances that lead to unwanted evolution and entanglement. Also the freedom that
the qubits do not have to be nearest neighbour in frequency can make the design of a multi-qubit
system simpler.

8. Conclusion and discussion

We have theoretically analysed all the properties of the SD-CNOT gate that are important for its
implementation in experiments. In the weak-driving limit and in the absence of decoherence, the
fidelity of the gate is 100%. For increasing driving strength the fidelity of the gate decreases due
to the off-resonant driving of other transitions in the system. The off-resonant driving can induce
spurious excitation of these transitions and ac-Stark shifts of the levels, inducing an undesired
single-qubit and (entangling) two-qubit evolution. We analysed the strength of these effects
analytically, and in addition performed a full numerical simulation of the time evolution of the
system. For the SD-CNOT gate without extra optimizations, the numerical simulations show a
fidelity of 99% and 99.99% for gate speeds corresponding to 0.48/ and 0.07J, respectively. At
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high gate speeds the fidelity can be boosted by employing single-qubit correction pulses before
and after the two-qubit driving.

The gate performance was also analysed for multi-level qubits with weak anharmonicity of
the energy splittings. As expected, it was found that the gate speed for a specified fidelity goes
down for decreasing anharmonicity of the qubits. The energy shifts of the computational states
due to the higher levels and leakage to these higher levels can both play an important role. We
determined fidelities of 99% and 99.99% for gate speeds corresponding to 0.085 and 0.02§ (for
8 ~ 200 MHz). The gate speed can be increased by designing a relatively large coupling strength
or low detuning between the qubits, or both. Another possible route for increasing the gate speed
and/or fidelity for weakly anharmonic qubits is by using pulse shaping of the driving field.

The scalability of the SD-CNOT gate was also studied. For a 1D array of qubits the error
in the gate scales as (J/8A)?, which is comparable to the other schemes for implementing
entangling two-qubit gates. The SD-CNOT gate has, however, the favourable properties that
the qubit level splittings need not be shifted, and neither is it required that the qubits be
nearest neighbour in frequency. These properties can make a significant difference to the design
of multi-qubit systems. We conclude that, in terms of fidelity, gate speed and potential for
scalability, the SD-CNOT gate is a valuable addition to the existing range of entangling gates.
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Appendix A. Transformation to rotating frame

We start from the Hamiltonian and driving term as given by equations (1) and (3). For this
calculation we use the energy eigenbasis in the absence of the driving term (i.e. the states
|0), 1), |2) and |3) in equations (9)). The Hamiltonian without the driving term takes the form:

—V (A1 + 7)) +4)2 0 0 0
i :1 0 —V (A= Ay)2+4J2 0 0
L) 0 0 VA = A)2+4)2 0 ’
0 0 0 V(AL +A2)2+4)2
(A.1)
and the matrix elements of the driving term H 4y, (equation (3)) are given by
(11 H grive|0) = —ay sin 6, cos(wt + ¢1) + a, cos 6_ cos(wt + ¢,),
(2| H grive|0) = +a; c0s 6, cos(wt + ¢1) +as sin 6_ cos(wr + @),
(3|I—Aldrive |2) = +a, sin 8, cos(wt + @) +a, cos 6_ cos(wt + ¢,), (A.2)

(3|I:Idrive| 1) = +a; cos 0, cos(wt + 1) — a sin6_ cos(wt + ¢,),

(i1 Haivel ) = (1 Harive i) -
All other matrix elements vanish.
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We now make a transformation to a convenient rotating frame. This means that instead of
solving the Schrodinger equation for |1/), we solve an equation for

[¥) =T 0y), (A3)

where

o O O

Ut) = e“/" y= (A.4)

SO O S
oS O OO
SO OO

ho

Note that u is not the only possible choice that could serve our purpose here. Other
transformations will lead to the same result. .
The laboratory-frame state |y) satisfies the Schrodinger equation: ih% [v)=H |{¥). In

the rotating frame, the state |1Z) should also satisfy the Schrodinger equation: ih(f—t | IZ) =H |1Z).
From these equations the transformation is easily derived:

Al
H=UHU'"—ihU——
dt
—UHU' —u. (A.5)
With the total Hamiltonian given by H=H o+ H drive, this results in
I:Io = l}I:I()UT —Uu
= fAIO —Uu
Y (A1+§2)2+4]2 +ho 0 0 0
O A/ (A]-A2)2+412 0 O

= 2
) 0 o Erar . - (A6
2
0 0 0 @ — ho
I:Idrive = UﬁdriveﬁT- (A6b)

The matrix elements of H drive €an conveniently be split into H drive = V + W, where V contains
the time-independent and W the time-dependent terms:

(1|V]0) = €' (1|V|0)

e
% (—611 sin6, e +a, cos 6_ e—ié"z) ,
2] ‘7|0 = % (+a1 cosf, e ' +a,sin6_ e—iv&) ’
<3|‘7|2) = % (+a1 sinf, e ' + a, cos O_ efiwz) ’
3BV = ! (+a; cos 0, e —a, sinf_e™2)
@IV = (VI A7)
(1IW]0) = 1 (—a; sin, e +a; cos O_ e'¥) el
(2|W)0) = 1 (+a; cos 0, €' +a, sin O_ €1¢2) &2,
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(BIW2) =3
BIW|1) = 1 (+ai cos b, e —ay sinO_ e'2) e,
(i[IW1j) = (IWli)*.

Transforming back to the laboratory-frame, the matrix elements in the energy eigenbasis of 1%

and W are given by

(+a; sin 6, €' +a, cos O_ e'¥2) 2",

(11V10) = 1 (—ay sin6, e 7' +a, cos O_ e %) e~
2|V|0 %(4‘611 cosf, e —ior +a,sinf_e 1</J2) e—iwz’
(31V12) = L (+a; sin, e 1 + @, cos 6_e74?) e~
(A.8)
BIVIIL) = % (+Cll cosf,e ™ —a,sinb_ e—lwz) et

ANEXVIRAhN

@AWl =avin:.
From these equations we see that V describes the co-rotating and W the counter-rotating field
with respect to the Larmor precession of the system.

The representation of V in the uncoupled-qubit basis can be straightforwardly calculated
from the result of equation (A.8), however, the result is a rather involved and large matrix. The
main results of this appendix, i.e. the matrix elements in equation (A.7), can be reproduced
exactly by use of the terms HJ, and H arive s described in section 2.1. This approach is valid
for the purpose of calculating transition strengths, but for other purposes it can be necessary to
use the full representation Vand W.

Note that in the derivation in this appendix no approximations have been made: we have
only performed transformations and rearranged equations.

Appendix B. Quantum mechanical description of the driving field

In the other sections, we have treated the driving field as a classical field. In this section,
we provide a description of the driven system where the driving field is treated quantum
mechanically. With this description we verify some of the results on level shifts and gate errors
obtained using the classical field description. In addition the description provided here can be
used as a starting point to further investigate the strong-driving regime, maximum gate speed
and the related gate errors.

For this calculation, we use the dressed-state picture. We consider a model composed of
two qubits and a harmonic oscillator containing a large number of photons. In this picture the
Hamiltonian becomes time independent and the frequency of the driving field now appears as
hwb'b, where b and b' are the annihilation and creation operators of the quantized field. The
driving term a; cos(wt) in the original Hamiltonian (i.e. the Hamiltonian in which the driving
field is treated as classical) is now replaced by the operator g; (b+b"), where gi represents the
coupling strength between the resonator and qubit i.

We take the case where qubit 2 is the target qubit and where the |00) <> |01) transition
is to be darkened. In this case ¢; = ¢,. Again, for simplicity in the expressions, we take
¢1 = @2 = 0. Unlike in the weak-driving limit, we do not impose the relations iiw = E| — E|
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and a,/a, = sin6, /cos 6_. Instead, we leave the coupling strengths between the oscillator and
the two qubits as tunable parameters to be decided later.

Assuming that the qubit frequencies A; and A, are much larger than the coupling and
driving frequency scales, the energy-level structure breaks up into blocks of four energy levels
in each block, with negligible effects caused by the coupling between the different blocks. We
therefore consider the spaces spanned by the states [0, N+ 1), |1, N), |2, N) and |3, N —1). In
this space the Hamiltonian reads

0 —Cysinf;+Cycos0_ Cycosb,+Cysinf_ 0

~ —C;sinf,+Chcos6_ (E1— Ep) —hw 0 Cicosf, — Cysinf_

H = Cicosf,+Cysin0_ 0 (E, — Ep) —hw C;sinf, +C,cosO_ ’
0 Cicosf, —Cyrsinf_  C;sinf,+Crcos0_ (E;+E,—2Ey) —2hw

(B.1)

where C; = /N gi, with N the number of photons in the resonator, and we have made the
assumption that N is large, such that N ~ N + 1.

One can now argue that the condition for a darkened transition is that the two corresponding
energy levels must be degenerate: what corresponds to driven (Rabi) evolution in the previous
picture can be regarded as Larmor precession in the current picture, and for Larmor precession
to be suppressed the corresponding states have to be degenerate.

If we make the approximation that the driving amplitudes are small compared to the
detuning, the above Hamiltonian can be approximated as

0 —C;sinf,+C,cosb6_ 0 0

A —C;sinf,+Crcosb_ (E;— Ey) —hw 0 0

Ho™ 0 0 (Ey— Eg)—hw  C,sinf, +Cycosf_
0 0 Cisinf,+Crcos6_ (E1+ E, —2Ep) —2hw

(B.2)

and then it is obvious that the lowest two energy levels are degenerate for the choice of
parameters (E; — Ey) —hw =0 and —C;sinb, + C, cos0_ =0, which is actually a different
way of writing the condition derived in the semiclassical derivation (equation (13)).

When we do not make the approximation of small driving amplitudes, using the full
Hamiltonian in equation (B.1), the matrix elements Hy,, Hyy, Hi3 and Hz; will mix all the
quantum states to form the new, corrected energy eigenstates. If we think in terms of an order-
by-order expansion of the effects of these matrix elements, we can see that the matrix elements
Hy, and H,, will cause mixing and repulsion between the states |0, N +1) and |2, N), while
the matrix elements H;3 and Hs; will cause mixing and repulsion between the states |1, N) and
|3, N — 1). To first order, the corrected quantum states are:

CicosfB,.+C,sinb_

O,N+1) =[0,N+1)— 2,N), B.3
0N +1) = [0, N +1) = === re 2, W) (B.3a)

Cy cos, — Cysinf_
I1,NY = |1, N) — L8P 72 SP 3 vy (B.3b)
Ez—Eo—ha)

, Cicosb,+Cysinf_
2, N} = |2, N)+ 0, N+1), (B.3¢)
Ez— E()—ha)
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Cicost, —Cysin6_
BN—1) =3, N—1)+——+ 2 11, N), (B.3d)
E2 — Eo —how
and, to last order, the corrections to the energies (SE; = E; — E;) are given by

(Cycos b, +Cysinf_)>

SEy= —8E, = — , B.4
0 2 EZ—EO—ha) ( a)
C 0, — C,sin6_)?
SE = —8E, = (16086 —Cosin0 )7 (B.4b)
Ez—Eo—hw
With the above corrections, we have
, , 4C,C5cos 0, sin6_
El_E():El_E0+ , (B5a)
Ez—Eo—ha)
4C,C 0, sin6_
E,— Ej= Ey— E, — L2050 (B.5b)
Ez—Eo—ha)
2(Ccosb, +C,sinh_)>
E,— B = E — Ey+ 2\ C1E080: ¥ Casiné ) (B.5¢)
Ez—Eo—ha)
2(C;cosf, — C,sinf_)>
E.—E =FE;—E + : B.5
3 ! 3 ! Ez—Eo—ha) ( d)
and
(1, N|'Hg |0, N +1) = —C; sin, + C; cos 6_
C 0,)> — (Cysinf_)?
+(Cysinf, +Cy cosg) (L1608 = (Casinb )" (B.6a)
(Ez—Eo—ha))z
(3, N —1|'Hy |2, N) = C, sin8, + C, cos §_
C 0,)> — (C,sinf_)>
F(—C,sin6, +Cy cos o) L1080 = (Casind)” (B.6b)

(Ey — Ey — hw)?

The above equations can now be used to determine the modified conditions for performing
the desired operation. One requirement for suppressing the |0, N +1) <> |1, N) oscillations is
that the parameters C;, C, and w are chosen such that the matrix element (1, N|’ H, 0, N +1)
(equation (B.6a)) vanishes. And in order to obtain full oscillations between the states
|2, N) and |3, N — 1), the driving frequency  must match the energy difference E} — E}
(equation (B.5b)). These equations can be solved iteratively starting from the weak-driving
relations and calculating corrections. Note however that at some level of accuracy one would
need to take into account the coupling between the different blocks in the dressed-state
ladder.

It is, however, clear from the above results that strong driving does not simply result
in harmless modifications to the required driving frequency and the ratio between the two
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driving amplitudes. We identify three processes influencing the performance of the gate.
The first effect is related to the energy shifts in the transitions with splittings E) — E{, and
E} — E| (equations (B.5c) and (B.5d)). They contain a common shift of 2[(C; cos 0,)> +
(C,sin6_)?]/(E, — Ey — hw). This shift represents the ac-Stark shift of the control qubit. For
small 6, and 6_, we obtain 2C 12 /(E, — Ey — hw), which is the analogue of the ac-Stark shift
calculated in section 4.2 (an estimate for this shift using typical experimental parameters is
provided there).

Both the control-qubit and target-qubit transitions also get shifted with an amount that is
opposite for the two associated transitions: +4CC;, cos b, sinf_/(E, — Ey — hw). What this
result means is that during the operation of the CNOT gate, an effective 6/6* term appears,
which induces a (partial) CPHASE gate, and prevents us from obtaining an ideal CNOT gate.
This error is the equivalent of the CPHASE-type error discussed in section 4.2. If we take
J < A; — A, and the case of strong driving (i.e. C; ~ A; — A,) we find that the undesirable
6V6® term has a coefficient that is of the order of J?/(A; — A,), which causes small errors
on the timescale of a CNOT gate, which is given by J~!. As discussed earlier, CPHASE-type
errors can also be corrected with single-qubit gates.

Lastly, when the matrix elements Hy,, H»), Hi3 and Hi3; cannot be neglected, it is not
possible for any pair of energy levels to be degenerate, which is a general rule of quantum
mechanics. As a result no transition can be completely darkened in this case, regardless of the
choice of the parameters Cy, C, and w. To first approximation this source of errors can be
regarded as performing an additional single-qubit rotation, which is relatively easy to correct
for in experiments.

The results provided in this appendix can be used to perform a detailed numerical study for
optimizing the different parameters in order to maximize the fidelity of the CNOT gate in the
case of strong driving. However, we shall not do that here.
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