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A new generation of microscopic ratchet systems is

currently being developed for controlling the motion of

electrons and fluxons, as well as for particle separation

and electrophoresis. Virtually all of these use static

spatially asymmetric potential energies to control

transport properties. Here we propose completely new

types of ratchet-like systems that do not require fixed

spatially asymmetric potentials in the samples. As

specific examples of this novel general class of

ratchets, we propose devices that control the motion of

flux quanta in superconductors and could address a

central problem in many superconducting devices;

namely, the removal of trapped magnetic flux that

produces noise. In layered superconductors there are

two interpenetrating perpendicular vortex lattices

consisting of Josephson vortices (JVs) and pancake

vortices (PVs). We show that, owing to the JV–PV

mutual interaction and asymmetric driving, the a.c.

motion of JVs and/or PVs can provide a net d.c. vortex

current. This controllable vortex motion can be used for

making pumps, diodes and lenses of quantized magnetic

flux. These proposed devices sculpt the microscopic

magnetic flux profile by simply modifying the time

dependence of the a.c. drive, without the need for

samples with static pinning—for example, without

lithography or irradiation.

N
ew microscopic ratchet systems1–9 are currently being devel-
oped for controlling the motion of particles. The controlled
transport of magnetic flux quanta in superconductors7–9 could

be very useful for designing micromagnetic flux quanta machines
such as magnetic flux pumps, diodes and lenses in order to create
desired magnetic profiles within the sample or device. In contrast
with many other systems, the density of magnetic vortices as well as
the strength and range of their interaction can be easily modified
by an external magnetic field and temperature. This ‘tunability’
of vortex arrays gives rise to very rich equilibrium and non-
equilibrium properties10–15 and makes them ideally suited for
regulating the motion of magnetic flux quanta. However, the
potential-energy landscape where vortices move is usually dis-
ordered, hard to manipulate, and permanently fixed after the sample
is fabricated; limiting the degree of control on the motion of flux
quanta. Therefore, it would be greatly desirable to have a much more
adjustable and malleable pinning landscape. This can be realized for
vortices in strongly anisotropic layered superconductors such as
Bi2Sr2CaCu2O8þd.

Direct visualization16–20 as well as magnetic21 and transport22,23

measurements clearly show that a magnetic field tilted away from
the crystalline axis penetrates a strongly anisotropic layered super-
conductor as two interpenetrating vortex arrays, known as a cross-
ing or combined vortex lattice24,25. One vortex sublattice consists of
stacks of pancake vortices (PVs) aligned along the c axis, whereas the
other sublattice is formed by Josephson vortices (JVs) confined
between layers (Fig. 1). Superconducting currents generated by JVs
deform stacks of PVs inducing their local inclination25–28. The
energy of the curved pancake stack depends on its position with
respect to the JV sublattice, causing PV–JV mutual pinning. This
pinning has been experimentally observed16–20 through the for-
mation of PV chains alternating the regular triangular PV lattice
in tilted magnetic fields.

In contrast with the usual random frozen pinning attributed to
local inhomogeneities in the sample, the PV–JV pinning provides a
periodic potential with a strength and spatial period which are easily
changed by the in-plane magnetic field. Another remarkable feature
of the crossing-lattice pinning is its mobility under the action of
driving forces applied to the JV sublattice. For example, an applied
d.c. current flowing along the c axis drives the JV sublattice, which,
in turn, drags PVs, generating an in-plane d.c. electrical current and
vice versa. In such a device with d.c. input and d.c. output, the
velocities of both the PVs and JVs are the same, which leads to a
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tunable voltage transformer of perpendicular voltages Uc and Uab

along the c axis and along the JVs respectively. The voltage ratio
Uab=Uc ¼HcL=Habd can be tuned to an appropriate value by
varying the in-plane Hab and out-of-plane H c magnetic fields, at
fixed sample length L along the JVs, and c-axis thickness d. Since the
ab-plane resistivity is quite low, our proposed voltage transformer
might be easier to realize as a current transformer.

In this paper, we study how an a.c. (electrical or magnetic)
driving can produce d.c. vortex transport without adding fixed pins
in the sample. That is, there is no need to use either lithography,
irradiation, or any other way to introduce a fixed spatial asymmetry

in the sample. This provides many advantages, including greatly
simplifying the experimental set-up, and also the possibility of
modifying at will the type of asymmetry generated inside the
sample, because this is controlled by the time-dependent applied
current or external field. In this context, we propose three different
types of vortex devices (pump, diode and lens), shown in Fig. 1. The
vortex pump in Fig. 1a uses an applied time-asymmetric a.c. current
along the c axis to generate d.c. vortex motion. As sketched in Fig. 2,
this vortex pump can operate in two different modes: (1) ‘conveyor
drag’ mode, when the d.c. transport of both PVs and JVs is induced
by the slow common motion of both PVs and JVs in the forward
direction, followed by a fast backward jump of now free JVs which
leave behind the unloaded PVs; and (2) stochastic ‘ratchet’ mode,
where non-equilibrium thermal fluctuations of PV stacks are
rectified by the asymmetric time-averaged potential generated by
the oscillating JVs. This asymmetric potential can also be used for
rectifying the deterministic low frequency a.c. motion of PVs in the
vortex diode (Fig. 1b). The vortex lens (Fig. 1c) uses an applied
time-asymmetric a.c. magnetic field to increase or decrease the PV
density at the centre of the sample.

MUTUAL ATTRACTION OF PVs AND JVs

This mutual pinning can be estimated by considering the compe-
tition between the elastic force, reducing the bending of pancake
stacks, and the bending-producing Lorentz force induced by the in-
plane currents of the JVs25,26. Hence, the energy of a PV stack at a
point x (z axis along the c axis and y axis along the JVs; see Fig. 1a) is
determined by the energy functional E½up� ¼

Ð
dz½ ~U44u2

pðx; zÞ=2 2

ðF0=cÞjJðx; zÞupðx; zÞ�: Here, up is the y-axis displacement of the
PV from a straight line; Ũ44 is the tilt stiffness of the PV stack; and j J

is the in-plane current density associated with the JVs. In the
presence of JVs, the (originally straight) PV stacks bend. Its new
equilibrium state corresponds to the minimum of the energy
functional E with respect to u p, that is, the balance of the Lorentz
and elastic forces. Because of the spatial variation of the in-plane JV
currents j J(x), the energy EPV ðxÞ ¼minup

ðE½up�Þ of the bent PV
stack depends on its location x within the JV sublattice. This results
in the effective potential per PV: Uð0 , x , aJ=2Þ ¼
2 pðs=bJÞ

210{coth½pð
ffiffiffi
3
p

x=aJ þ s=bJÞ�þ coth½pð
ffiffiffi
3
p
=2 2

ffiffiffi
3
p

x=aJ þ
s=bJÞ�}; where 10 ¼ F2

0=ð4pg2s lnð1þ gHabl
2
ab=F0ÞÞ (ref. 25) is the

energy scale of the PV–JV interaction, aJ ¼ ð
ffiffiffi
3
p

gF0=2HabÞ
1=2 and

bJ ¼ ð2F0=g
ffiffiffi
3
p

HabÞ
1=2are the in-plane and out-of-plane constants

of the JV sublattice, F 0 the flux quantum, l ab the in-plane

 

Figure 1 Schematic diagram of three experimentally realizable devices

designed for controlling the vortex motion. These use extremely anisotropic

superconductors, such as Bi2Sr2CaCu2O8þd, placed in magnetic fields tilted away from

the c axis, where there are two vortex subsystems consisting of PV stacks, indicated by

red circles, and JVs, shown in blue. a, shows a pump of opposite-moving PVs and

JVs, b, a PV diode, and c, a ‘lens’ that focuses PVs and defocuses JVs, or vice versa.

The vortex pump in a transforms the input time-asymmetric a.c. electrical current

flowing along the c-axis into d.c. flux currents of PVs and JVs moving in opposite

directions, indicated by the green arrows. The degree of temporal asymmetry of the

zero-averaged kJðt Þl¼ 0 input current J ðt Þ can be quantified by its third moment

kJ 3ðt Þl – 0: The vortex diode in b rectifies the applied in-plane a.c. current using the

time-averaged spatially asymmetric effective potential generated by the high-frequency

JV oscillations produced by an applied a.c. c-axis current. The vortex lens in c employs

an applied time-asymmetric a.c. magnetic field to either increase or decrease the

vortex density at the centre of the sample. Here, the in-plane field is ha:c:ðt Þ ¼ hof ðnt Þ,

where f is a periodic function. When the PV density increases at the centre, the

JV density decreases, and vice versa. The two irradiated edge regions with enhanced

pinning, shown in grey, prevent sideways leakage of PVs.
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Figure 2 Modes of operation of the vortex pump. A Dimensionless potential energy ~U¼U=ðpðs=bJ Þ
2e0Þ felt by the PVs at different positions x with respect to the JV

lattice where w is the effective width of the potential determined by the core of a JV. B The conveyor operating mode of the vortex pump. B, a shows an example of a strongly

asymmetric zero-averaged input a.c. electrical current. B, b presents a sketch of how the vortex transport proceeds. The slow common motion of both PVs and JVs shifts the

green PV stacks forward (to the right) on the first stage of the a.c. period, and the fast backward-moving JVs leave behind the PVs during the remaining part of the cycle. Relative

PV–JV positions are shown at the moments flagged by the orange circles in the J(nt) plot (B, a). Owing to a very anisotropic viscosity, the JVs shift further to the left than to the

right. Thus, the JV walls marked as 1st, 2nd, 3rd, and 4th move to the left and different JVs (labelled here by n, n þ 1, n þ 2, and n þ 3) come into the displayed region.

Repeating this process provides two opposite net d.c. motions involving both the PVs and the JVs. C Ratchet operating mode of the vortex pump. C, a presents the location x 0

(shown in the horizontal axis for convenience) of a JV wall plotted versus the dimensionless time nt during one cycle. Three examples are shown; two (orange and purple) are

asymmetric in time. Note the larger velocity near x 0 ¼ 0 for all trajectories. C, b shows the dimensionless ‘effective’ ratchet potential, m~¼ m=ðpðs=bJ Þ
2e0Þ; felt by the PVs,

obtained by time-averaging the PV–JV potential in A over the oscillations of the JVs shown in C, a. Remarkably, m does not depend on the time asymmetry controlled by t 0.
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penetration depth, s the interlayer distance, and g the anisotropy
parameter. The washboard-type potential U(x) felt by the PVs
(Fig. 2A) is periodic, with spatial period a J/2, and potential-well
depth of about s10/b J.

PANCAKE VORTEX PUMP

The pancake vortex pump in Fig. 1a converts the time-asym-
metric oscillations of the JVs, induced by the time-asymmetric
applied a.c. c-axis current, into a d.c. drift of both PVs and JVs.
The overdamped oscillations, with frequency n, of the JVs
produce a swinging potential Uðx 2 x0ðntÞÞ for the PV stacks.
The coordinate x0(t) of a chosen JV obeys hJ dx0=dt ¼ ðF0=cÞJðntÞ;
with zero time-averaged c-axis current density J ðkJl ;
n
Ð 1=n

0 JðtÞdt ¼ 0Þ; viscous drag coefficient h J, and speed of light
c. There are two different working regimes, depending on the
intensity of the a.c. driving current.

CONVEYOR BELT MODE

The simplest mechanism for the d.c. flux transport is based on the
velocity-dependence of the drag of PVs by JVs. If the velocity V slow

of the forward-moving JVs is slow enough, the PV stacks remain
trapped on the JVs and both move together to the right (during the
slow-moving stage of Fig. 2B, b). In order to keep PVs pinned by JVs
during this slow-moving stage, the viscous force slowing down the
PVs has to be smaller than the maximum mutual pinning force
f pin , 10=aJ ; that is, hpsV slow , f pin; with the viscous coefficient h p

per unit length of a PV stack. On the way back, the JVs must
suddenly move fast (with velocity V fast such that hpsV fast . f pin) in
order to throw the PVs out of the JV–PV mutual potential wells and
leave them behind (during the fast-moving stage of Fig. 2B, b).
Thus, the PVs shift to the right and stick to other JVs at the beginning
of the next period. Repeatedly cycling this motion provides a d.c.
PV drift, which generates an in-plane d.c. electrical current.

Furthermore, the PV–JV common slow motion is more viscous
ðhslow

J ¼ hbare
J þ hpHc=HabÞ than the uncoupled fast motion of ‘free’

JVs leaving behind unloaded fixed PVs ðhfast
J ¼ hbare

J Þ: Here, it is
important to stress that there is a difference of about five orders of
magnitude in the PVand ‘bare’ JV viscosities. These can be evaluated
from the following equations hbare

J , F2
0=ð2pgs2c2rcÞ and hp ,

F2
0=ð2py2

abc2rabÞ; where rab and r c are the in-plane and out-of-
pane normal state resistivities, and yab the in-plane coherence
length. Therefore, the JVs feel an extremely anisotropic viscosity,
which rectifies their own motion inducing an output c-axis d.c.
electrical current. The d.c. velocities of the PVs and JVs can
be evaluated as kVpl < F0Jslow=chslow

J and kVJl < F0Jslowð1=h
slow
J

21=hfast
J Þ=c; for the strongly time-asymmetric a.c. input current

densities J slow and J fast for the slow and fast stages. Here, the time
asymmetry G can be measured by the ratio J fast=Jslow ¼ tslow=tfast ¼
G .. 1; with respective time intervals t slow , t fast (Fig. 2B, a). With
increasing current at a fixed G, the d.c. PV and JV velocities
monotonically increase until the PV–JV common slow velocity
exceeds its maximum value Vmax

slow ¼ f pin=ðhpsÞ; which happens at
the depinning current density Jslow ¼ Jdepin , c10h

slow
J =ðaJ sF0hpÞ:At

higher currents, J slow . J depin, the conveyor belt mode can be no
longer sustained because the PVs cannot follow the JVs, even during
the slow-moving stage.

RATCHET RECTIFIER

At high enough input current, J slow . J depin, the vortex pump
operates in another mode—the ratchet rectifier—where thermal
noise plays a key role in the net PV transport. In this working
regime, the influence of the PVs on the high-frequency overdamped
oscillations of JVs seems to be negligible. Nevertheless, the ‘free’ PVs
still feel the time-averaged mutual potential energy mðxÞ ¼
n
Ð 1=n

0 Uðx 2 x0ðntÞÞdt; rather than its instant value. If such an
effective potential m is asymmetric in space, it rectifies the non-
equilibrium thermal fluctuations of the PV stacks, producing a net

 

Figure 3 The motion of the PV stacks can be controlled by changing input parameters. a Net average PV velocity versus degree of time-asymmetry t 0, and b versus

in-plane driving current amplitude J̃ab for the vortex pump (ratchet mode) and vortex diode, respectively. In the vortex pump (a), the net PV velocity can take a desired value by

changing t 0 and/or the direction of the applied c-axis current, determined by its amplitude Jo. In the vortex diode (b), the inversion of the c-axis current inverts the net d.c. PV

velocity, and its absolute value is controlled by the intensity J̃ab of the applied in-plane a.c. current. We have here chosen the following parameters: Hc ¼ 28 Oe; H ab ¼ 500 Oe;

g ¼ 100, T ¼ 30 K, T c ¼ 90 K, n ¼ 1.4 GHz, which are representative for Bi2Sr2CaCu2O8þd. The inset shows an example of the time-averaged asymmetric potential m~ðx Þ

generated by symmetrically oscillating JVs with a time dependence given by x 0 ¼ aJ sin4ðnt Þ=4:

ARTICLES

nature materials | VOL 1 | NOVEMBER 2002 | www.nature.com/naturematerials182



transport of PVs. The average potential m at the point x is quite
robust with respect to changes in the PV–JV interactions. Indeed,
the potential m(x) is essentially determined by how much time an
energy well, with ‘effective’ width w and depth m0 (Fig. 2A), spends
at that position. That is, mðxÞ< 2m0n½w=j _x

þ
0 ðxÞj þw=j_x2

0 ðxÞj�;
where _xþ0 and _x2

0 are the forward and backward velocities at
which the well passes by x (for simplicity, we assume that the
amplitude A of the JVoscillations is smaller than half of the interwell
distance aJ/4). This estimate for m(x) is consistent with the time-
averaged potential m(x) that has the spatially-asymmetric smooth
‘sawtooth’ shape (Fig. 2C, b) here with A¼ aJ=4: To obtain the
potential shown in Fig. 2C, b, the time dependence of the oscil-
lations was chosen as x0 ¼ 2A

ffiffiffiffiffiffiffiffi
t=t0

p
; for 0 , t , t0; and x0 ¼

2A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 2 ntÞ=ð1 2 nt0Þ

p
; for t0 , t , n21 (see Fig. 2C, a). The JV

turning-point time t 0 quantifies the degree of asymmetry with t0 ¼
n21=2 for the symmetric signal. The most pronounced ratchet
potential can be achieved if the neighbouring potential wells do
not overlap during the oscillation: 2A & aJ=2: This inequality,
aJ=2 *

Ð t0

0 dt F0JðntÞ=ðchbare
J Þ, F0

ffiffiffiffiffiffiffi
kJ2l

p
=ðnchbare

J Þ; gives an esti-
mate of the optimal frequency needed for the generation of a
‘sawtooth-shaped’ ratchet potential, noptimal , F0

ffiffiffiffiffiffiffi
kJ2l

p
=ðcaJh

bare
J Þ:

Moreover, we find that the motion of PVs can be easily controlled
(see Fig. 3a) by changing the temporal asymmetry or direction of the
c-axis current (see Methods).

VORTEX DIODE

The vortex diode shown in Fig. 1b uses the ratchet potential
generated by the oscillating JVs, which are driven by a high
frequency c-axis current, to rectify the applied a.c. current Jab ¼
~Jab sinðn1tÞ flowing along the in-plane magnetic field (both along the
y axis). Instead of a time-asymmetric c-axis current, previously
needed for inducing a d.c. current in the vortex pump, now the
rectification of the in-plane a.c. current in the vortex diode is only
governed by m(x). Indeed, the rectification for the vortex diode does
not depend on the time asymmetry because the ratchet potential
m(x) does not depend on the turning-point time t 0 (Fig. 2C, b). In
contrast, m(x) reflects to m(2x) when the c-axis current is inverted
J ! 2J; resulting in a sign change of the PV d.c. velocity in the
vortex diode. It can be shown that the condition for generating d.c.
PV motion through the vortex diode is 2Jðt 2 ~t Þ– JðtÞ for an
arbitrary time shift t̃. For instance, the time-symmetrical JV oscil-
lations x0/ sin4ðntÞ; which satisfies the last inequality, generate the
time-averaged spatially asymmetric ratchet potential shown in the
inset of Fig. 3b.

The physical concept underlying the vortex diode operation is
somewhat different from the vortex pump in the ‘ratchet’ mode. The
stochastic transport used in both devices requires a spatial asym-
metry as well as a non-equilibrium state. The first condition, the
breaking of the spatial symmetry, is realized by the oscillations of JVs
in both devices. However, in contrast to the vortex pump, kept out of
equilibrium by the asymmetric swinging of the mutual PV–JV
potential, the vortex diode is kept out of equilibrium mostly by
the applied a.c. in-plane current. Thus, the vortex diode can be
considered as an a.c. tilting ratchet4. In such ratchets, the d.c. current
does not go to zero when T ! 0 if a strong enough a.c. driving is
applied. It shows that thermal fluctuations only support the d.c.
motion, which is mostly governed by a deterministic a.c. force
(associated here with the in-plane a.c. current).

The direction of the rectified current through the vortex diode
can be easily changed by the inversion J ! 2J of the c-axis current,
whereas the absolute value of the output d.c. PV velocity can be
tuned by changing the intensity J̃ab of the in-plane a.c. drive (Fig. 3b
and Methods). The vortex diode operates well if all relevant energy
scales are of the same order, that is, kBT & Dm ; ½maxðmðxÞÞ2
minðmðxÞÞ�; F0

~JabsaJ=2c , Dm; giving the following estimates:

T & 10 K, ~Jab , 4 kAmp cm22 at Hab < 300 Oe; g ¼ 100, s ¼ 15 Å,
and l ¼ 2,000 Å.

VORTEX LENS

The vortex lens in Fig. 1c can be considered as two joined vortex
pumps pushing vortices in opposite directions7,9. Two edges of the
sample can be irradiated in order to increase pinning and to prevent
the leakage of PVs along the direction of Hab. A possible operating
mode of a vortex lens can be to slowly increase the in-plane field,
from 0 to Hmax

ab ; for a fixed value H c of the out-of-plane magnetic
field. The increasing ab magnetic field slowly drives JVs from the
edges to the centre of the sample. In turn, JVs pin PVs and drag them
along to the centre. As a result, PVs accumulate in the middle of the
lens. The upper bound for the magnetic lensing efficiency can be
estimated by considering the maximum PV density gradient kept by
the JVs, that is, by equating the pinning force 10/a J to the magnetic
pressure F0sjh1 2 h2j=4plab acting on a PV trapped by a JV (and
trying to push the PV out of the well), with the out-of-plane
magnetic fields h1 and h2 to the right and left of this JV wall.
Therefore, the maximum c-axis field gradient towards the centre of
the sample is about jdHc=dxjmax , 8p10lab=F0a2

J s; corresponding
to the critical current density Jcrit , cHablab=4pg3s2 ,
2 £ 105 A cm22; for g ¼ 300, lab ¼ 2;000 �A; s ¼ 15 Å and
Hab ¼ 300 Oe, for Bi2Sr2CaCu2O8þd. In addition, the many PVs
that are squeezed towards the centre of the sample prevent JVs from
moving towards the centre. This, in turn, creates a gradient of JVs
associated with the c-axis current Jc , JabaJ bJ=ðlabapÞ; because
›Hab=›x , ›Hc=›x · aJbJ=ðlabapÞ:

If the superposition HabðtÞ ¼Hd:c:þ ha:c:ðtÞ of the d.c., H d.c.,
and relatively weak time-asymmetric a.c., h a.c.(t), magnetic fields is
applied, the JVs are asymmetrically pulled in and pushed out of the
sample. By analogy with the vortex pump, the time-asymmetric JV
motion provides the PV transport either towards the centre of the
sample (convex lens for PVs and concave lens for JVs) or towards the
surface (opposite lensing effect). An important advantage of such an
a.c.-driven vortex lens is that the switching between convex and
concave PV lenses can be easily performed by changing the asym-
metry of the applied a.c. field, such as n ! 2 n. The PV lens
operates properly if the JVs move throughout the whole sample,
that is, the sample size L is larger than the skin depth
d¼ c½rc*ðHÞ�

1=2=ð2p
ffiffiffi
n
p
Þ; where rc* is the measured c-axis resistivity.

Thus, the maximum frequency of the a.c. magnetic field h a.c. is
about nmax ¼ c2rc*=4p2L2 , 2 GHz for rc*¼ 1 Ohm cm and the
sample length L ¼ 0.1 cm along the x axis.

Note, that the joint dynamics of the JVs and PVs discussed in
this work can be very important for understanding a broad class of
dynamical phenomena for Bi2Sr2CaCu2O8þd in tilted magnetic
fields, especially close to the ab plane. These effects have recently
begun to be studied experimentally29–32, and a detailed theoretical
analysis is still missing. For example unusual oscillations in the c-
axis resistivity, followed by a sharp drop, have been found30,31 when
increasing a magnetic field oriented close to the ab plane. Because
the mutual PV–JV attraction increases with the in-plane magnetic
field ðf pin , 10=aJ /

ffiffiffiffiffiffiffiffi
Hab

p
Þ; this behaviour could be attributed to a

dynamical commensurate–incommensurate phase transition of the
JV and PV lattices, that is, a succession of stick-slip partial trappings
of PVs by JVs, followed by a complete trapping of PVs by JVs at high
enough magnetic field, resulting in the low resistance common
PV–JV motion.

In conclusion, we have proposed several experimentally realizable
devices that can easily control the motion of magnetic flux quanta in
very anisotropic superconductors, such as Bi2Sr2CaCu2O8þd, and
could be used in different types of micromagnetic machines.
Combinations and extensions of these novel types of devices,
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which use the PV–JV mutual potential, can achieve an unprece-
dented level of control of the transport of vortices, and effectively
open the possibility of sculpting complex microscopic magnetic flux
landscapes. These effects could be easily visualized by the local
magnetic flux probes that have been developed, including Lorentz
microscopy13–17 scanning probes (including Hall18,33, SQUID
(superconducting quantum interference device) and scanning
tunelling microscopy), Hall arrays, and magneto optics19,20,34. More-
over, this radically new approach to control particle motion (with-
out a fixed spatial asymmetry in the sample) is quite general, not
restricted to crossing lattices, and applicable to any mixture of
interacting particle species driven differently (for example, because
of different magnetic moments or different charges) by the same a.c.
time-asymmetric force.

METHODS

NET AVERAGE PANCAKE VORTEX VELOCITY

For a vortex pump working in the ratchet mode, the PV wandering induced by thermal noise can be

studied by using the Fokker–Plank equation written for the PV stack density n: hps›n=›t ¼ ›=›x{U 0
ðx 2

x0ðtÞÞnþ kBT›n=›x}; where k B is the Boltzmann constant and T the temperature. In the high-frequency

limit, we can expand the vortex current with respect to the reciprocal of the frequency n, up to first order,

and obtain an expression for the net PV velocity:

kVpl¼
l

hps

ðl

0

dx

ð1

0

dt U
00
ðx 2 x0ðtÞÞþ

ðm
0
ðxÞÞ2

kBT

� �

£

ðt

0

U
0
ðx 2 x0ðt~ÞÞdt~2 tm

0

� �

£ n

ðl

0

exp
mðx�Þ

kBT

� �
d�x

ðl

0

exp 2
mðx~Þ

kBT

� �
d~x

� �21

ð1Þ

with t ¼ nt and l ¼ a J /2 and the prime denotes a derivative: 0 ¼ ›=›x. In strong contrast to the

temperature-independent vortex d.c. motion in the ‘conveyor belt’ mode, the net current (1) tends to zero

as the temperature goes to zero for the ‘ratchet rectifier’ regime. This indicates that the non-equilibrium

thermal noise drives the PV vortices in the latter mode, as opposed to the deterministic net vortex

transport in the conveyor belt regime. According to (1), the net PV velocity depends linearly on the

asymmetry time, n21/ 22t0, and changes sign when switching the time asymmetry of the a.c. input

current, for example, when n ! 2n or t0 ! n21= 2 2 t0 : In addition, the PV velocity kV pl also changes

sign as the a.c. current is inverted J ! 2J.

Now we consider the vortex diode case. If the frequency of the in-plane a.c. current flowing through

the vortex diode is low enough, we can estimate the net d.c. PV velocity as

kVpl¼
n1

hps

ðn21
1

0

dt
kBTlð1 2 expð2FðtÞl=kBTÞÞÐ l

0 dx
Ð lþx

x dy exp½ðmðyÞþ FðtÞx 2 mðxÞ2 FðtÞyÞ=kBT�
ð2Þ

by applying the adiabatic approximation35 to the Fokker–Planck equation having the a.c. tilting ratchet

potential as mðxÞ2 FðtÞx; where the a.c. Lorentz force per PV is FðtÞ ¼ F0J~abs sinðn1tÞ=c:

Received 2 July 2002; accepted 17 September 2002; published 27 October 2002.
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