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Abstract. We analyze the information that one can learn about the state of a
quantum two-level system, i.e. a qubit, when probed weakly by a nearby detector.
In particular, we focus on the case when the qubit Hamiltonian and the qubit’s
operator being probed by the detector do not commute. Because the qubit’s
state keeps evolving while being probed and because the measurement data is
mixed with detector-related background noise, one might expect the detector
to fail in this case. We show, however, that under suitable conditions and by
proper analysis of the measurement data useful information about the state of the
qubit can be extracted. It turns out that the measurement basis is stochastically
determined every time the experiment is repeated. We analyze in detail the
probability distributions that govern the choice of measurement bases. We also
analyze the information acquisition rate and show that it is largely unaffected by
the apparent conflict between the measurement and intrinsic qubit dynamics. We
discuss the relation between our analysis and the stochastic master equation that
describes the evolution of the qubit’s state under the influence of measurement
and decoherence. In particular, we write down a stochastic equation that
encompasses the usual stochastic master equation for the evolution of the qubit’s
density matrix and additionally contains the measurement information that can
be extracted from the observed signal.
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1. Introduction

Quantum measurement is a subject of importance both as a central part of quantum theory [1]
and for its relevance to quantum information theory [2]. At the most basic level, the
measurement is commonly thought of as a sudden projective operation that leaves the measured
system in an eigenstate of the probed operator. It should be kept in mind, however, that the
measurement process is a physical process that follows from a physical interaction between the
measured system and the measuring device. As a result, any realistic measurement is carried
out over a finite duration. One can therefore have the situation where the measurement process
occurs concurrently with other physical processes. This is the situation that we consider in
this paper.

Although the analysis and results of this paper should be valid for a variety of different
physical settings, we find it useful to formulate the analysis in terms of a specific setup. In this
paper, we use the example of a double-quantum-dot charge qubit that is probed by a quantum
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point contact (QPC) [3]–[14]5,6. The principle of the measurement is the fact that the current in
the QPC is sensitive to the charge state of the qubit. By measuring the current passing through
the QPC, one can infer the state of the qubit. One limitation that arises in practical situations is
that, in order to minimize the effects of the detector on the qubit at times when no measurement
is performed (e.g. during the implementation of quantum gates), the qubit–detector coupling is
set to a value that is small compared to the qubit’s energy scale. As a result one must deal with
some form of weak-measurement regime. This type of weak, charge-sensitive readout works
well when the qubit is biased such that the charge states are eigenstates of the Hamiltonian and
therefore do not mix during the measurement. In this case one can allow the detector to probe
the qubit for as long as is needed to obtain a high signal-to-noise ratio, without having to worry
about any intrinsic qubit dynamics.

In contrast to the simple situation described above, when the detector weakly probes the
charge state of the qubit, while the Hamiltonian induces mixing dynamics between charge
states, it becomes unclear how to interpret a given measurement signal. Given the fact that
the signal typically contains a large amount of detector-related noise and the measurement
causes unavoidable relaxation in the qubit, it might seem that this type of measurement cannot
be used to determine the initial state of the qubit, i.e. at the time that the experimenter decides
to perform the measurement. Indeed, there have been a number of studies analyzing the
measurement-induced decoherence and the evolution of the qubit’s state in this situation [3]–[8],
[14], but not the question of how to take the measurement data and extract from it information
about the initial state of the qubit. This question is a key issue for qubit-state readout and is the
main subject of this paper.

We shall show below that high-fidelity measurement information can be extracted from
the measurement data, provided that additional decoherence mechanisms are weak and the
readout signal can be monitored at a sufficiently short timescale. It turns out that not only
the measurement result but also the measurement basis is determined stochastically in this
case. In spite of the uncontrollability of the measurement basis, the measurement results
contain meaningful information about the initial state of the qubit. In order to demonstrate
this statement, we show how these results can be used to perform quantum state tomography
on the qubit. These results show that under suitable conditions and by proper analysis of the
measurement data useful information about the state of the qubit can be extracted from this
data.

This paper is organized as follows: In section 2, we introduce the theoretical model
for describing a charge qubit probed by a QPC. In section 3, we formulate the theoretical
framework for the qubit evolution conditioned on the QPC’s output signal and how measurement
information can be extracted from this signal. We also introduce an equation that supplements
the stochastic master equation for purposes of interpreting the measured QPC signal. In
section 4, we present results of numerical calculations that display a number of interesting
results in this system, most importantly the stochastic nature of the measurement basis and
the near-independence of the measurement fidelity from the relation between the charge basis
and energy eigenbasis. In section 5, we discuss how decoherence can be introduced to the
problem and how one should interpret the measurement data in the presence of decoherence.
We analyze one simple example that shows how the measurement data recorded at later times

5 We shall not consider measurement methods based on probing the capacitance of the qubit [15].
6 A new measurement mechanism in this system was also proposed in [16].
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Figure 1. Schematic diagrams of (a) a charge qubit with charge states |L〉

and |R〉 measured by a QPC, (b) the probability distributions of the possible
QPC current values for the two charge states of the qubit, (c) the filled energy
levels of the QPC’s electrodes and the energy barriers for tunneling between the
electrodes for the two charge states of the qubit and (d) a typical QPC current
signal. The finite widths of the probability distributions in (b) are a result of
the finite measurement time. When the distance between the two center points,
| Ī R − Ī L|, is much smaller than the widths of the distributions, the QPC performs
a weak measurement on the qubit in the short interval under consideration (i.e.
the time interval for which these probability distributions are relevant). The fast
fluctuations in (d) convey the assumption that these fluctuations have a much
shorter timescale than the qubit’s precession period. In plotting (b)–(d), we have
assumed that Ī R > Ī L, which would be the case if the qubit is defined by an extra
positive charge (e.g. a hole) tunneling between the two wells. Taking the opposite
case, i.e. Ī L > Ī R, would only result in a few sign changes in the analysis below.
The main results are not affected by this choice.

is less ‘valuable’ than that recorded at earlier times. Concluding remarks are given in section 6.
Some details of the calculations are given in the appendices.

2. Model

We consider a system composed of a charge qubit capacitively coupled to a QPC, as illustrated
in figure 1. The qubit can be viewed as a system where a charged particle is trapped in a double-
well potential and can occupy and tunnel between the localized ground states of the two wells.
We shall denote these states by |L〉 and |R〉.

During the measurement a voltage is applied to the QPC, and a current flows through it.
Except for the discussion given in section 5, we shall assume that the QPC does not induce
any qubit decoherence except that associated with the measurement-induced projection. Before
analyzing the general case, we first consider the case where the qubit Hamiltonian is diagonal
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in the charge basis. In this case, there is no mechanism by which the states |L〉 and |R〉 mix
during the system dynamics. As a result, if the qubit is initially in the state |L〉, the long-time-
averaged QPC current will be given by Ī L, and the qubit will remain in the state |L〉. A similar
statement applies to the state |R〉 of the qubit, with corresponding QPC current Ī R. The QPC
current therefore serves as an indicator of the qubit’s state in the charge basis {|L〉, |R〉}, as long
as the qubit Hamiltonian does not mix the states of this basis.

On any finite timescale, there will be fluctuations in the QPC current, and the observed
value might deviate from Ī L or Ī R. The longer the period over which the averaging is made,
the smaller the fluctuations. One can therefore define a measurement timescale that determines
how long one needs to wait in order to distinguish between the states |L〉 and |R〉. The relation
between this timescale and the qubit’s Hamiltonian-induced precession period separates two
measurement regimes: strong and weak qubit-detector coupling. As mentioned above, this
separation is irrelevant when the qubit Hamiltonian is diagonal in the charge basis.

For the remainder of this paper, we analyze the general case where the qubit Hamiltonian
is not necessarily diagonal in the charge basis. The Hamiltonian of the combined qubit + QPC
system can be expressed as

Ĥ = Ĥ q + Ĥ QPC + Ĥ int. (1)

In describing the qubit, we shall use the eigenbasis of the qubit Hamiltonian Ĥ q. Thus Ĥ q can
be expressed as

Ĥ q =

(
−

E
2 0

0 E
2

)
= −

E

2
σ̂z, (2)

where E is the energy splitting between the qubit’s two energy levels and σ̂z is the z-axis
Pauli matrix. We shall express the ground and excited states of the Hamiltonian as |0〉 and
|1〉, respectively. The electric dipole moment operator |R〉〈R| − |L〉〈L| can be expressed as
σ̂n, where n is a vector that represents the direction of the charge basis relative to the energy
eigenbasis:

σ̂n = |R〉〈R| − |L〉〈L|

= cosβ σ̂z + sinβ σ̂x , (3)

where β represents the angle between the charge basis and the energy eigenbasis. The states of
the charge basis (i.e. the eigenstates of σ̂n) can be expressed as

|R〉 = cos
β

2
|0〉 + sin

β

2
|1〉,

|L〉 = sin
β

2
|0〉 − cos

β

2
|1〉.

(4)

The QPC Hamiltonian Ĥ QPC can be expressed as

Ĥ QPC =

∑
m

εS,m â†
m âm +

∑
n

εD,nb̂†
nb̂n +

∑
{m, n} ∈

tunneling
channels

Jm,n

(
b̂†

nâm + â†
m b̂n

)
, (5)

where the operators âm and b̂n, respectively, annihilate electrons in the source and drain
electrodes of the QPC, â†

m and b̂†
n are their hermitian conjugates, εS,m and εD,n are the energies of
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single-particle quantum states in the source and drain electrodes, and Jm,n represents tunneling
matrix elements between the two electrodes. We take the qubit-QPC interaction Hamiltonian to
be of the form [3]

Ĥ int = σ̂n

∑
{m, n} ∈

tunneling
channels

δJm,n

(
b̂†

nâm + â†
m b̂n

)
, (6)

such that the tunneling matrix elements (and therefore the QPC current) depend on the state
of the qubit in the charge basis. The QPC and its operation are illustrated in figures 1(b)–(d).
When J and δ J are independent of m and n, the microscopic degrees of freedom of the QPC
are not affected by, and therefore do not carry any information about, the state of the qubit. This
information is carried only by the total number of electrons that have tunneled through the QPC.
In the remainder of this paper, we shall assume that this is the case. We close this section by
mentioning that the above description of the microscopic structure of the QPC is not needed
for the analysis below, provided one accepts the description of the QPC operation explained
in section 3 as a phenomenological model of the detector. Indeed, the analysis below is not
restricted to the case of a charge qubit probed by a QPC.

3. Measurement- and Hamiltonian-induced dynamics

In this section, we introduce the theoretical framework for analyzing the qubit state evolution
and interpreting the observed measurement data.

3.1. Short-time evolution

We start our analysis by considering a short time interval between times t and t + δt . For
definiteness, we assume that during this time interval a large number of electrons tunnel through
the QPC, such that it is natural to define a QPC current I (t) during this short interval (the
current would be defined as the amount of charge that has passed through the QPC divided
by δt ; the small-current case will be discussed in section 4.6). We also assume that a weak-
coupling regime exists for a properly chosen value of δt , which means that the QPC-current
probability distributions (for the states |L〉 and |R〉) are broad and almost completely overlap,
as shown in figure 1(b). The coherence time of the QPC and the time resolution of the QPC’s
output signal are both assumed to be much shorter than the precession period of the qubit. As a
result, for a properly chosen value of δt one can treat the different time intervals as independent
measurement processes, with each measurement being made in the charge basis.

As explained in appendix A, the QPC-current probability distribution for the qubit state
|L〉 can be expressed as

PL[I, δI, δt] =

√√√√ 2δt (δI )2

πτm

(
1 Ī
)2 exp

{
−

2δt
(
I − Ī L

)2

τm

(
1 Ī
)2

}
, (7)

and a similar expression can be derived for the qubit state |R〉. Here we have defined a number of
useful quantities: δ I is the size of a finite interval of QPC currents that we identify with a single
value. One could say that with this definition we are turning the probability distributions in
figure 1(b) into histograms with discrete possible values for the current I . This definition will be
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useful for both the analytic and numerical calculations below. The characteristic measurement
time τm defines the timescale needed for the QPC output to distinguish between the states |L〉

and |R〉, and 1 Ī = Ī R − Ī L, where for definiteness we take Ī R > Ī L.
We can now construct matrices that describe the qubit-state evolution depending on the

observed QPC current I (t). When a given value of I (t) is observed in the QPC, the density
matrix ρq(t) describing the quantum state of the qubit is projected (possibly partially) according
to the observed value. This projection of the qubit’s state is described by a 2 × 2 matrix
(or propagator) that we shall call Û M[I (t), δI, δt]:

ρq(t + δt)=
1

Tr
{

Û
†

M[I (t), δI, δt]Û M[I (t), δI, δt]ρq(t)
}Û M[I (t), δI, δt]ρq(t)Û

†

M[I (t), δI, δt].

(8)

Measurement theory says that Û M[I (t), δI, δt] obeys the equation [2, 17]

Û
†

M[I (t), δI, δt]Û M[I (t), δI, δt] = PL[I (t), δI, δt]|L〉〈L| + PR[I (t), δI, δt]|R〉〈R|. (9)

Since we are keeping only the fundamentally necessary terms in the projection dynamics, we
ignore any unitary-transformation component in Û M[I (t), δI, δt] that does not affect equa-
tion (9). Any such component can, in principle, be determined experimentally, and it can then be
incorporated into the analysis straightforwardly. Such a component could result if, for example,
the different current states of the QPC have different charge distributions that act as an effective
gate voltage on the charge qubit. Assuming a large overlap between the QPC-current probability
distributions, we find that the matrix Û M[I (t), δI, δt] can be expressed in the form

Û M[I (t), δI, δt] =

√
PL[I (t), δI, δt]|L〉〈L| +

√
PR[I (t), δI, δt]|R〉〈R|

=

(
2δt (δI )2

πτm

(
1 Ī
)2

)1/4 [
exp

{
−
δt
[
I (t)− Ī +1 Ī/2

]2

τm

(
1 Ī
)2

}
|L〉〈L|

+ exp

{
−
δt
[
I (t)− Ī −1 Ī/2

]2

τm

(
1 Ī
)2

}
|R〉〈R|

]

∝ exp

{
−
δt
[
I (t)− Ī

]
τm1 Ī

}
|L〉〈L| + exp

{
δt
[
I (t)− Ī

]
τm1 Ī

}
|R〉〈R|

≈ 1 +
δt
[
I (t)− Ī

]
τm1 Ī

(|R〉〈R| − |L〉〈L|)

= 1 +
δt
[
I (t)− Ī

]
τm1 Ī

σ̂n, (10)

where we have defined Ī = ( Ī L + Ī R)/2.
In addition to the measurement-induced evolution described by the matrix Û M of equation

(10), the qubit Hamiltonian induces a unitary evolution of the qubit’s state. This contribution to
the qubit-state evolution (over the time interval from t to t + δt) is described by the matrix

Û H[δt] = exp
{
−iĤ qδt

}
≈ 1 + i

E

2
δt σ̂z. (11)
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The matrices Û M[I (t), δI, δt] and Û H[δt] can now be combined to give the total evolution
matrix

Û [I (t), δI, δt] ≈ Û M[I (t), δI, δt] × Û H[δt]

∝ 1 +
δt
[
I (t)− Ī

]
τm1 Ī

σ̂n + i
E

2
δt σ̂z. (12)

Note that the high-resolution requirement in the QPC-current signal, which is one of our
assumptions mentioned earlier in this section, enters in obtaining the above equation: both
Û M[I, δI, δt] and Û H[δt] are approximately proportional to the unit matrix, with lowest-order
corrections of order δt . Therefore they commute to first order in δt , and they can be treated as
commuting operators when Eδt � 1, i.e. when they both induce small changes to the quantum
state of the qubit.

When a given QPC output signal I (t) (starting from the initial time t = 0 until the final time
tf) is observed, one can take the corresponding short-time evolution matrices explained above
and use them to construct the total evolution matrix Û Total[I (t : 0 → tf), δI, δt]. This matrix
describes the evolution of the qubit state from t = 0 until t = tf, given that the current signal
I (t) was observed (with discretization parameters δ I and δt). Using the unit matrix as the total
evolution matrix for t = 0, we find that

Û Total[I (t : 0 → tf), δI, δt] = Û [I (tf − δt), δI, δt] × · · · × Û [I (0), δI, δt]. (13)

In section 3.2, we shall explain how measurement information can be extracted from the
matrix Û Total.

3.2. Extracting information from the matrix Û Total[I (t : 0 → tf), δI, δt]

The evolution of the qubit state is obtained by taking into account a long sequence of
weak measurements and Hamiltonian-induced unitary transformations. This long sequence of
events, however, is equivalent to a simple scenario in which a single measurement is made
on the qubit and the state of the qubit is rotated after the measurement. In order to obtain a
quantitative description of this alternative interpretation of the measurement data, one takes the
2 × 2 matrix Û Total[I (t : 0 → tf), δI, δt] and divides it through a polar decomposition into two
parts, a measurement matrix Û Meas[I (t : 0 → tf), δI, δt] followed by a unitary transformation
Û Rot[I (t : 0 → tf), δI, δt]:

Û Total[I (t : 0 → tf), δI, δt] = Û Rot[I (t : 0 → tf), δI, δt] × Û Meas[I (t : 0 → tf), δI, δt]. (14)

The matrix Û Meas[I (t : 0 → tf), δI, δt] has the form

Û Meas[I (t : 0 → tf), δI, δt] =

√
P1 |ψ1〉 〈ψ1| +

√
P2 |ψ2〉 〈ψ2| , (15)

where |ψ1〉 and |ψ2〉 are two orthogonal states (the indices are assigned such that P1 > P2).
In order to characterize the measurement matrix in terms of the information it provides about
the state of the qubit, it is useful to consider the case where one initially has no information
about this state. The qubit therefore starts in the maximally mixed state

ρmax. mixed =

(
1
2 0

0 1
2

)
. (16)
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After a measurement that produces the outcome corresponding to the matrix Û Meas[I (t :
0 → tf), δI, δt] (and ignoring the presence of the rotation matrix Û Rot[I (t : 0 → tf), δI, δt] for
purposes of this argument), the qubit ends up in a state described by the density matrix

ρafter Meas. =
P1

P1 + P2
|ψ1〉 〈ψ1| +

P2

P1 + P2
|ψ2〉 〈ψ2| . (17)

This density matrix describes a statistical mixture of the states |ψ1〉 and |ψ2〉, with a higher
probability for the former (except for the rare cases where P1 = P2). One can therefore say
that, as a result of the measurement, one now knows that the qubit is more likely to be in the
state |ψ1〉 than in the state |ψ2〉, in contrast to the complete lack of information at the initial
time. The states |ψ1〉 and |ψ2〉 therefore represent the measurement basis that corresponds to the
output signal I (t). The measurement fidelity is calculated as follows [18]: let us assume that
one is given a qubit that is in an unknown state, either |ψ1〉 or |ψ2〉. The parameters Pi are the
probabilities that the outcome defined by I (t), δ I and δt is obtained given that the qubit was
initially in the state |ψi〉. Upon observing this outcome, if one wants to make a guess about the
state of the qubit, one would maximize the probability of making a correct guess by choosing
the state |ψ1〉. The difference between the probability of actually finding the state |ψ1〉 and that
of finding the orthogonal state |ψ2〉 is given by

F =

∣∣∣∣ P1 − P2

P1 + P2

∣∣∣∣ . (18)

This expression can therefore naturally be interpreted as the measurement fidelity.
It is worth pausing here to comment on the issue of the independence of the measurement

basis from the measurement outcome. One typically thinks of the measurement basis as being
determined by the experimenter when designing the experimental setup and the measurement
result (i.e. +1 or −1 along the measurement axis) being determined stochastically according to
the rules of quantum mechanics based on the measurement basis used in the experiment. The
situation considered in this paper, however, cannot be described using this simple picture. Here
we have a two-state quantum system and a measurement device that produces one of many
possible outcomes, not necessarily all providing information in the same basis. In this case,
the picture of the measurement basis being independent of the outcome is not valid in general.
For example, it is possible in a general setting for a certain state |ψ〉 to be a possible result of
the data analysis presented above, but not the state orthogonal to it. Such a situation arises in
the problem analyzed in [18], and it complicates the interpretation of the measurement data.
Fortunately, because in this paper we are dealing with two symmetric probability distributions
(see figure 1(b)), we find that for every possible QPC signal there is an ‘opposite’ or ‘flipped’
signal, which can be obtained by taking the mirror image about the central line in figure 1(d)
(this central line is defined by Ī = ( Ī L + Ī R)/2). It is not difficult to verify that if a given
signal corresponds to a certain measured state |ψ〉, the ‘opposite’ signal will correspond to
the orthogonal state with the same values of P1 and P2 (see appendix B for the full derivation).
An important consequence of the above statement is that the total probability of finding one
of two opposite signals is independent of the initial state of the qubit. Hence, the probability
of obtaining a certain measurement basis is independent of the initial state of the qubit. This
fact leads naturally to the conceptual interpretation that the measurement basis is determined
according to some stochastic process, and the measurement result along that basis is made after
the basis has been determined.
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To summarize, the QPC’s output signal can be used to derive the matrix Û Total[I (t : 0 →

tf), δI, δt]. This matrix can then be used to determine the measurement basis, the measurement
result (i.e. ±1 along the measurement axis), the fidelity (or in other words, the degree of
certainty about the obtained measurement result) and the post-measurement rotation. Note that
all the analysis above is performed independently of the initial state of the qubit. If one knows
the initial state, one can use the evolution matrices in order to determine the probabilities of
different outcomes, as well as the final state of the qubit after the measurement. As we shall
show below, when the measurement fidelity approaches one, the final state can be determined
even without any knowledge about the initial state.

It is worth mentioning here that the analysis presented above can be applied not only to
qubits but also to systems with higher-dimensional Hilbert spaces. The main complication in the
case of higher dimensions is that the description of the results becomes more intricate and less
transparent. In this context, one can contrast the simple visualization of any qubit density matrix
as a point in the so-called Bloch sphere, whereas there is no visually simple parametrization for
a general density matrix of a three-state system.

3.3. Incorporating the matrix Û Total[I (t : 0 → tf), δI, δt] into the formalism of stochastic
master equations

Equation (8) describes the projection of the qubit’s density matrix conditioned on the
observation of the QPC output I (t). That equation treats the evolution as occurring in discrete
steps. Constructing a master equation means taking equation (8) to first order in δt , and
then taking the limit δt → 0 in order to obtain the corresponding continuous-time differential
equation [17]. One tricky point in carrying out this procedure is the fact that the stochastic
quantity I (t)− Ī has fluctuations of size 1/

√
δt :〈(

I (t)− Ī
)2
〉
=
τm

(
1 Ī
)2

4δt
. (19)

As a result, when keeping terms only to first order in δt , one must also keep terms containing
(δt)2 × (I (t)− Ī )2, etc. The quantity I (t)− Ī can be expressed as its expectation value at any
given point in time, which is given by 1 Ī 〈σ̂n〉/2, plus a fluctuation. It is customary to write
the stochastic master equation not in terms of the current fluctuation, but rather in terms of a
rescaled quantity, δW , whose standard deviation is equal to

√
δt . It then follows that δW should

be defined using the relation

I (t)= Ī +
1 Ī

2
〈σ̂n〉 +

1 Ī
√
τm

2δt
δW. (20)

Substituting equation (12) into equation (8) (ignoring the subscript ‘M’ here) and keeping
terms to first order in δt , we find that

ρq(t + δt)= ρq − iδt Ĥ qρq + iδtρq Ĥ q +
δW

2
√
τm

(
σ̂nρq + ρqσ̂n − 2

〈
σ̂n
〉
ρq

)
+
δt

4τm

(
σ̂nρqσ̂n − ρq

)
,

(21)

where, for compactness, we have not expressed the time dependence of ρq explicitly on the
right-hand side (in other words ρq should be interpreted as ρq(t)). This equation can now be
rewritten in the form

ρ̇q = −i
[

Ĥ q, ρq

]
+
ξ(t)

2
√
τm

(
σ̂nρq + ρqσ̂n − 2

〈
σ̂n
〉
ρq

)
+

1

4τm

(
σ̂nρqσ̂n − ρq

)
, (22)
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where ξ(t) is obtained by using the rescaling ξ(t)= δW/δt and taking the limit δt → 0:

〈ξ(t)〉= 0,

〈ξ(t)ξ(t ′)〉= δ(t − t ′),
(23)

where δ(t − t ′) is the Dirac delta function. Equation (22) is the stochastic master equation for
the system under consideration.

The question now is how the matrix Û Total[I (t : 0 → tf), δI, δt] fits into the picture of the
stochastic master equation. One can derive a stochastic equation for the matrix Û Total[I (t : 0 →

tf), δI, δt] by considering the change caused by a matrix of the form given in equation (12);
note that the evolution of the matrix Û Total[I (t : 0 → tf), δI, δt] is governed by equation (13).
One problem that arises here is that the matrix in the first line of equation (12) tends to zero
when δt → 0. Taking this limit therefore leads to ill-defined quantities. In order to avoid these
problems, we deal with a re-normalized version of the matrix Û [I (t), δI, δt], as given in the
second line of equation (12); it should be noted here that normalization of the matrix Û Total is
irrelevant for purposes of extracting the measurement basis and fidelity. It is now straightforward
to see that an unnormalized version of the matrix Û Total obeys the equation

dÛ Total

dt
=

([〈
σ̂n
〉

2τm
+
ξ(t)

2
√
τm

]
σ̂n − iĤ qσ̂z

)
Û Total. (24)

This equation supplements the stochastic master equation for purposes of interpreting the
QPC’s output signal in terms of a measurement result. In this context, one should note that
what equation (22) gives is the qubit’s density matrix as a function of time. When β 6= 0 and
the charge states mix during the measurement, the density matrix at later times can become
completely different from that at the start of the measurement process. Assuming that the
experimenter does not have any information about the qubit’s state at t = 0, he would be able to
use equation (22) to determine the qubit’s state at later times, but he would not be able to cast
the results in terms of information that he has learned about the qubit’s state at t = 0. The matrix
Û Total, through the decomposition explained in section 3.2, contains the information needed to
make such a statement about the measurement result. In fact, one can say that, when taken
in combination with the initial qubit density matrix, equation (24) replaces equation (22): in
addition to containing the measurement information, the matrix Û Total can be used to calculate
the density matrix at any time.

4. Numerical results and discussion

We now present the results of our numerical calculations. Typical parameters of the numerical
calculations are as follows: the discrete steps are taken to be δt = 0.1π/E , such that one
period of the Hamiltonian-induced coherent oscillations would be divided into 20 steps. The
QPC current probability distributions are discretized into 100 possible current values: each
distribution is Gaussian with a standard deviation σ of 10 steps (thus there are about 50 possible
values for the QPC current with non-negligible occurrence probability). The distance between
the two center points of the current probability distributions 1 Ī determines the qubit–QPC
coupling strength. This parameter is varied when analyzing the effect of the qubit–QPC coupling
strength on the behavior of the system. The number of time steps in a single calculation was
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different for different calculations. However, this number was always large enough that the
final qubit state reached perfect purity up to less than one part in 105, ensuring that none of
our numerical results were sensitive to the exact choice of this parameter. Each measurement
procedure is repeated up to 104 times in order to obtain accurate statistical averages. We have
also used parameters different from the typical ones given above and found that the results are
unaffected by the specific choice of these parameters.

A convenient parameter for purposes of characterizing the qubit–QPC coupling strength
is Eτm/(2π), where τm is the timescale needed to obtain sufficient QPC signal to read out the
state of the qubit (for the time being one can think of this definition as applying to the case
when β = 0; but see below). As the standard deviation of the QPC-output effective probability
distribution scales as σ/

√
N when the measurement step is repeated N times, the measurement

time τm can be naturally defined as the product of the time step δt and the value of N at which
2σ/

√
N =1I . τm is therefore given by

τm =
4σ 2δt

1I 2
. (25)

We shall use the parameter Eτm/(2π) for quantifying the qubit–QPC coupling strength,
and we shall use τm as a characteristic measurement timescale when presenting our results
below.

4.1. Stochastically determined measurement basis

Firstly, in figure 2, we show the spherical coordinates θ and φ of a large number of
(stochastically determined) measurement bases for different qubit–detector coupling strengths
and different values of β. In the strong-coupling regime (top row in figure 2), the parameter
Eτm/(2π) is much smaller than one, and the measurement is completed before any
Hamiltonian-induced dynamics can occur. As a result, the measurement basis is always the
charge basis, i.e. the natural measurement basis for the detector under consideration (note here
that the charge basis is characterized by the direction (θ, φ)= (β, 0)). As the qubit–detector
coupling strength is reduced (middle row in figure 2), the measurement bases start to deviate
from the charge basis, and they develop some statistical spread. This region could be called the
intermediate-coupling regime. Deep in the weak-coupling regime (bottom row in figure 2), the
measurement bases are spread over all the possible directions. The probability distribution of
possible measurement bases will be analyzed in section 4.4.

When β = 0 (leftmost column in figure 2), the measurement basis is always the charge
basis, regardless of the qubit–QPC coupling strength. This result is natural, since this case is
the simple one with no mixing between the states |L〉 and |R〉. When β = π/2, all the possible
measurement bases lie in the x–y-plane. The reason behind this result lies in the fact that this
situation is equivalent to one where one makes a large number of weak measurements in the
x–y-plane with no Hamiltonian-induced precession. As explained in appendix C, the resulting
measurement bases can only be in the same plane as the actually performed measurements,
which is the x–y-plane in this case.

The fact that the measurement basis is generally unpredictable, and therefore
uncontrollable, is a rather strange phenomenon from a fundamental point of view. From a
practical point of view, one can wonder whether anything useful can be done with such
measurements that are performed in a stochastically determined basis. If one absolutely requires
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Figure 2. The spherical coordinates θ and φ defining the stochastically
determined measurement bases obtained in simulations of the experiment under
consideration (note that since the measurement basis is defined by an axis
extending in two opposite directions, only the upper hemisphere is needed; any
measurement axis will either lie in the plane of the equator or have one end
above the equator). Each figure contains 200 points. In each row, the qubit–QPC
coupling strength is kept fixed and β is varied: β = 0, π/8, π/4, 3π/8 and π/2.
In each column β is kept fixed and the qubit–QPC coupling strength is varied.
In the top row, Eτm/(2π)= 0.01, which is deep in the strong-coupling regime.
The measurement basis is very close to the charge basis in about 99% of the runs.
In the middle row, Eτm/(2π)= 0.2, which can be identified as the intermediate-
coupling regime. The measurement basis deviates substantially from the charge
basis in about one-half of the runs. In the bottom row Eτm/(2π)= 5, which
is in the weak-coupling regime. The measurement bases are, in general, spread
over the entire hemisphere. In generating this figure, the initial state was taken
to be the maximally mixed state (note that the results are independent of the
initial state).

a measurement in a given basis, measurement results in different bases would be less useful.
One could then treat the deviation of the observed measurement basis from the desired one
as an experimental error and deal with it accordingly. This point will be discussed further in
section 4.5.
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Figure 3. The measurement fidelity as a function of measurement duration
for three different values of the angle β between the charge basis and the
energy eigenbasis: β = 0 (red; lowest line), π/4 (green) and π/2 (blue). Here
Eτm/(2π)= 5, i.e. deep in the weak-coupling regime. The fidelity increases
from zero to one as the measurement duration increases, and it is almost
independent of the angle β.

4.2. Information acquisition rate

In figure 3, we plot the measurement fidelity as a function of measurement duration for three
different values of β (i.e. the angle between the charge basis and the qubit’s energy eigenbasis),
keeping all other parameters fixed. We can see that the fidelity approaches one for long enough
measurement time, regardless of the value of the angle β. Furthermore, the fidelity is almost
independent of β. In fact, and rather counter-intuitively, it turns out that the fidelity for β 6= 0 is
higher than that for β = 0. The reason behind this phenomenon is that one can obtain a higher
fidelity by performing weak measurements along different axes rather than along the same axis,
as explained in appendix C. This result shows that even though more complicated analysis is
needed to extract useful measurement information when β 6= 0, the information acquisition rate
is not reduced, and is in fact enhanced, by the Hamiltonian-induced precession.

In the limit when the fidelity reaches one, the matrix Û Meas[I (t : 0 → tf), δI, δt] has the
form |ψ1〉〈ψ1|. It is straightforward to verify that any further evolution of the system will not
affect Û Meas[I (t : 0 → tf), δI, δt]. In this case, further measurement only changes the final state
of the qubit, which would be given by Û Rot[I (t : 0 → tf), δI, δt]|ψ1〉.

It is worth mentioning here that the fidelity for the case β = 0 is very well fitted by the
function

F(t)= erf

{√
t

2τm

}
, (26)

where erf stands for the error function. This result can be obtained using the following calcu-
lation. We take the probability distribution in equation (A.2) and we replace δt by t . We now
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identify the portion of this distribution that corresponds to I > ( Ī L + Ī R)/2 as being the prob-
ability of making a wrong inference about the state of the qubit. The difference between the
probability of making a correct inference about the state of the qubit and that of making a wrong
inference gives equation (26). The fidelity in figure 3 is also relatively well fitted by the function

F(t)≈ 1 − exp

{
−

t

τm

}
, (27)

which is an indication that our definition for the measurement time τm (see appendix A) is a
reasonable one.

4.3. The information contained in the QPC’s output signal

The QPC produces an output signal that contains fast and large fluctuations. There are therefore
a very large number of possible output signals that the QPC can display. We now ask the question
of what information is contained in a given QPC output signal. It turns out that only a small
amount of information in the signal concerns the state of the qubit. As explained above, one
can follow a conceptually straightforward calculation in order to extract the measurement basis,
measurement result and fidelity from the noisy signal. The signal also contains information
about how the qubit’s state is rotated after the effective measurement. It should be noted
here that measurement bases and post-measurement rotations generally come in all possible
combinations. The measurement basis, result and fidelity on the one hand and the post-
measurement rotation on the other hand can therefore be seen as two separate pieces of
information that are contained in the QPC’s output signal. The rest of the information contained
in the highly noisy signal, which is the vast majority of information contained in the signal,
concerns the QPC itself. Thus the large fluctuations that one observes provide information
about the state of the QPC in the specific experimental run under consideration. For purposes
of reading out the state of the qubit, this information is discarded. This situation is most clearly
demonstrated in the case β = 0, where one is only interested in the time average of the signal,
discarding all the fluctuations around the average.

4.4. Spectral analysis of the measurement-basis probability distribution

We now take sets of stochastically determined measurement bases (i.e. results of the kind
presented in figure 2) and use them to extract probability distributions g(θ, φ) for the
measurement basis. The probability distributions are normalized to unity:

∫
g(θ, φ)d�= 1 with

the integral covering the hemisphere 06 θ 6 π/2, 06 φ 6 2π . In particular, we are interested
in these probability distributions in the weak-coupling regime. In this regime, the probability
distributions will be symmetric about the z-axis, i.e. g(θ, φ) will be independent of φ. We use
this fact and write the probability distribution as

g(θ, φ)=

∞∑
n=0

cnYn,0(θ, φ), (28)

where Yn,0(θ, φ) are the usual spherical harmonics given by

Yn,0(θ, φ)=

√
2n + 1

4π
Pn(cos θ), (29)

New Journal of Physics 11 (2009) 083017 (http://www.njp.org/)

http://www.njp.org/


16

and Pn(x) are the Legendre polynomials. Note that since we only need to consider the
hemisphere 06 θ 6 π/2, we only need to keep even values of n in the above series. The
coefficients cn are given by

cn = 2
∫ π/2

0
dθ sin θ

∫ 2π

0
dφ g(θ, φ) Yn,0(θ, φ). (30)

In our calculations, we have a collection of N stochastically determined measurement bases.
The coefficients cn can be calculated from these data sets using the formula

cn =
2

N

∑
j

Yn,0(θ j , φ j), (31)

where the index j labels the different data points.
In order to ensure that we are using parameters that are sufficiently deep in the weak-

coupling regime, we start by performing the above spectrum analysis while varying Eτm/(2π).
The results of this calculation for β = π/8 are shown in figure 4(a). The coefficients cn seem to
be almost independent of Eτm/(2π) when this parameter is larger than one. From these results
we conclude that the point Eτm/(2π)= 5 is sufficiently deep in the weak-coupling regime for
purposes of calculating g(θ, φ) in the limit Eτm/(2π)→ ∞.

We now calculate cn (up to n = 10) in the weak-coupling regime for different values of
β and plot the results in figure 4(b). The probability distribution changes gradually as we go
from β = 0, where the measurement basis is always along the z-axis (here the charge basis),
to β = π/2, where the measurement basis is always in the x–y-plane. There is one point
(β ≈ 0.3π ) where g(θ, φ) is either approximately or exactly uniform over the entire hemisphere.

4.5. Short-time dynamics

We now consider the case where the measurement duration is short enough that the measurement
fidelity is much smaller than one. In this case the state of the qubit experiences only a small
amount of projective evolution. As a result we can calculate analytically the total effect of the
projection and coherent dynamics.

Dividing the total time interval under consideration into a large number of infinitesimal
intervals, we can write the total evolution matrix as

Û Total [I (t : 0 → tf), δ I, δt]

≈
[
1 + δp(tf)σ̂n

]
eiσ̂z Eδt/2

· · · eiσ̂z Eδt/2
[
1 + δp(δt)σ̂n

]
eiσ̂z Eδt/2

[
1 + δp(0)σ̂n

]
= eiσ̂z Etf/2

[
1 + δp(tf)σ̂n(tf)

]
× · · · ×

[
1 + δp(δt)σ̂n(δt)

]
×
[
1 + δp(0)σ̂n(0)

]
≈ eiσ̂z Etf/2

[
1 + δp(tf)

{
sinβ cos(Etf)σ̂x + sinβ sin(Etf)σ̂y + cosβσ̂z

}]
× · · ·

×
[
1 + δp(0)

{
sinβ cos(0)σ̂x + sinβ sin(0)σ̂y + cosβσ̂z

}]
≈ eiσ̂z Etf/2

[
1 +

∫ tf

0
dt
δp(t)

δt

{
sinβ cos(Et)σ̂x + sinβ sin(Et)σ̂y + cosβσ̂z

}]
= eiσ̂z Etf/2

[
1 + px σ̂x + pyσ̂y + pzσ̂z

]
, (32)
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Figure 4. Spectral analysis of the probability distribution g(θ, φ): (a) the spectral
components cn for n = 0 (red circles), 2 (black squares), 4 (green × symbols),
6 (blue triangles), 8 (purple + signs) and 10 (green diamonds) as functions of
Eτm/(2π) for β = π/8. Note the logarithmic scale on the x-axis. As Eτm/(2π)
is increased, the spectral components clearly reach very stable values by the time
Eτm/(2π) reaches one. These results indicate that the value Eτm/(2π)= 5 is
sufficiently deep in the weak-coupling regime for purposes of studying the limit
Eτm/(2π)→ ∞. (b) The spectral components cn for n = 0, 2, 4 and 6 (same
symbol usage as in (a)) as functions of β in the weak-coupling regime (here
we use the value Eτm/(2π)= 5). As β is increased, the probability distribution
g(θ, φ) gradually changes from being concentrated at the energy eigenbasis to
being spread over all directions and then to being concentrated on the equator
perpendicular to the energy eigenbasis. There seems to be one value of β (close
to 0.3π , which is close to cos−1(1/

√
3)) where all the spectral components with

n 6= 0 vanish, i.e. g(θ, φ) becomes completely uniform.

where we have defined

δp(t)=
δt
[
I (t)− Ī

]
τm1 Ī

,

n(t)= sinβ cos(Et)x̂ + sinβ sin(Et)ŷ + cosβ ẑ,

px = sinβ
∫ tf

0

I (t)− Ī

τm1 Ī
cos(Et)dt,

py = sinβ
∫ tf

0

I (t)− Ī

τm1 Ī
sin(Et)dt,

pz = cosβ
∫ tf

0

I (t)− Ī

τm1 Ī
dt.

(33)

Taking the total measurement duration tf to be a multiple of the qubit’s free-precession period,
the different measurements strengths px,y,z are different Fourier components of the observed
QPC signal. These Fourier components can be thought of as independent quantities, leading
one to think of the net result as three independent weak measurements, one along each of the
three axes x , y and z.
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We have performed spectral analysis as was done in section 4.4 on the possible
measurement outcomes in the short-time case analyzed above (we do not show the full results
here). In the calculations, px , py and pz were assumed to be Gaussian-distributed quantities
with root-mean-square values that obey the relation

prms
x : prms

y : prms
z =

sinβ
√

2
:

sinβ
√

2
: cosβ. (34)

The overall features of the dependence of cn on β are similar to those seen in figure 4(b), but
there is no exact agreement between the two cases. For example, the coefficient c2 is close to
being a straight line all the way from β = 0 to β = π/2 in the present case, as opposed to the
curved path that the black squares follow in figure 4(b). Finally, we ask whether there is a value
of β at which all three measurements have the same strength on average. Using equation (34) it is
straightforward to see that this situation occurs when cosβ = 1/

√
3, i.e. β = 0.304π ; the point

at which all measurement directions are equally probable in figure 4(b). The calculations of this
subsection therefore give us a simple interpretation of the significance of the point β = 0.3π in
the present context.

4.6. Alternative interpretation: choosing the measurement basis independently of the
measurement outcome

The idea that the measurement basis is determined stochastically and is only specified when the
experiment is completed is conceptually unsettling. We therefore take a different approach in
this section. We now require that in order to have a meaningful measurement, the measurement
basis must be specified by the setup and not by the stochastically determined measurement
outcome.

In the strong-coupling regime, there are no conceptual problems. In this case, the
measurement is almost instantaneous, and the measurement basis is clearly the charge basis. The
measurement fidelity is almost 100%, up to errors caused by the finiteness of the measurement
time compared to the qubit-precession period. These errors can be quantified straightforwardly,
as we shall do shortly.

The weak-coupling regime is the one where the conceptual problems arise. If we take the
case where the distribution of measurement bases is essentially uniform over all direction (which
seems to be the case when β ≈ 0.3π ), we again obtain a simple, yet somewhat surprising, result.
By symmetry we can argue that all directions are equivalent. We can therefore choose any
basis as the measurement basis. Based on this choice, we then divide all the different possible
outcomes (i.e. the different possible QPC output signals) into two sets, one of which corresponds
to the measurement result +1 and the other of which corresponds to the result −1 in the chosen
basis. An important question that arises in this scenario is what the average measurement fidelity
would be under such ‘worst-case’ conditions of having no preferred measurement basis. In
the following, we shall denote this average measurement fidelity by the symbol F̄ in order to
stress the difference between the results of this subsection and those of section 4.2. For the
completely uniform case, the average fidelity F̄ can be evaluated as follows: let us take a spin
pointing in the +z-direction and assume that we have specified the z-axis as the one defining
the measurement basis. If we measure the spin along an axis that makes an angle θ with the
z-axis, we obtain the result +1 with probability cos2(θ/2) and the result −1 with probability
sin2(θ/2). By dividing the possible outcomes into two sets (with all outcomes that correspond
to states in the upper hemisphere being interpreted as +1 along the z-axis and all outcomes that

New Journal of Physics 11 (2009) 083017 (http://www.njp.org/)

http://www.njp.org/


19

correspond to states in the lower hemisphere being interpreted as −1 along the z-axis) and taking
the difference between the probability of correctly obtaining the result +1 and the probability
of obtaining the wrong result −1, we find that the average fidelity (averaged uniformly over the
entire hemisphere)

F̄uniform,Eτm→∞ =

∫ π/2

0
dθ sin θ

(
cos2 θ

2
− sin2 θ

2

)
=

1

2
. (35)

The fidelity in this ‘worst-case scenario’ is therefore 50%. We emphasize again that this fidelity
is independent of our choice of measurement basis. This result again contrasts the usual intuition
where the outcomes of measurements performed in one basis provide no information at all in
an orthogonal basis. In the present case, all measurement bases are equivalent, and one would
obtain the same (average) measurement fidelity in any one of them. This result fits well with the
result that will be explained in section 4.7 that quantum state tomography can be performed
by repeating the same measurement procedure a large number of times. This measurement
procedure gives the same amount of information in all different bases.

As explained above, the lowest possible average fidelity is 50%, and it occurs when
β ≈ 0.3π . Two other values of β allow for simple reasoning. The obvious one is the case of
β = 0, where the measurement basis is {|L〉, |R〉} and the fidelity is 100% for all coupling
strengths. The other exception occurs when β = π/2. As can be seen from the rightmost column
of figure 2, the measurement basis is always in the x–y-plane. In the weak-coupling regime, the
possible measurement bases are spread uniformly around the equator. In that limit, one can
choose any axis in the x–y-plane as defining the measurement basis. All these bases give the
same value for the average fidelity:

F̄β=π/2,Eτm→∞ =
1

2π

∫ 2π

0
dφ

∣∣∣∣cos2 θ

2
− sin2 θ

2

∣∣∣∣= 2

π
. (36)

Numerical results for the average fidelity for different values of β in the weak-coupling
limit are plotted in figure 5. First, in figure 5(a), we plot the average fidelity as a function of the
chosen measurement angle θMeas for different values of β. We find that for β < 0.3π choosing
the energy eigenbasis as the measurement basis gives the highest average fidelity, whereas for
β > 0.3π choosing a basis that is orthogonal to the energy eigenbasis gives the highest average
fidelity (note that there is an infinite number of such bases). In figure 5(b), we plot the average
fidelity as a function of β for three choices of the measurement basis: θMeas = 0, θMeas = π/2
and the charge basis. It should be noted here that in the weak-coupling limit there is symmetry
about the z-axis. As a result, any axis that is obtained by rotating the charge basis about the
Hamiltonian axis will result in the same value of the fidelity as the charge basis. Choosing the
charge basis as the measurement basis never results in an average fidelity that is substantially
lower than the maximum possible value.

In the intermediate-coupling regime, one can choose the measurement basis by maximizing
the average fidelity. For example, for the parameters of the middle row in figure 2 one can
see that the measurement basis that would maximize the fidelity deviates slightly from the
charge basis (unless β = 0). One can understand this result naturally by keeping in mind that the
qubit’s state precesses about the Hamiltonian’s axis while being measured. The measurement
basis is therefore approximately obtained by taking the charge basis and rotating it by the
appropriate angle about the qubit Hamiltonian (in the opposite sense from state precession).

One could perform a numerical calculation in order to analyze the behavior of the
maximum-fidelity measurement basis as the qubit–detector coupling strength is varied.
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Figure 5. The average fidelity F̄ when defining the measurement basis
independently of the specific (stochastic) outcome in the weak-coupling regime
[Eτm/(2π)= 5]: (a) the average fidelity as a function of the ‘manually’ chosen
measurement angle θMeas for five different values of β: 0 (red circles), π/8
(blue squares), π/4 (green triangles), 3π/8 (black + signs) and π/2 (cyan ×

symbols). Note that the results are independent of the choice of the azimuthal
angle φMeas, which is also chosen manually along with θMeas. One can see that
for any value of β the maximum fidelity is obtained by choosing either θMeas = 0
(for β < 0.3π ) or θMeas = π/2 (for β > 0.3π ). For β = 0.3 (not shown) all values
of θMeas give essentially the same value for the fidelity, namely 50%. (b) The
average fidelity as a function of β for three different choices of measurement
angle θMeas: θMeas = 0 (blue squares), θMeas = β (red circles) and θMeas = π/2
(green triangles). The choice θMeas = β always gives a near or true maximum
in the fidelity. However, with the exception of a single point around β = 0.3π ,
the maximum occurs at either θMeas = 0 or θMeas = π/2.

However, here we focus on a question that seems more experimentally relevant, namely
analyzing the measurement fidelity with the charge basis chosen as the measurement basis. This
fidelity is shown in figure 6 for the two cases β = π/4 and β = π/2. In figure 7, we plot the
absolute value of the quantity 2πdF̄/d(Eτm) (i.e. as in the initial slope in figure 6) as a function
of β. This quantity can be used to obtain an estimate for the measurement errors associated with
having a finite measurement time.

4.7. Small-current case

In the above analysis, we have assumed that the QPC’s output is essentially a continuous
variable with a large number of possible values for the current at a given instant. If the QPC’s
current is so small that on the timescale of monitoring the output signal very few electrons can
tunnel through the QPC, the physical picture changes substantially (here we assume that the
number of electrons that have tunneled through the QPC can be measured accurately). One now
has a small number of possible values for the QPC’s output signal. The discretization used in our
analysis, which was done for computational convenience above, is now provided naturally by
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Figure 6. The average fidelity F̄ as a function of Eτm/(2π) when the
measurement basis is decided (by the experimenter) to be the charge basis. The
blue open circles correspond to the case β = π/4, and the red filled circles
correspond to the case β = π/2. The dashed lines represent the asymptotic
values of the fidelity in the weak-coupling limit: 0.54 for the case β = π/4 and
2/π for the case β = π/2.

the design of the setup. One can then follow a similar analysis to that of section 3 concerning the
gradual progression of the measurement and the evolution of the quantum state of the qubit. Note
that considering the small-current case only makes sense if the number of electrons that tunnel
through the QPC during a full qubit-precession period is small. Otherwise, one can always
choose between the small- and large-current cases through the choice of δt . Clearly, the exact
choice of parameters used in the theoretical analysis cannot affect the physical results.

An important difference between the cases of small and large currents is that one expects
the probability distributions shown in figure 1(b) to have almost symmetric shapes for the large-
current case, whereas they almost certainly are not symmetric for the small-current case. This
point is most clearly seen by considering the situation where at most one electron tunnels though
the QPC during the short interval under consideration. The analysis and results in this case
follow closely the analysis and results for a switching-based detector, studied recently in [18].
The fact that, unlike the case of a switching-based detector, the measurement now continues
after the occurrence of a tunneling event can be incorporated into the analysis straightforwardly.
Our argument concluding that the choice of the measurement basis is independent of the
initial state of the qubit breaks down. Perhaps more importantly, the conceptual picture that
the measurement basis is chosen first (according to some probability distribution) and the
measurement result is then obtained in that basis becomes invalid. For example, it is now
possible for a certain state |ψ〉 to be a possible result of the data analysis presented above,
but not the state orthogonal to it [18].

It is also worth mentioning in this context the case where the tunneling process is coherent
on the timescale of qubit precession. In this case, the QPC measures the qubit in the energy
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Figure 7. The rate of charge-basis fidelity deterioration with increasing
measurement time |2πdF̄/d(Eτm)| as a function of β in the strong-coupling
regime. In other words, the quantity on the y-axis is the absolute value of the
slope of curves similar to those shown in figure 6 at Eτm/2π = 0. Each data
point is determined by calculating the fidelity F̄ at Eτm/(2π)= 0.06 for a given
value of β and then taking the ratio [1 − F̄(x)]/x , where x = Eτm/(2π).

eigenbasis, regardless of the angle β (except when β = π/2 where the QPC fails to perform
any measurement on the qubit). For further discussion of this case, see e.g. [5], and for a
discussion of possible advantages of weak measurement when dealing with multi-qubit circuits,
see e.g. [19].

4.8. Quantum state tomography

One example of a procedure where the uncontrollability of the measurement basis can be
harmless is quantum state tomography (QST). In fact, the original idea of QST included
performing measurements in all possible bases [20]. We have simulated QST by repeating the
measurement procedure a large number of times, obtaining a set of measurement results (in the
form of pre-measurement qubit states), and then minimizing the function (see appendix D)

T (r, θ, φ)=

∑
j

[
1 − r cos�(θ, φ, θ j , φ j)

]2
, (37)

where r , θ and φ are the spherical coordinates of a point in the Bloch sphere; j is an index
labeling the different runs of the experiment, the direction (θ j , φ j ) defines the qubit state
obtained in a given measurement, and �(θ, φ, θ j , φ j) is the angle between the directions
(θ, φ) and (θ j , φ j). We have chosen several initial states covering the Bloch sphere, and the
tomography procedure always produced correctly the initial state of the qubit. For the largest
value of the qubit–detector coupling strength that we used (see top row of figure 2), the
procedure became unreliable, because the vast majority of the measurements are performed
in one basis.
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It is worth pausing here to ask the question of the minimum requirements for a
single measurement setting to provide full QST information. The qubit’s density matrix is
characterized by three parameters. One therefore needs the ensemble of measurements to
produce three independent variables. If the detector has four possible outcomes (or output
signals), one would obtain three independent probabilities for three of the outcomes (with the
probability of obtaining the fourth outcome determined by probability normalization). A four-
outcome detector is therefore sufficient, in principle, to perform full QST on a qubit. One can
generalize this argument straightforwardly to the case of larger systems: one needs a detector
with at least as many possible outcomes as the square of the size of the Hilbert space in order to
perform QST in that Hilbert space (we do not necessarily imply pure states here).

In [18] an ‘all-in-one’ measurement procedure was analyzed, where the measurement
results of identically prepared setups (using a switching-based detector) can be used to perform
full state tomography of the initial qubit state as well as extract all relevant system parameters.
One could ask whether a similar situation occurs in the qubit–QPC system. The answer is yes,
in principle. However, because the analysis of [18] was almost entirely analytic, it was possible
to obtain simple expressions to which the measurement data would be fitted in order to extract
all the available parameters. In this paper, we have not been able to obtain similar analytic
expressions. As a result, it would require extensive numerical calculations to compare the
observed data with those that would be expected for all possible sets of parameters and then find
the parameters that produce the best fit. Given the relatively long computation times required
for even the simple numerical calculations presented in this paper, we have not attempted to
simulate the full parameter-extraction procedure.

5. Decoherence

So far we have assumed that there is no decoherence in the system other than that associated with
the measurement-induced projection. In this section, we briefly consider the effect of additional
decoherence channels on the measurement process.

As a first step, one can make the following observations: the measurement has a
characteristic time τm, which determines how long it takes for the experimenter to obtain a high-
fidelity measurement result. Decoherence introduces its own decoherence timescales, which we
collectively denote by τd. If τm � τd, decoherence should have little effect on the analysis and
results of the previous sections. If, on the other hand, τm � τd, decoherence will distort the
state of the qubit before any reliable measurement result is obtained. This situation renders
the measurement almost completely useless. One should keep in mind, however, that the above
statement depends strongly on the nature of the decoherence channel. For example, if the energy
eigenbasis coincides with the charge basis (i.e. there is no coherent dynamics mixing the states
|L〉 and |R〉) and there is no relaxation between the states |L〉 and |R〉, pure dephasing between
these states will not hamper the measurement, regardless of the dephasing time.

Decoherence can also be introduced to the stochastic master equation such that equation
(22) turns into:

ρ̇q = −i
[

Ĥ q, ρq

]
+
ξ(t)

2
√
τm

(
σ̂nρq + ρqσ̂n − 2

〈
σ̂n
〉
ρq

)
+

1

4τm

(
σ̂nρqσ̂n − ρq

)
+
∑

k

γk

(
Âkρq Â

†

k −
1
2 Â

†

k Âkρq −
1
2ρq Â

†

k Âk

)
, (38)
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where the index k represents the different decoherence channels, with γk and Âk being the rate
and quantum operator that describe a given decoherence channel.

Modifying equation (24) in order to include decoherence is somewhat trickier. The
difficulty lies in the fact that the evolution of the density matrix is no longer of the form

ρq → ÛρqÛ
†
, (39)

ignoring here terms in equation (22) that were added for normalization purposes. One way
to deal with this new difficulty is to note that the evolution of the density matrix caused by
decoherence is linear and therefore write the qubit’s density matrix in vector form, i.e. the
transpose of (ρ00, ρ11, ρ01, ρ10). With this rearrangement of the matrix elements, the evolution
matrices are now expressed as 4 × 4 matrices acting on the density matrix (which now looks
like a vector) from the left:

ρq → Ûρq, (40)

where we now use the symbol Û in order to distinguish the 4 × 4 matrices of this section from
the 2 × 2 matrices that are applied symmetrically on both sides of the density matrix.

We shall not write down the detailed expressions for the evolution matrices Û , because
they would not add insight into the present discussion. Instead we point out that deriving a
master equation for these matrices can be done straightforwardly by rearranging equation (38)
into vector format. The differential equation that describes the evolution of the density matrix
ρq also describes the evolution of the propagator ÛTotal, similarly to the fact that the Schrödinger
equation can be applied to wavefunctions or propagators. We now assume that the total
evolution matrix ÛTotal (including the effects of measurement, Hamiltonian-induced dynamics
and decoherence) has been obtained using such a stochastic equation, and we ask the question
of how to extract measurement information from it. The answer is a generalized version of the
one obtained in the absence of decoherence. The total evolution matrix can be decomposed
into two matrices: a measurement matrix followed by a trace-preserving ‘quantum operation’.
This quantum-operation part describes both unitary evolution and decoherence [22]. The
measurement matrix can be used to extract the measurement basis, result and fidelity, just as
was done in the absence of decoherence.

We now give a simple example illustrating the interplay between measurement and
decoherence. We assume that the Hamiltonian is diagonal in the charge basis, and therefore there
is no coherent dynamics between the states |L〉 and |R〉. A measurement matrix that corresponds
to an outcome that occurs with probability P for the maximally mixed state and has fidelity M
now takes the form

ÛMeas(P,M)= P


1 ± M 0 0 0

0 1 ∓ M 0 0
0 0

√
1 − M2 0

0 0 0
√

1 − M2

 , (41)

A relaxation matrix with relaxation factor Dr (which can be thought of as decaying from one to
zero as time goes by) is given by

Ûrelaxation(Dr)=


1 1 − Dr 0 0
0 Dr 0 0
0 0

√
Dr 0

0 0 0
√

Dr

 , (42)
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and a dephasing matrix with dephasing factor Dp is given by

Ûdephasing(Dp)=


1 0 0 0
0 1 0 0
0 0 Dp 0
0 0 0 Dp

 . (43)

If a qubit is measured, with the measurement outcome corresponding to the matrix ÛMeas(P,M),
and the qubit then relaxes and dephases according to the matrices Ûrelaxation(Dr) and
Ûdephasing(Dp), the total evolution matrix describing this sequence of events is given by

ÛTotal = Ûdephasing(Dp)Ûrelaxation(Dr)ÛMeas(P,M)

= P


1 ± M (1 − Dr)(1 ∓ M) 0 0

0 Dr(1 ∓ M) 0 0

0 0 Dp
√

Dr

√
1 − M2 0

0 0 0 Dp
√

Dr

√
1 − M2

 . (44)

This matrix will be used as a reference matrix for the scenario that we describe below. In
particular, we shall use the fact that the measurement fidelity is given in terms of the matrix
elements in the top left corner:

F =

∣∣∣∣∣U1,1
Total −U

1,2
Total −U

2,2
Total

U1,1
Total +U1,2

Total +U2,2
Total

∣∣∣∣∣ . (45)

We now consider a qubit that is constantly being probed by the QPC while undergoing
gradual relaxation and dephasing. The measurement-induced evolution is now expressed as

Û MρÛ
†

M ∝

[
1 +

δt
[
I (t)− Ī

]
τm1 Ī

σ̂z

](
ρ00 ρ01

ρ10 ρ11

)[
1 +

δt
[
I (t)− Ī

]
τm1 Ī

σ̂z

]

→


1 + G(t)+ δt

4τm
0 0 0

0 1 − G(t)+ δt
4τm

0 0

0 0 −
δt

4τm
0

0 0 0 −
δt

4τm



ρ00

ρ11

ρ01

ρ10

 , (46)

where

G(t)=
2δt

[
I (t)− Ī

]
τm1 Ī

. (47)

Using the above form for the evolution matrix and similar ones for relaxation and dephasing,
we arrive at the equation of motion for (an unnormalized version of) the total evolution matrix:

δÛ = δt


G(t) γr 0 0

0 −γr − G(t) 0 0

0 0 −
γr

2 − γp −
1

2τm
0

0 0 0 −
γr

2 − γp −
1

2τm

 Û, (48)
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with the initial condition

ÛTotal(t = 0)=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (49)

The solution of the above differential equation is

ÛTotal(t)=


G̃(0, t) γr

∫ t
0 e−γrt ′

G̃−1(0, t ′)G̃(t ′, t)dt ′ 0 0

0 e−γrt G̃−1(0, t) 0 0

0 0 exp
[
−

(
γr

2 + γp + 1
2τm

)
t
]

0

0 0 0 exp
[
−

(
γr

2 + γp + 1
2τm

)
t
]

,
(50)

where

G̃(t1, t2)= exp

{∫ t2

t1

G(t)dt

}
. (51)

Comparing this matrix with the one in equation (44), one can see that the full dynamics between
times 0 and t is equivalent to a measurement that is followed by relaxation and dephasing
operations. With some straightforward algebra, one can extract the measurement fidelity:

F =

∣∣∣∣∣
∫ t

0 2G(t ′)e−γrt ′G̃−2(0, t ′)dt ′

2 −
∫ t

0 2G(t ′)e−γrt ′G̃−2(0, t ′)dt ′

∣∣∣∣∣
=

∣∣∣∣∣∣
∫ final

1 e−γrt ′d
[
G̃−2(0, t ′)

]
2 +

∫ final
1 e−γrt ′d

[
G̃−2(0, t ′)

]
∣∣∣∣∣∣ . (52)

Although the above expression looks rather complicated, one important result can be seen
relatively straightforwardly. The only difference between this expression and the one that would
be obtained in the absence of decoherence is the factor e−γ rt ′ . This factor represents the rather
intuitive fact that the parts in the QPC signal that are recorded at later times carry less value
for purposes of determining the initial qubit state than those recorded at earlier times, with an
exponentially decaying function. What is less intuitively obvious is how the exponential-decay
function enters into the expression for the fidelity, as can be seen from equation (52).

It is worth making a comment here regarding the ‘value’ of the output signal in the absence
of decoherence. One might be tempted to say that since the fidelity increase slows down as time
goes by (see figure 3), the ‘value’ of the QPC’s output signal decreases as time goes by in that
case as well. If that were the case, this decrease in the ‘value’ of the measurement signal would
not be related to decoherence. However, one can see that this is not the case by considering the
simple case β = 0 in the absence of decoherence. In that case the important quantity is the time-
averaged QPC current throughout the measurement duration, without any weight function that
decreases in time. All parts of the signal are therefore given equal importance when extracting
the measurement result.

In order to calculate the average measurement fidelity in the presence of decoherence, one
must average the measurement fidelity over all different input states and measurement outcomes.
Since any calculation involving the above expressions seems to be a daunting task, we use the
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Figure 8. The maximum achievable fidelity as a function of the ratio between the
decoherence and measurement times. The red dots are obtained using numerical
simulations, and the solid line is given by equation (55).

following hand-waving calculation. In the absence of decoherence, the measurement fidelity
after duration t can be expressed as

F(t)≈ 1 − exp

{
−

t

τm

}
=

∫ t

0

1

τm
e−t/τmdt. (53)

Decoherence reduces the ‘value’ of the later parts of the measurement record with an
exponentially decaying function (with characteristic time τd). An estimate for the average
fidelity in the presence of decoherence can therefore be given in the form

F(t)≈

∫ t

0

1

τm
e−t/τm × e−t/τddt. (54)

Even if the measurement time is taken to infinity, where we have F → 1 in the absence of
decoherence, we find that the fidelity only reaches the value

Fmax =
τd

τm + τd
. (55)

Note, in particular, the simple limits that Fmax → 0 when τd � τm, and Fmax → 1 when τd � τm.
We have performed numerical simulations of the measurement process in the presence of
relaxation, and the result are shown in figure 8. The results agree reasonably well with those
of the hand-waving argument given above.

6. Conclusion

In conclusion, we have analyzed the question of what information can be extracted from the
output signal of a detector that weakly probes the state of a qubit when the qubit Hamiltonian
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induces oscillations between the two eigenstates of the probed operator. We have shown that
the measurement basis is determined stochastically every time the measurement is repeated. In
the case of weak qubit–detector coupling, the possible measurement bases cover all the possible
directions. The measurement basis and the measurement result can both be extracted from the
detector’s output signal. We have also shown that the information acquisition rate is almost
independent of the angle β between the direction defining the probed basis and that defining
the qubit Hamiltonian. In other words, given enough time, the detector will produce a high-
fidelity measurement result, regardless of the value of β. These results show that, under suitable
conditions and by proper analysis, the detector’s ability to obtain high-fidelity information about
the state of the qubit is not affected by the apparent conflict between the measurement and
coherent-precession dynamics.

In the course of our analysis, we have introduced an equation that supplements the
stochastic master equation for purposes of extracting measurement information from the
observed signal. We have also introduced a procedure for performing quantum state tomography
that is well suited for the case where the different measurement bases do not have a simple
relation to one another.

We have outlined the generalization of our analysis to the case where the qubit experiences
additional, non-measurement-related decoherence. In this case, the ‘value’ of the detector’s
output signal decreases with the time at which it is recorded. We have demonstrated this fact by
analyzing the case where the measurement is performed in the presence of relaxation.
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Appendix A. The QPC-current probability distribution for a short time interval
of size δt

In this appendix, we derive the expression for the probability distribution P[I, δ I, δt] that
governs the stochastically determined values of the QPC current I . We use the discretization
parameters δ I and δt : δ I defines the size of a finite interval of values for I that we identify with
a single value of I , and δt is the size of the time interval under consideration. In the derivation
below, we assume that the qubit is in one of its charge states (for definiteness |L〉) and that there
is no mixing between the charge states. We denote the average value of the current by Ī L for
the state |L〉 and Ī R for the state |R〉. We are assuming that the probability distribution can be
approximated by a Gaussian distribution function:

PL[I, δI, δt] ∝ exp
{
−α

(
I − Ī L

)2
}
. (A.1)

In order to determine how δt enters in the expression for PL[I, δ I, δt] we consider the effect
of performing N measurements in a row. For sufficiently small δt , the results of any calculation
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should not depend on whether we treat these measurements as N independent measurements
or as a single measurement of length Nδt . Since the values of I obtained in the different
measurements are independent, their average will have a standard deviation σ/

√
N , where σ

is the standard deviation of I for an interval of length δt . In other words, the standard deviation
in I must be proportional to 1/

√
δt . Since the coefficient α in equation (A.1) is related to the

standard deviation σ by σ = 1/
√

2α, we find that α must be proportional to δt : α = α̃δt .
We now introduce the measurement time τm by requiring that if δt were to reach

τm, the standard deviations (or in other words, the widths) of the probability distributions
PL[I , δ I, δt] and PR[I , δ I, δt] will be equal to half the distance between their center points:
1/

√
2α̃τm = | Ī R − Ī L|/2. Note that this definition does not necessarily agree with other

definitions of the measurement time that appear in the literature. Assuming for definiteness that
Ī R > Ī L and defining 1 Ī = Ī R − Ī L, we find that α̃ = 2/(τm[1 Ī ]2). Using the normalization∑

I PL[I, δI, δt] =
∫

PL[I, δI, δt]dI/(δI )= 1, we find that

PL[I, δI, δt] =

√√√√ 2δt (δI )2

πτm

(
1 Ī
)2 exp

{
−

2δt
(
I − Ī L

)2

τm

(
1 Ī
)2

}
. (A.2)

This expression is used for deriving the matrices UM[I, δ I, δt] in the main text of the paper.

Appendix B. The relation between a given output signal and its ‘opposite’

In this appendix, we would like to establish the relation between the measurement results of a
certain signal and its ‘opposite’. If a signal is given by I1(t), with the time t running from 0 to tf,
the opposite signal is given by I2(t)= Ī − I1(t). In other words, the opposite signal is obtained
by taking the mirror image of the signal about the central current value Ī . We start by stating
the relation: if

Û Total[I1(t : 0 → tf), δI, δt] = Û Rot[I1(t : 0 → tf), δI, δt] × Û Meas[I1(t : 0 → tf), δI, δt], (B.1)

with

Û Meas[I1(t : 0 → tf), δI, δt] =

√
P1|ψ1〉 〈ψ1| +

√
P2|ψ2〉 〈ψ2| , (B.2)

then

Û Total[I2(t : 0 → tf), δI, δt] = Û Rot[I2(t : 0 → tf), δI, δt] × Û Meas[I2(t : 0 → tf), δI, δt], (B.3)

with

Û Meas[I1(t : 0 → tf), δI, δt] =

√
P1|ψ2〉 〈ψ2| +

√
P2|ψ1〉 〈ψ1| , (B.4)

and Û Rot[I2(t : 0 → tf), δI, δt] = Û Rot[I1(t : 0 → tf), δI, δt] .
For tf = 0, both Û Total[I1(t : 0 → tf), δI, δt] and Û Total[I2(t : 0 → tf), δI, δt] are given by the

unit matrix, which obeys the relation given above. We now assume that the relation holds for a
given value of tf, and we try to establish that it will continue to hold at an infinitesimally later
time tf + δt . The two changes that can occur during this infinitesimal interval are a measurement-
induced weak projection or a Hamiltonian-induced unitary transformation. Since Û Rot[I2(t :
0 → tf), δI, δt] = Û Rot[I1(t : 0 → tf), δI, δt], application of exp{−iĤδt} to Û Total[I1(t : 0 →

tf), δI, δt] and Û Total[I2(t : 0 → tf), δI, δt] clearly cannot affect the above relation between the
total evolution matrices. Demonstrating that application of the weak projection also does not
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affect the relation is less straightforward. Using equation (10) and introducing the (infinitesimal)
quantity q = δt[I1(tf)− Ī ]/(τm1 Ī ), we find that

Û Total[I1(t : 0 → tf + δt), δI, δt] ∝
(
1 + qσ̂n

)
× Û Rot[I1(t : 0 → tf), δI, δt]

×

(√
P1|ψ2〉 〈ψ2| +

√
P2|ψ1〉 〈ψ1|

)
= Û Rot[I1(t : 0 → tf), δI, δt]

×
(
1 + qσ̂ñ

) (√
P1|ψ2〉 〈ψ2| +

√
P2|ψ1〉 〈ψ1|

)
, (B.5)

where

σ̂ñ = Û
†

Rot[I1(t : 0 → tf), δI, δt] ×
(
1 + qσ̂n

)
× Û Rot[I1(t : 0 → tf), δI, δt]. (B.6)

We now introduce the Pauli matrices σ̃z = |ψ1〉〈ψ1| − |ψ2〉〈ψ2| and σ̃x , for which qσ̂ñ = qx σ̃x +
qzσ̃z. Defining ap = (

√
P1 +

√
P2)/2 and am = (

√
P1 −

√
P2)/2, we find that

Û Total[I1(t : 0 → tf + δt), δI, δt] ∝ Û Rot[I1(t : 0 → tf), δI, δt] × (1 + qx σ̃x + qzσ̃z)×
(
ap + am σ̃z

)
= Û Rot[I1(t : 0 → tf), δI, δt] ×

(
ap + apqx σ̃x + apqzσ̃z + am σ̃z − iamqx σ̃y + amqz

)
= Û Rot[I1(t : 0 → tf), δI, δt] × exp{−iamqx σ̃y/ap}

×

(
[ap + amqz] +

[
apqx −

a2
mqx

ap

]
σ̃x + [am + apqz]σ̃z

)
+ O(q2)

= Û Rot[I1(t : 0 → tf + δt), δI, δt] × Û Meas[I1(t : 0 → tf + δt), δI, δt], (B.7)

where

Û Rot[I1(t : 0 → tf + δt), δI, δt] = Û Rot[I1(t : 0 → tf), δI, δt] × exp{−iamqx σ̃y/ap},

Û Meas[I1(t : 0 → tf + δt), δI, δt] = a′

p + a′

m,x σ̃x + a′

m,zσ̃z,

a′

p = ap + amqz,

a′

m,x = apqx −
a2

mqx

ap
,

a′

m,z = am + apqz.

(B.8)

We can now carry out the same derivation as above for the ‘opposite’ signal. The only changes
are that we replace q by −q (therefore replacing qx by −qx and qz by −qz) and reverse the
positions of P1 and P2 (this latter change changes am into −am and leaves ap unchanged). These
changes leave the infinitesimal rotation angle amqx/ap unchanged, and we therefore find that
the relation Û Rot[I2(t : 0 → tf + δt), δI, δt] = Û Rot[I1(t : 0 → tf + δt), δI, δt] holds. Similarly a′

p
is unaffected by the above changes. The quantities a′

m,x and a′

m,z, on the other hand, change their
signs. By looking at the expressions for the ap and am in terms of the P1 and P2 above, we can
see that reversing the sign of am reverses the positions of the symbols P1 and P2 in the matrix
Û Meas, which is exactly the difference between Û Meas[I1(t : 0 → tf + δt), δI, δt] and Û Meas[I2(t :
0 → tf + δt), δI, δt] that was stated at the beginning of this appendix. We have thus established
the relation between the matrices Û Total[I1(t : 0 → tf), δI, δt] and Û Total[I2(t : 0 → tf), δI, δt] .
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Appendix C. The measurement fidelity for two consecutive weak measurements

In this appendix, we show that the measurement fidelity for two misaligned weak measurements
can be higher than that obtained when the measurement axes of the two measurements are
aligned with each other7.

With no loss of generality, we take the measurement axis of the first measurement to be the
z-axis (i.e. the basis {|0〉, |1〉}). We assume that the measurement produces one of two possible
outcomes. The measurement matrices can therefore be expressed as

Û 1,1 =

(√
R1 (1 + ε1) 0

0
√

R1 (1 − ε1)

)
,

Û 1,2 =

(√
1 − R1 (1 + ε1) 0

0
√

1 − R1 (1 − ε1)

)
,

(C.1)

where we have neglected any coherent component in the measurement matrix, as explained in

the main text. The above matrices satisfy the basic requirement that Û
†

1,1Û 1,1 + Û
†

1,2Û 1,2 = 1.
The second measurement is performed in the basis {cos(θ/2)|0〉 + sin(θ/2)|1〉, sin(θ/2)|0〉 −

cos(θ/2)|1〉}. The corresponding measurement matrices are given by

Û 2,1 =
√

R2 (1 + ε2)

(
cos2 θ

2 sin θ

2 cos θ

2

sin θ

2 cos θ

2 sin2 θ

2

)

+
√

R2 (1 − ε2)

(
sin2 θ

2 − sin θ

2 cos θ

2

− sin θ

2 cos θ

2 cos2 θ

2

)
,

Û 2,2 =
√

1 − R2 (1 + ε2)

(
cos2 θ

2 sin θ

2 cos θ

2

sin θ

2 cos θ

2 sin2 θ

2

)

+
√

1 − R2 (1 − ε2)

(
sin2 θ

2 − sin θ

2 cos θ

2

− sin θ

2 cos θ

2 cos2 θ

2

)
.

(C.2)

The combined measurement has four possible measurement matrices, each one
corresponding to one of the four possible outcomes. For example, for the outcome identified
with the index 1 in both measurements, the measurement matrix is given by Û 2,1Û 1,1. In order
to obtain the measurement fidelity for this outcome, we need to consider the matrix

Û
†

1,1Û
†

2,1Û 2,1Û 1,1 =

(√
R1 (1 + ε1) 0

0
√

R1 (1 − ε1)

)R2 + ε2 cos θ
R2ε2 sin θ

2
R2ε2 sin θ

2
R2 − ε2 cos θ


×

(√
R1 (1 + ε1) 0

0
√

R1 (1 − ε1)

)
. (C.3)

7 For a study on a related subject, see Wei and Nazarov [21]. A somewhat related experimental study is given in
Deppe et al [21].
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If we denote the eigenvalues of this matrix by P1 and P2 (with P1 > P2), the measurement
fidelity for this outcome is given by (P1 − P2)/(P1 + P2). For purposes of calculating the overall
fidelity of the measurement sequence, we take the maximally mixed state,

ρmax. mixed =

(
1
2 0

0 1
2

)
(C.4)

as the initial state. With this initial state, the probability that the above outcome is obtained in
a given experimental run is given by (P1 + P2)/2. Thus, the overall fidelity (taking into account
all four possible outcomes) will be given by the sum of four terms, each of which is given by
(P1 − P2)/2 for one of the possible outcomes. For equation (C.3) straightforward algebra gives
the result that

P1 − P2

2
= R1 R2

√
(1 + ε1ε2 cos θ)2 − (1 − ε2

1)(1 − ε2
2). (C.5)

Similar expressions can be obtained for the three other possible outcomes, resulting in the
overall fidelity

F = R1 R2

√
(1 + ε1ε2 cos θ)2 − (1 − ε2

1)(1 − ε2
2)+ R′

1 R2

√
(1 + ε ′

1ε2 cos θ)2 − (1 − ε ′2
1 )(1 − ε2

2)

+R1 R′

2

√
(1 + ε1ε

′

2 cos θ)2 − (1 − ε2
1)(1 − ε ′2

2 )

+R′

1 R′

2

√
(1 + ε ′

1ε
′

2 cos θ)2 − (1 − ε ′2
1 )(1 − ε ′2

2 ), (C.6)

where R′

j = 1 − R j and ε ′

j = −ε j R j/(1 − R j).
The measurement fidelity can have its maximum at any point between zero and π (with

the proper choice of the parameters R j and ε j ; we have verified this statement numerically).
For the special case R1 = R2 = 1/2 and ε1 = ε2 ≡ ε > 0, the overall measurement fidelity is
given by

F =
1
2

(√
(1 + ε2 cos θ)2 − (1 − ε2)2 +

√
(1 − ε2 cos θ)2 − (1 − ε2)2

)
. (C.7)

Differentiating this expression twice shows that it has a maximum at cos θ = 0. In fact, in the
limit of weak measurement, i.e. ε � 1, one can see easily that the above expression can be
approximated by

F ≈ ε

(∣∣∣∣cos
θ

2

∣∣∣∣+

∣∣∣∣sin
θ

2

∣∣∣∣) , (C.8)

which has minima at θ = 0 and θ = π (F = ε) and a maximum at θ = π/2 (F =
√

2ε). The
relative difference between the minimum and maximum fidelities is approximately 30%.

The result that the fidelity of two weak measurement can be enhanced when they are not
aligned with one another offers some explanation for the result of section 4 that the fidelity
increases more rapidly when the qubit Hamiltonian and the probed operator do not commute.
The qubit Hamiltonian causes a rotation in the qubit’s state, while the state is being measured
along a fixed axis. This situation is, in some sense, equivalent to one where a number of different
qubit operators are sequentially probed.

A final comment that is worth making here regards the possible bases of the combined
measurement. As can be seen from the analysis of this appendix, when the two performed
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measurements correspond to directions in the x–z-plane, all the resulting matrices will be real.
As a result, all the possible effective measurements will be in the x–z-plane as well (note that a
projector along the y-axis would be complex). In other words, when successive measurements
are made in one plane, they can only result in effective measurements made in the same plane.
This result explains why in the special case β = π/2 all the possible measurement bases lay in
the x–y-plane; successive measurements along the x-axis separated by state precession about
the z-axis are equivalent to a sequence of measurements that are all performed in the x–y-plane.

Appendix D. Quantum state tomography

In this appendix, we derive the function that was used to perform quantum state tomography in
section 4.

We start with the objective of performing quantum state tomography using the available
measurement data, which we assume has been obtained using a (generally weakly coupled) QPC
as explained in the main text. We note that since the measurements in the different experimental
runs are generally performed in different bases, we look for a procedure that treats all the
measurements on equal footing and does not have a preferred measurement basis, or set of
bases. One obvious approach to follow is to construct a function that assigns a penalty for any
deviation by the ‘guess’ density matrix ρguess from a given experimental result (which takes
the form of a measured, pure state). The guess density matrix is characterized by the spherical
coordinates rguess, θguess and φguess, whereas the measured state is characterized by only the angles
in spherical coordinates θ j and φ j (the index j denotes the different experimental runs). The
function to be minimized for purposes of state tomography will therefore have the form

T (rguess, θguess, φguess)=

∑
j

f (rguess, θguess, φguess, θ j , φ j). (D.1)

In order to proceed further, we now consider what is done in the standard version of
state tomography where the average values 〈σ̂x〉, 〈σ̂y〉 and 〈σ̂z〉 are measured and the density
matrix ρ = (1 + 〈σ̂x〉σ̂x + 〈σ̂y〉σ̂y + 〈σ̂z〉σ̂z)/2 is inferred from the measurement data. If we take
the measurement data for σ̂z, we know that we want the tomography procedure to produce
the result r cos θ = (N+1 − N−1)/(N+1 + N−1), where N+1 and N−1 are the number of times that
the measurement results +1 and −1 were obtained, respectively. We can therefore see that the
function f (rguess, θguess, φguess, θ j = 0, φ j) will only be a function of 〈σ̂z,guess〉 = rguess cos θguess

(or, in other words, the projection of the vector representing the guess density matrix along the
measurement axis). Taking this measurement data, we find that the function T has the form:

T
(〈
σ̂z,guess

〉
, N+1, N−1

)
= N+1 f

(〈
σ̂z,guess

〉)
+ N−1 f

(
−
〈
σ̂z,guess

〉)
. (D.2)

In order to minimize the function T , we take its derivative with respect to 〈σ̂z,guess〉:

dT
(〈
σ̂z,guess

〉
, N+1, N−1

)
d
〈
σ̂z,guess

〉 = N+1 f ′
(〈
σ̂z,guess

〉)
− N−1 f ′

(
−
〈
σ̂z,guess

〉)
. (D.3)

If we now use the Taylor expansion

f ′
(〈
σ̂z,guess

〉)
=

∞∑
n=0

cn

〈
σ̂z,guess

〉n
, (D.4)
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we find that

dT
(〈
σ̂z,guess

〉
, N+1, N−1

)
d
〈
σ̂z,guess

〉 =

∑
n=0,2,4,...

{
(N+1 − N−1)cn

〈
σ̂z,guess

〉n
+ (N+1 + N−1)cn+1

〈
σ̂z,guess

〉n+1
}

= (N+1 + N−1)
∑

n=0,2,4,...

{
cn

〈
σ̂z,correct

〉
+ cn+1

〈
σ̂z,guess

〉} 〈
σ̂z,guess

〉n
, (D.5)

where 〈σ̂z,correct〉 = (N+1 − N−1)/(N+1 + N−1). In order to ensure that the function T has a
minimum at 〈σ̂z,guess〉 =

〈
σ̂z,correct

〉
, we must choose cn = −cn+1 for every even number n. The

simplest choice is c0 = −c1 = −1/2 and c2 = c3 = · · · = 0. This choice gives the function

T (rguess, θguess, φguess)=

∑
j

[
1 −

〈
σ̂z,guess

〉]2
, (D.6)

which, when generalized to the case where the measurement axis is not necessarily the z-axis,
gives equation (37).

The detailed analysis of the different possible choices of cn in the function T , and the
stability and reliability of these different choices, is beyond the scope of this paper.
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