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Abstract

The unavoidable finite time intervals between the sequential operations needed
for performing practical quantum computing can degrade the performance of
quantum computers. During these delays, unwanted relative dynamical phases
are produced due to the free evolution of the superposition wavefunction of
the qubits. In general, these coherent ‘errors’ modify the desired quantum
interferences and thus spoil the correct results, compared to the ideal standard
quantum computing that does not consider the effects of delays between
successive unitary operations. Here, we show that, in the framework of the
quantum phase estimation algorithm, these coherent phase ‘errors’, produced
by the time delays between sequential operations, can be avoided by setting up
the delay times to satisfy certain matching conditions.

PACS number: 03.67.Lx

1. Introduction

Building a prototype quantum information processor has attracted considerable interest during
the past decade (see, e.g., [1]). This desired device should be able to simultaneously
accept many different possible inputs and subsequently evolve them into a corresponding
quantum mechanical superposition of outputs. The proposed quantum algorithms are usually
constructed for ideal quantum computers. In reality, any physical realization of such a
computing process must treat various errors arising from various noise and imperfections
(see, e.g., [1-3]). Physically, these errors can be distinguished into two different kinds:
incoherent and coherent errors. The incoherent perturbations, originating from the coupling
of the quantum computer to an uncontrollable external environment, result in decoherence
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and stochastic errors. Coherent errors usually arise from non-ideal quantum gates which
lead to a unitary but non-ideal temporal evolution of the quantum algorithm. So far, almost
all previous works (see, e.g., [4—7]) have been concerned with quantum errors arising from
the decoherence due to interactions with the external environment and external operational
imperfections. Here, we will not be concerned with these two types of externally induced
errors, but will focus instead on intrinsic ones. The coherent errors we consider here relate
to the intrinsic dynamical evolution of the qubits between operations. This has not been
paid much attention until a recent work in [8], where a kind of dynamical phase error was
introduced. It is well known that a practical quantum computing process usually consists
of a number of sequential quantum unitary operations. These transformations operate on
superposition states and evolve the quantum register from the initial states (input) into
the desired final states (output). According to the Schrodinger equation, the superposition
wavefunction oscillates fast during the finite-time delay between two sequential operations. In
general, these oscillations modify the desired quantum interferences and thus spoil the correct
computational results, expected by the ideal quantum algorithms without any operational
delay.

Two different strategies have been proposed to deal with these coherent errors. One is the
so-called ‘avoiding error’ approach proposed by Makhlin ef al in [9]. Its key idea is to let the
Hamiltonian of the bare two-level physical system be zero by properly setting up experimental
parameters. Thus the system does not evolve during the delays. This requirement is restrictive
and cannot be easily implemented for some physical set-ups of quantum computing e.g., for
trapped ions. A modified approach to remove this stringent condition was proposed by Feng in
[10], where a pair of degenerate quantum states of a pair of two-level systems are used to encode
two logic states of a single qubit. During the delay these logical states acquire a common
dynamical phase, which is the global phase without any physical meaning. Thus the above
dynamical error can be avoided efficiently. However, this modified scheme complicates the
process of encoding information. Another strategy to this problem was proposed by Berman
etal [8]. They pointed out that the unwanted dynamical oscillations can be routinely eliminated
by introducing a ‘natural’ phase, which can be induced by using a stable continuous reference
oscillation for each quantum transition in the computing process. However, this scheme only
does well for the resonant implementations of quantum computation. The additional reference
pulses also complicate the quantum computing process and may result in other operational
errors.

We show in this paper that, in the framework of the quantum phase estimation algorithm,
the coherent phase errors, produced by the free evolutions of the superposition wavefunctions
of bare two-level systems, can be avoided simply and effectively by setting up the delay time
intervals appropriately. The proposed matching condition can be considered a sort of strobed
operation (with strobe frequencies corresponding to each different transition energy). For
simplicity, we simplify each quantum algorithm to a three-step functional process, namely,
preparation, evolution and measurement. All the functional operations in this three-step
process are assumed to be carried out in an infinitesimally short time duration, and thus only
the delays between them, instead of the operations themselves, are considered. The effects of
the environment decoherence and the operational imperfections are neglected in the present
treatment.

The paper is organized as follows. In section 2, we present our general approach
with the phase estimation algorithm. Section 3 gives a few special demonstrations and
shows how to perform quantum order-finding and quantum counting algorithms in the
presence of operational delays. Finally, we give a short summary and discussion in
section 4.
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2. Phase estimation algorithm with operational delays

Our discussion begins with the phase estimation algorithm [11, 12] and its finite-time
implementation with some delays. The programs for some of the existing other important
quantum algorithms, such as quantum factoring and counting ones, can be reformulated in
terms of this problem. The goal of the phase estimation algorithm is to obtain an n-bit
estimation of the eigenvalue exp(i¢) of a unitary operation Uz,

Urlp)r =e“|¢)r (D
if the corresponding eigenvector |¢)7, and the devices that can perform operations U, U 2T,
U%, ..., and U7, are given initially. Two quantum registers are required to perform this

algorithm. One is the target register, whose quantum state is kept in the eigenstate |¢); of
the unitary operator Uz. Another one, with n physical qubits and called the index register, is
used to read the corresponding estimation results. The needed number of qubits 7 in the index
register depends on the desired accuracy and on the success probability of the algorithm. The
most direct application [13] of this algorithm is to find eigenvalues and eigenvectors of a local
Hamiltonian H 7 by determining the time-evolution unitary operator Uz = exp(—iH rt/h).
The phase estimation algorithm can be viewed as a quantum nondemolition measurement, and
can also be used to generate eigenstates of the corresponding unitary operator U7 [14].

The ideal quantum algorithm usually assumes that the quantum computing process can
be continuously performed by using a series of sequential operations without any time delay
between them. In reality, a delay between two sequential operations always exists, introducing
errors that need to be corrected. For simplicity, we reduce the phase estimation algorithm to a
three-step functional process, namely, initialization, global phase shift and measurement. All
the functional operations in this three-step process are assumed to be carried out exactly, and
thus only the delays between them, instead of the operations themselves, are considered. Sucha
simplified finite-time implementation of the phase estimation algorithm is sketched in figure 1.
For convenience we distinguish the physical qubit and the logic qubit in the index register.
The physical qubit is just a two-level physical system and the logical qubit is the unit of binary
information. Unlike the scheme in [10], wherein two physical qubits are used to encode one
logical qubit, in the present work one physical qubit is enough to encode one logical qubit.
The symbol |a;); witha = 0,1, j,k = 0,1,...,n — 1 means that the kth logical qubit is
encoded by the jth physical qubit. |a;) is the eigenstate of the bare Hamiltonian of the jth
physical qubit corresponding to the eigenvalue E,.

The quantum phase estimation algorithm with operational delays can be divided into three
distinct functional steps.

2.1. Initialization

First, we initialize the index register with n physical qubits in an equal-weight superposition
of all logical states. This can be performed by applying the Hadamard transform to its ground
state |0); = H(;:n_l |0) ;. Note that the target register holds an eigenstate [¢)7 of Uy with
eigenvalue exp(i¢). Hereafter, the subindex / will denote the index state, while the subindex
T refers to the target state. The computational initial state of the whole system is

o 1 |
WOy =1 [ #1000, ®l¢)r = 7 > Ik ® 1)r
j=n—1 I 2 k=0 (2)

N 1 /1 1
i=50 )
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Figure 1. Quantum phase estimation with operational delays. Note that (1) there is an operational

delay r;m) (m = 1, 2) between successive quantum operations on the jth physical qubit, and (2)
the jth logical qubit is changed to the (n — j — 1)th one after the Hadamard gate H and inverse
QFT F~!. Here, r;” is time delay between the A and UZT'HPI operations, while r,@ is the delay

~an—j—1 N
between UZT" " and F.

where |k); = |110)],(,,1 Q- Qlay_1 )’5 are the number states of the index register, and FIJ- is the
Hadamard transform applied to the jth logical qubit. For convenience, in this paper the jth
logical qubit is changed into the (n — 1 — j)th logical qubit when applying either the Hadamard
or the (inverse) quantum Fourier transform (QFT). Of course, the order of the physical qubits
is not changed.

After a finite time delay ‘L';l) for the jth physical qubit, the initial state |\ (0)) of the whole
system evolves into

0
1
[ofr;"}) =1 T1 E(exp(—iE?r}”)|0,>n,,,1+exp(—iE}r;”)unn,,,l) ® )7

j=n—1 I

3)

with E? and Ej1 being the eigenvalues of the Hamiltonian for the jth bare physical qubit
corresponding to the eigenvectors |0;) and |1 ), respectively.

2.2. Global phase shift

Second, we shift the ‘global’ phase in the eigenvector of the operator U into a measurable
relative phase. This can be achieved by using the ‘phase kick-back’ technique [12]. Indeed,
after applying a controlled-U? operation ¢ — U j» defined by

C_Uj:|1)jj<1|®02Tj+|O>jj(0|®iT 4)
to the jth logical qubit, the state !dD{tJ(-l) }) is evolved into

0

i7"} =[] €= 0plef5")

j=n—1

= E(exp (—iEQTs")100)u—1 +exp (—iEqzy") exp(i2" ' ¢) 1o)u-1) ®
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- ® L(exp (—iEL_ 7 ")10,-1)0 +exp (—iE}_ z")

V2
x exp(i2°9)[1,-1)0) ® )7 (5)
Here |1); ;(1] and |0); ; (0| are the projectors of the jth logical qubit. Ir is the identity or
unity operation. The Controlled-l? %’ operator means Athat, if the jth logical qubit in the index
register is in the state |1);, the 2/-fold iteration of Uy is applied to the target register. The

‘global’ phase in the eigenvector of the operator U 2" is changed as the measurable relative
phases in the states of the index qubits.

Before the next step in the operation of the algorithm there is another finite-time delay
7;2) for the jth physical qubit. During this time interval each physical qubit of the index
register evolves again freely according to the Schrodinger equation, while the target register is
assumed to be still in the state |¢)7. As a consequence, the state of the whole system becomes

|®{7;}) = %(exp (—1E{70)100)0—1 +exp (—iE{T0) exp (12" '¢)[Lo)u—1) ®
- ® % (exp (—iESflr,1,1)|O,,,1)0 +exp (—iE,Llrn,l)
x exp (12°9)[1,-1)0) ® )7 (©6)
with
T = t“) ‘5;2) @)
being the total delay before and after the controlled-U %L_H operation. Note that the dynamical

phases of the index qubit can be added up before and after this, as controlled-U ZT%H operator
is diagonal in the basis of the (n — j — 1)th logical qubit of the index register.

2.3. Measurement

Third, we finally apply the inverse quantum Fourier transform (QFT) on the index register to
measure the phase in the eigenvector of the unitary operator U 7. The inverse QFT, defined by
the formula

21

QFT': k) — F7lk) = —Zexp( 2m—> 1) (8)
y=0
can be performed by using the sequential unitary operations F~' = Fi = A ()IQTO,I
Hy - R(T,,n_l R,', 2 L H,_1, to the corresponding logical qubits. Here,
1 00 0
At 10 1 0 0
ki 10 0 1 0
000 e™)
J=k.j

is a two-qubit controlled-phase operation. It implies that the state |1); of the target jth logical
qubit will change by a phase exp(—in/2), if the control (j — k)th logical qubit is in the state
|1)j_x. If the phase ¢ can be exactly written as a n-bit binary expansion, i.e.,

¢0 ¢)1 ¢nfl
¢ =21(do- - Pu- 1)_—,, 2”—1+'“+T
then the expected final output state of the index register, after applying the inverse QFT, is the
following product state

[T D = Pu1)n—1 @ -+ |@j)j -+ @ |o)o. (10)

¢;=0,1 j=01,....n—1 (9
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However, the existing dynamical phase error, arising from the free evolution of the physical
qubits during the delays, may spoil the desired results. For example, measuring the jth
physical qubit in the computational basis {|0), |1)}, we have

F: [exp(—iEY7;)10;)u-1—; +exp (—iE}7;) exp(i2" 27 (o - 111 duci—j | /V/2
— exp (—iE?rj)[(l +exp(—iA;7;) exp(imr¢;))[0;); + (1 — exp(—iA;1;)

x exp(ing;))|1),1/7/2. (1)
The expected result |¢;) ; is obtained with the following probability,
Py, = 1[1+cos(A;1))] Aj=Ej—EY (12)

while an error output state [¢; @ 1) ; is obtained with the probability Py a1 = [1—cos(A;T;)]/2.
Here @ refers to addition modulo 2. Note that the above probability (12) of obtaining the
correct result only depends on the fotal delay time t;, but not directly on the individual time
intervals t;m), m=1,2.

Obviously, if 7V = t® = 0, i.e., for the ideal algorithm realization without any delay,
one obtains the desired output |¢;);. While for the realistic case where r}l), 1;2) # 0, the
required quantum inference may be modified, and thus the real output may not be the expected
one. A worst case scenario is produced if

Ajti=Ql+Drm [=0,1,2,... (13)
because the corresponding error-state output is |[¢; @ 1) ;, which is incorrect. However, if the
following matching condition

Ajtj=2(l+Drm (14)

is satisfied, one obtains the desired output |¢;);, and thus the fast oscillation of the
superpositional wavefunction is suppressed in the output of the computation. Above,
T = 1’;1) + 1;2) is the total effective delay time of the jth physical qubit in the algorithm. The
condition in equation (14) is desirable for implementing quantum algorithms with an arbitrary
number of qubits and includes as a particular case, the less general condition in [8] for the

finite-time implementation of the four-qubit Shor’s algorithm.

3. Example and applications

We now demonstrate the above general approach via a simple example, and show the effects
of dynamical phases in finite-time implementations of a few quantum algorithms.

3.1. NOT gate eigenvalue

First, we wish to determine the eigenvalue of the Pauli operator 6., or NOT gate, by running
the realistic single-qubit phase estimation algorithm discussed above. Assuming that the
single-qubit target register is prepared into one of the eigenstates

1 1
#)r = 1H)r = — (il)T (1)

corresponding to the eigenvalues e with ¢ = 0, 7, respectively. According to the above
discussions, the final state of the index single-qubit register, after the single-qubit measurement
just performed by Hadamard transform, can be written as

(1)), = H[1 +exp(—iAT +ig)] exp(—iE"T)[0);
+[1 —exp(—iAT +ig) ] exp(—iE'1)|1);}. (16)
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This implies that the probability for the index register to be finally in the state |0); or |1); is
Py(t) = %[1 +c0s ¢ cos(AT) +sin¢g sin(At)] 17
or
Pi(7) = %[1 — cos ¢ cos(AT) + sin ¢ sin(A71)]. (18)

If the target register is in the eigenstate |+); of operator 6, with eigenvalue +1, i.e., ¢ = O,
the probability of getting the expected output |0); is Py(t) = 1, if condition (14) is satisfied.
However, if condition (13) is satisfied, the index register will show the error output, i.e., |1);.

3.2. Dynamical phase effects in the quantum order-finding algorithm with delays

Shor’s algorithm [15] for factoring a given number N is based on calculating the period of
the function f(x) = y* mod N for a randomly selected integer y between 1 and N. Once, the
order r of ymod N is known, factors of N are obtained by calculating the greatest common
divisor of N and y"/> & 1. A finite-time implementation of the order-finding algorithm can
be translated to the above quantum phase estimation algorithm with delays. Here, the unitary
operator whose eigenvalue we want to estimate is the unitary transformation U y,» with U V= I,
which maps |x) to |yx mod N) and

0 _ 2k 2mikx * mod N
y|uk>—exp<17)|uk> lug) = IZ ( >|y mod N)

k=0,....,r—1. 19)

By the phase estimation algorithm, we can measure the eigenvalue exp(2mwik/r) and
consequently get the order r. However, the present target register cannot be prepared
accurately in one of the eigenvectors |uy), as the order r is initially unknown. It is noted
that Zk _o lux)/5/r =11), and |1) is an easy state to prepare. Thus, the algorithm may be run
by initially generating a superposition of all eigenstates of the operator U y» rather than one of
them accurately.

Without loss of generality, we demonstrate our discussion with the simplest meaningful
instance of Shor’s algorithm, i.e., the factorization of N = 15 with y = 7, which had been
implemented in a recent NMR experiment [16]. In this simplest case, the order r is the power of
2,i.e.,r = 2", n = 2, and thus the expected phase estimation algorithm can measure exactly the
n-qubit eigenvalue k/2" : k = Z?;(l) k; 27k ; =0, 1. From the measurement eigenvalues we
can obtain the order r by checking if y" mod N = 1. Following the corresponding experimental
demonstration [16], we need an index register with n = 2 physical qubits to measure the
eigenvalues of the present unitary operator U y»and a target register with m = 4 physical qubits
to represent the state |1)7 = Z;j:o lug)r /2, lug)r = Zi:o exp(=2m ikx /2%)|7° mod 15)7 /2,
which, in fact, is the equal-weight superposition of all the eigenvectors of the operator

yilx)r —> [7"mod 15)7,x =0, 1, 2, 3, with Uy|uk)7 = exp(2m ik /2%)|uy) 7. According
to the three-step finite-time implementation of the phase estimation discussed in the last
section, one can easily prove that the whole system is in the following entangled state,

3 (-]
1 . 220Dk
|®{7;}) =3 E H{ |: )i—j +exp <—1Aj‘[j+T>|lj>lj>} ® lur)r (20)
k=0 j=1 4

before the index register is measured by using the inverse QFT. Here, the unimportant global
dynamical phase factor exp (—2iE{7;) is neglected.
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(1) (2)

In the ideal case, i.e., ;" = 7;7 = 0, measuring the index register by the inverse QFT
will, with a probability equal to 1/4, produce the expected output state
[Woudr = lki)1 @ |ko)o- (21

Simultaneously, the target register will ‘collapse’ into the state of the corresponding expected
eigenvector |u;). Once a measurement output, i.e., k/2> = (2'k; + 2%)/2? is known, the
order is efficiently verified by checking if y' mod N = 1 fori = 22/k,2 x 2*/k, ..., r. For
example, if the output is k = 3, i.e., |Wou); = |11)1 ® [10)o, the order can be verified by
testing y' mod N = 1 fori = {22/3,2 x 22/3,3 x 22/3 = 4 = r}. Of course, the algorithm
fails if the output is k = 0, i.e., the target register collapses into the corresponding eigenvector
|up). However, these deductions may be modified in a realistic quantum computing process
where the delays exist, i.e., r}l), 1:;2) # 0. In fact, one can easily see from equation (18) that,
after applying the inverse QFT, if the target register collapses into the state |uy), the output in
the index register reads

0
1 . . 1 . .
[Wou) s = 1_[ |:§(1 +exp(—iA;t; + mik;))|0;); + 5(1 —exp(—iA;T; + mkj))|1j)j:| .
j=1

(22)

Therefore, the expected state |ki); ® |ko)o is obtained, only if the delays are set up to satisfy
the matching condition (14). Otherwise, some errors may appear in the index register. In
particular, an undesirable bit flip error will be produced if equation (13) is satisfied. For
example, if the target register collapses into the state |u3)7, the index register generates a null
[0); = 101)1 ® |0p)0, but not the expected output |3); = |11)1 ® |1o)o.

3.3. Quantum counting algorithm with operational delays

Quantum counting is an application of the phase estimation procedure to estimate the
eigenvalues of the Grover iteration [17, 18],

G =-AU0,A7'0;. (23)

|x) to (—1)/™|x). This algorithm enables us to estimate the number of solutions to the search
problem, as the Grover iterate is almost periodic with a period dependent on the number of
solutions. Indeed, from the following equation,

Here, A is any operator which maps |0) to Ziv_l Ix)/~/N, U maps |0) to —|0) and Uf maps

GIW.) = exp(£2iw)|Wa) 1=0,1,2,...,N 4)

with |Wy) = (X)) % i|Xo))/v/2, exp(£2miw;) = 1 — 2I/N =+ 2i,\/I/N — (I/N)2, and
|X1) = Zf(x):l 1x)/V1, 1Xo) = Zf(x):O |x)/~/N — [, we see that either w; or —w; can
be estimated by using the phase estimation algorithm. This gives us an estimation of /, the
number of solutions.

In order to explicitly demonstrate how the dynamical phase error reveals in quantum
counting, we consider the simple case where [ = N /4. The expected eigenvalues we want
to estimate are exp(%mi/3), corresponding to the target register being kept in the eigenstates
|W.). However, in this case the expected output w; = 1/6 cannot be expressed exactly in an
n-bit expansion. Following Jones et al [18] and Lee et a/ [19], we now adopt the ensemble
measurement to approximately characterize the final state of the index register. The algorithm
operates on two registers: a single-qubit index register and the target register with m qubits,
which are initially prepared in their ground state: | (0)); = |0), [ (0))r = ]_[(;zm_1 |0) ;.
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A quantum counting algorithm with delays can also be performed by three operational

steps.
(1) Applying the Hadamard transform to two registers simultaneously, we have
W) = Y1) ® |¥1)r (25)
with Y1), = H[0); = (|0) + [1))/v2, and [Y1)r = W7 + c |W )r,cx =
Fiexp(Lin/6)//2.

(2) After the first finite-time delay (", we apply the controlled operation ¢ — G =
[1);7(1] ® G +10); (0] ® I to the state |\V;), and have

W) = Z —[|o 1 +exp(ujor — ATV 1@ [W))r. (26)

After k repetitions of the above operations, the state of the system becomes

Z [|O,+exp(1(27r1ka)l AV +P 4wt &N W) . @27

Above, the controlled operation ¢ — G means that the operation G is applied to the target
register only when the control qubit is in state |1);.

(3) After another finite-time delay t®, we apply a second Hadamard transform to the
control qubit producing

|W4) = ZC,[(l + exp(i2rkjo; — A1)))|0) + (1 — exp(iCrkjo; — AT))[1)]1 @ |V))7
j =+
(28)

k
T = T

and then the expectation value of 6, is measured to characterize the final state of the index
register. This corresponds to determining the population difference between |0);; (0] and
[1);7(1] in the state |W,)), and the result can be expressed as

(6,)1 = cosRmkw; — AT). 29)

The expected result for the ideal case, i.e., 7™ = 0, is (6.);(tr) = cos(2wkay), and the value
w; is estimated by varying k in a manner based on a technique of Kitaev [11]. For the present
problem, if the number of repetitions of the ¢ — G operator is k = 6, the measurement result
will be expected as (6;); = 1. This implies that before the measurement the control qubit
is in state |0) with a high probability. However, in practice, operational delays always exist
and thus the wavefunction of the control qubit acquires a nontrivial dynamical phase for each
delay. As a consequence, the realistic result of the measurement is obviously dependent on
the rotal delay time T = an: L T/ We see again that the expected result is obtained only if
the matching condition (14) is satisfied.

4. Conclusion and discussion

Ideal quantum algorithms usually assume that quantum computing can be performed by
continuously applying a sequence of unitary transforms. Inreality, when performing a practical
quantum computations, there are finite time intervals between the sequential operations.
During these delays, according to the Schrodinger equation, unwanted relative dynamical
phases are acquired by the superposition wavefunction of the physical qubit in the quantum



10 L F Wei and F Nori

register. In general, this phase modifies the desired quantum interference required for an
ideal quantum computer and thus spoils the correct computational results. Note that any
entanglement between qubits is caused during these delays, and thus resulting coherent
phase errors can be avoided by simply setting up the total delay times to satisfy certain
matching conditions. Under these conditions, the relative physical phases in the final state
of the superposition wavefunction are deleted. Of course, the dynamical oscillations, due to
delays, can also be suppressed by trivially setting up individual delays r;m), m=12...,

as A jr;m) = 2n7m. The key observation here is that only the total delay time, instead of the

duration for every delay, needs to be set up accurately to avoid the coherent dynamical phase
errors. Therefore, only the proper setting up of the toral delay is needed for avoiding coherent
intrinsic errors. In these implementations, only the free evolution of the physical qubits in the
index register is considered.

Compared to previous schemes [8—10] for studying similar problems, our scheme presents
some advantages. First, it does not require that the Hamiltonian should be equal to zero during
the quantum register in the idle state (as done in [9]). Second, operations to force the generation
of additional phases to eliminate these phase errors (as done in [8]) are not needed. Finally,
our approach does not need to use a pair of degenerate states, formed by using two or more
physical qubits, to encode a logical qubit (as done in [10]) for transforming the relative phase
into a global phase. Therefore, in principle, our proposal should allow the implementation of
the expected ideal quantum phase estimation algorithm.

It is worthwhile to emphasize that only the delays between the sequential functional
steps of quantum computing are considered in the present simplified scheme. The effective
dynamical phases, acquired by superposition wavefunctions of physical qubits during the
effective delays, may be added up, as the key operation ¢ — U j in the phase estimation
algorithm is diagonal in the logical basis of index register. The applied non-diagonal Hadamard
gate A and inverse QFT operation F~' were assumed to be implemented exactly, and thus
the coherent errors relating to the possible operational delays inside the initialization and
measurements had been neglected. Indeed, the Hadamard gate had been performed exactly
by using one-step operation [20], and the one-step operational approach had been proposed
[21] to exactly implement the QFT. Furthermore, the present scheme for avoiding the coherent
dynamical phase error is still robust, even if the operational delays inside the initialization
and measurement are considered. Usually, only a non-diagonal o,-operation is included
in a three-step process for realizing a Hadamard gate, and in the inverse QFT for measuring
a physical qubit. Fortunately, it is not required to add up the dynamical phase before and
after such a non-diagonal o, -operation in the quantum phase estimation algorithm. In fact,
the qubit is not in superposition state before (after) the applied o, -operation in initialization
(measurement). Therefore, in the framework of the quantum phase estimation algorithm, the
present strategy for avoiding the coherent phase error is sufficiently robust. This approach can
also be used for other quantum algorithms, e.g., Deutsch—Jozsa algorithm [1], wherein the key
operation is diagonal and the possible non-diagonal operations are also only included in the
initialization and measurement operations.
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