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Abstract
We present two models for electron-driven uphill proton transport across lipid membranes, with
the electron energy converted to the proton gradient via the electrostatic interaction. In the first
model, associated with the cytochrome c oxidase complex in the inner mitochondria
membranes, the electrostatic coupling to the site occupied by an electron lowers the energy
level of the proton-binding site, making proton transfer possible. In the second model, roughly
describing the redox loop in a nitrate respiration of E. coli bacteria, an electron displaces a
proton from the negative side of the membrane to a shuttle, which subsequently diffuses across
the membrane and unloads the proton to its positive side. We show that both models can be
described by the same approach, which can be significantly simplified if the system is separated
into several clusters, with strong Coulomb interaction inside each cluster and weak transfer
couplings between them. We derive and solve the equations of motion for the electron and
proton creation/annihilation operators, taking into account the appropriate Coulomb terms,
tunnel couplings, and the interaction with the environment. For the second model, these
equations of motion are solved jointly with a Langevin-type equation for the shuttle position.
We obtain expressions for the electron and proton currents and determine their dependence on
the electron and proton voltage build-ups, on-site charging energies, reorganization energies,
temperature, and other system parameters. We show that the quantum yield in our models can
be up to 100% and the power-conversion efficiency can reach 35%.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Every living organism obtains the energy needed for its
survival from the outside world. This energy can be in the
form of sunlight or food; but in both cases it is unstable and
cannot be utilized directly, so several energy-conversion steps
are necessary. One of the most widely used intermediate forms
for energy storage is the electrochemical proton gradient across
lipid membranes, such as the inner mitochondrial membranes
or plasma membranes in bacteria. To achieve and maintain
this proton gradient, Nature employs several different types
of electron- or light-driven systems, where the energy of
high-energetic electrons or absorbed photons is used for the
energetically uphill proton transfer from the negative (N) to
the positive (P) sides of the membrane.

Here we discuss two mechanisms of energy conversion
from the highly unstable electronic form of energy to the
proton gradient, namely, proton pumps and redox loops [1, 2].
Both mechanisms rely on the electrostatic interaction between
electrons and protons, although the specific details of the
proton pumps and the redox loops look very different. For
example, in a proton pump, such as cytochrome c oxidase,
electrons move mainly along the membrane, whereas protons
move across the membrane, which results in an accumulation
of the positive charge on the P-side and in the generation
of a proton-motive force (PMF) [3–6]. In the redox-loop
mechanism of PMF generation, taking place in the nitrate
respiratory chain of the E. coli bacterium, the neutral shuttle,
carrying both protons and electrons, crosses the membrane.
Here, charge accumulation occurs when electrons cross the
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membrane, just before embarking on the shuttle, and right after
unloading from the shuttle [7–12]. It should be noted that
the proton pump operating in the cytochrome c oxidase has
no essential mechanically moving parts, whereas the redox-
loop mechanism is impossible without the molecular shuttle
diffusing between the N and the P sides of the lipid membrane.

In general, the treatment of the electron and proton
transfer events is extremely difficult because the total number
of occupation states increases exponentially with the number
of electron- and proton-binding sites, when all of them are
electrostatically coupled. In the present work, however,
we show that both above-mentioned mechanisms of the
transmembrane proton translocation can be described with a
similar mathematical model, taking into account the Coulomb
interaction between one electron- and one proton-binding sites
only, and neglecting electrostatic couplings to other sites. It is
necessary to have at least three redox sites and three proton-
binding sites in order to obtain a proton pumping effect and
suppress a reverse flow of protons from the P-side to the ‘N’-
side of the membrane. In the absence of strong Coulomb
interaction between all sites, there is no need to introduce
a complete set of electron and proton occupation states (as
was done in our previous works, [6, 11–13]), which grows
exponentially with the number of sites. Instead, we now divide
the whole system into clusters of strongly coupled sites. These
clusters are described by their own set of occupation states,
and the total number of states in the system is equal to the sum
(not the product!) of the states in the clusters. The clusters
are weakly coupled by electron tunneling terms and by proton
transfer amplitudes, so that transitions between the clusters
can be considered within perturbation theory. While in this
work we present quite simple models, similar approaches can
be applied to much more complicated biological systems, such
as Photosystem II and the whole respiratory chain in the inner
mitochondrial membrane [2].

The quantum yield for the two models analyzed in this
paper can be about 1. Why such a high quantum yield? This
can be explained from the fact that, in order to be transferred
through the system, an electron needs to lose its energy. This
cannot be done via the environment because the reorganization
energy is not large enough. Consequently, electron transport
occurs with the assistance of protons gaining this energy and
being transferred to the P-side of the membrane. Thus, the
transfer of a single electron is accompanied by the transfer of a
single proton and the corresponding currents are equal, which
results in an almost perfect quantum yield.

2. Model

We consider a physical model describing an electron-coupled
translocation of protons from the N- to the P-side of a
membrane. The model consists of an interaction site, Q =
{Qe, Qp}, containing a single electron level with energy εQ and
a single proton energy level characterized by the energy EQ.
We also introduce two electron sites, L and R, coupled to the
electron site Qe, and two proton sites, A and B, coupled to the
proton site Qp (figure 1). The electron site L is coupled to the
electron source (S), and the site R is connected to the electron

Figure 1. Schematic diagram of the static proton pump. The
electron-transport chain starts at the source (S) lead. Thereafter, high
energy electrons, e−, tunnel energetically downhill (through the
yellow path) to the sites L, Qe, R and, finally, to the drain (D). Low
energy protons, H+, move energetically uphill (in blue) from the
N-side of the membrane to the sites A, Qp, B and, eventually, reach
the P-side of the membrane.

drain (D). The proton site A is coupled to the proton reservoir
N (the negative side of the membrane), and the site B is coupled
to the positive side of the membrane (proton reservoir P).

2.1. Hamiltonian

The Coulomb interaction between an electron and a proton,
both located on the central site Q, is described by the energy
u0, so that the Hamiltonian of the site Q has the form

HQ = εQnQ + EQ NQ − u0nQ NQ, (1)

where nQ = a†
QaQ is the electron population of the site

Q, and NQ = b†
QbQ is the proton population of this site.

Electrons are described by the Fermi-operators aσ , and protons
are characterized by the Fermi-operators bα with σ = L, Qe, R
and α = A, Qp, C, and with the corresponding populations
nσ = a†

σ aσ , Nα = b†
αbα .

The contribution of the electron sites L, R and the proton
sites A, B to the total Hamiltonian of the system is described
by the term

H0 = εLnL + εRnR + EA NA + EB NB, (2)

where εL, εR are the energy levels of the electron sites L and
R, and EA, EB are the energies of the proton-binding sites A
and B.
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The strongly interacting electron and proton sites Qe

and Qp form a single (interaction) cluster, whereas the sites
L, R and A, B separately form another four (peripheral)
clusters. The cluster Q can be characterized by the vacuum
(empty) state and by three additional occupation states, or,
equivalently, by the average electron and proton populations,
〈nQ〉 and 〈NQ〉, complemented by the correlation function,
K = 〈nQ NQ〉. The other electron and proton clusters
are described by the corresponding average occupations,
〈nL〉, 〈nR〉 and 〈NA〉, 〈NB〉. For six electron and proton-
binding sites we should have 26 = 64 occupation states.
However, with the cluster approach, the system can be
completely described by only seven functions: 〈nQ〉, 〈NQ〉, K
(for the interaction cluster), and 〈nL〉, 〈nR〉, 〈NA〉, 〈NB〉 (for the
peripheral clusters). Previously, we applied a similar approach
to analyze quantum transport problems in nanomechanical
systems [14].

2.1.1. Electron and proton transitions. The electron
tunneling Hamiltonian between the site Q and the sites L and
R is given by

He = −�L a†
L aQ − �R a†

R aQ + h.c., (3)

whereas the A–Q and B–Q proton transitions are described by
the term

Hp = −�A b†
A bQ − �B b†

B bQ + h.c.. (4)

Here �L,�R are the electron tunneling coefficients, and
�A,�B are the proton transfer amplitudes. In the case
of a movable interaction site, e.g., when the electron and
proton sites Q are located on the shuttle (quinone/quinol), the
amplitudes �L,�R and �A,�B depend on the position x of
the shuttle.

The S-lead serves as a source of electrons, and the D-
lead works as an electron drain. The coupling to these leads
is characterized by the Hamiltonian

HLR = −
∑

k

tkS c†
kS aL −

∑

k

tkD c†
kD aR + h.c.. (5)

The proton transitions between the N-side of the membrane
and the site A and between the P-side of the membrane and the
site B are described by the Hamiltonian

HAB = −
∑

q

TqN d†
qN bA −

∑

q

TqP d†
qP bC + h.c.. (6)

Here ckS, ckD are Fermi operators of the electron reservoirs S
and D, and dqN, dqP are the Fermi operators of protons in the
reservoirs N and P. The electron reservoirs S and D have the
Hamiltonian

HSD =
∑

k

(εkS c†
kS ckS + εkD c†

kD ckD), (7)

and are characterized by the Fermi distributions fS(εkS),
fD(εkD) with the corresponding electrochemical potentials μS

and μD. For the proton reservoirs N and P we have the
Hamiltonian

HNP =
∑

q

(EqN d†
qN dqN + EqP d†

qP dqP), (8)

with the Fermi distributions FN(EqN) and FP(EqP) and the
proton electrochemical potentials μN and μP.

2.1.2. Environment. The interaction of the electron–proton
system with the protein environment, which is described as
a sum of independent oscillators [15], is characterized by the
Hamiltonian

Henv =
∑

j

p2
j

2m j
+

∑

j

m jω
2
j

2

(
x j −

∑

σ

x jσ nσ

− x jS

∑

k

c†
kSckS − x jD

∑

k

c†
kDckD

−
∑

α

X jα Nα − X jN

∑

q

d†
qNdqN − X jP

∑

q

d†
qPdqP

)2

,

(9)

where nσ = a†
σ aσ is the population of the electron site σ

(σ = L, Q, R), Nα = b†
αbα is the population of the proton

site α (α = A, Q, B). The constants x jσ , x jS, x jD determine
the electron coupling to the environment, and the parameters
X jα, X jN, X jP describe the proton–environment interaction.

With the unitary transformation,

U = exp

[
− i

∑

j

p j

(∑

σ

x jσnσ

+ x jS

∑

k

c†
kSckS + x jD

∑

k

c†
kDckD

+
∑

α

X jα Nα + X jN

∑

q

d†
qNdqN + X jP

∑

q

d†
qPdqP

)]
,

(10)

the Hamiltonian of the environment can be rewritten as

Henv =
∑

j

(
p2

j

2m j
+ m jω

2
j x

2
j

2

)
, (11)

whereas the Hamiltonians He and Hp acquire the stochastic
phase factors:

He = −�L eiξL a†
L aQ − �R eiξR a†

R aQ + h.c., (12)

and

Hp = −�A eiξA b†
A bQ − �B eiξB b†

B bQ + h.c., (13)

with the phases

ξL =
∑

j

p j(x jL − x jQ),

ξR =
∑

j

p j(x jR − x jQ),

and
ξA =

∑

j

p j(X jA − X jQ),

ξB =
∑

j

p j(X jB − X jQ).

For simplicity, we assume that there are no phase shifts for the
electron transitions between the electron source S and the site
L, and the electron drain D and the site R, so that x jS = x jL,
and x jD = x jR, with the same assumption for the N–A and
P–B proton transitions, X jN = X jA and X jP = X jB.
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2.2. Rate equations

The time evolution of the electron operators nσ is determined
by the Heisenberg equations:

ṅL = i�L eiξL a†
L aQ − i

∑

k

tkS c†
kS aL + h.c.,

ṅR = i�R eiξR a†
R aQ − i

∑

k

tkD c†
kD aR + h.c.,

(14)

and

ṅQ = −i�L eiξL a†
L aQ − i�R eiξR a†

R aQ + h.c.. (15)

For the proton populations Nα , we derive a similar set of
Heisenberg equations,

ṄA = i�A eiξA b†
A bQ − i

∑

q

TqN d†
qN bA + h.c.,

ṄB = i�B eiξB b†
B bQ − i

∑

q

TqP d†
qP bB + h.c..

(16)

This set should be complemented by the equation for the proton
population of the interaction site,

ṄQ = −i�A eiξA b†
A bQ − i�B eiξB b†

B bQ + h.c., (17)

as well as by the equations for the operators of electron and
proton reservoirs,

i ċkS = εkS ckS − tkS aL, i ċkD = εkD ckD − tkD aR, (18)

i ḋqN = EqN dqN − TqN bA, i ḋqP = EqP dqP − TqP bB.

(19)

2.2.1. Contribution of reservoirs to the rate equations. It
follows from equation (18) that the electron operator ckS can
be represented as

ckS = c(0)

kS − tkS

∫
dt1 〈−i[c(0)

kS (t), c(0)†
kS (t1)]+〉 aL(t1) θ(t − t1),

(20)
where c(0)

kS (t) is the free variable of the S-lead, and θ(t − t1) is
the Heaviside step function. Similar expressions exist for the
electron operator ckD(t) and for the operators dqN, dqP of the
proton reservoirs. For the weak coupling between the reservoir
S and the electron site L we obtain

〈a†
L(t)c(0)

kS (t)〉 = −itkS

∫
dt1 〈c(0)†

kS (t1)c
(0)
kS (t)〉

× 〈[aL(t1), a†
L(t)]+〉 θ(t − t1). (21)

Thus, the contribution of the S-lead to the evolution of
the average electron population 〈nL〉 (see equation (14)) is
determined by the expression

i
∑

k

t∗
kS〈a†

L(t)ckS(t)〉 = −
∑

k

|tkS|2

×
∫

dt1{〈c(0)

kS (t)c(0)†
kS (t1)〉 〈a†

L(t)aL(t1)〉
− 〈c(0)†

kS (t1)c
(0)

kS (t)〉 〈aL(t1)a
†
L(t)〉}. (22)

The correlator 〈c(0)†
kS (t1)c

(0)

kS (t)〉 is proportional to the Fermi
distribution function, fS(εkS) of electrons in the reservoir S,

〈c(0)†
kS (t1)c

(0)
kS (t)〉 = fS(εkS) e−iεkS(t−t1), (23)

where the Fermi function,

fS(ε) =
[

exp

(
ε − μS

T

)
+ 1

]−1

,

is characterized by the electrochemical potential μS and
temperature T . We assume that the site L is weakly coupled to
the reservoir S and to the site Q, thus, we can use free-evolving
operators,

aL(t) = e−iεL(t−t1) aL(t1),

to calculate the corresponding correlation functions in
equation (22), e.g.,

〈a†
L(t) aL(t1)〉 = 〈nL(t)〉 eiεL(t−t1).

Introducing the energy-independent rate constant,

γS = 2π
∑

k

|tkS|2 δ(εL − εkS), (24)

we calculate the contribution of the S-lead to the time evolution
of the population 〈nL〉,

i
∑

k

t∗
kS 〈a†

L(t)ckS(t)〉 + H.c. = γS [ fS(εL) − 〈nL〉]. (25)

The same analysis can be applied for a calculation of
contributions of the electron lead D and the proton leads N and
P to the corresponding populations 〈nR〉 and 〈NA〉, 〈NP〉. The
proton transfer rates between the sites A and C and the N and
P sides of the membrane, respectively, are determined by the
coefficients �N and �P where, e.g.,

�N = 2π
∑

q

|TqN|2 δ(EA − EqN). (26)

2.2.2. Contribution of site-to-site tunneling to the rate
equations. To calculate the contribution of the L–Q tunneling
to the evolution of the populations 〈nL〉 and 〈nQ〉, we start with
the amplitude aQ, which obeys the equation

iȧQ = εQ aQ − u0 NQ aQ − �∗
L e−iξL aL − �∗

R e−iξR aR. (27)

In the case of weak L–Q and R–Q tunnel couplings, the formal
solution of equation (27) can be written in the form

aQ(t) = a(0)

Q (t) −
∫

dt1 〈−i[a(0)

Q (t), a(0)†
Q (t1)]+〉

× {�∗
L e−iξL(t1) aL(t1) + �∗

R e−iξR(t1) aR(t1)}, (28)

where a(0)
Q (t) is the free operator of the site Q, obeying the

equation (27) with the tunneling terms neglected (�L =
0,�R = 0).

Taking into account the formula

i�L 〈eiξL a†
L a(0)

Q 〉 = |�L|2
∫

dt1 〈a(0)†
Q (t1)a

(0)
Q (t)〉

× 〈[eiξL(t) a†
L(t), e−iξL(t1) aL(t1)]+〉 θ(t − t1), (29)
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which is similar to equation (21), we obtain

i�L 〈eiξL a†
L aQ〉 = |�L|2

∫
dt1 {〈e−iξL(t1) eiξL(t)〉

× 〈a†
Q(t1) aQ(t)〉 〈aL(t1) a†

L(t)〉
− 〈eiξL(t) e−iξL(t1)〉 〈aQ(t) a†

Q(t1)〉 〈a†
L(t) aL(t1)〉}. (30)

Dropping the label (0), we assume that the time evolution of
the operators aQ in equation (30) is calculated with the free-
evolution formula,

aQ(t) = e−iεQ(t−t1) aQ(t1)

− e−iεQ(t−t1) [1 − eiu0(t−t1)] NQ(t1) aQ(t1). (31)

For the free-evolving proton operator of the interaction site we
obtain a similar expression

bQ(t) = e−iEQ(t−t1) bQ(t1)

− e−iEQ(t−t1) [1 − eiu0(t−t1)] nQ(t1) bQ(t1). (32)

The influence of the environment on the electron tunneling
between the sites L and Q, and between the sites R and
Q, is determined by the correlators 〈e−iξL(t1) eiξL(t)〉 and
〈eiξL(t) e−iξL(t1)〉, where

〈eiξL(t) e−iξL(t1)〉 = exp{−iλL(t − t1)} exp{−λLT (t − t1)
2}.
(33)

The reorganization energy, λL, is defined as [15]

λL =
∑

j

m jω
2
j

2
(x jL − x jQ)2. (34)

The electron reorganization energy λR, and the proton
reorganization energies �A and �B, are defined in a similar
way. In particular,

�A =
∑

j

m jω
2
j

2
(X jA − X jQ)2. (35)

2.2.3. Equations for populations of electron- and proton-
binding sites. Consequently, we derive the system of rate
equations for the average populations of the electron sites,

ṅL + γSnL = γS fS(εL) + �L,

ṅR + γDnR = γD fD(εR) + �R,

ṅQ = −�L − �R,

(36)

and for the average populations of the proton-binding sites,

ṄA + �N NA = �N FN(EA) + �A,

ṄB + �P NB = �P FP(EB) + �B,

ṄQ = −�A − �B.

(37)

Here �σ (σ = L, R) and �α (α = A, B) are the functions of
the average electron and proton populations, respectively. In
addition, due to a strong electron–proton Coulomb interaction
on the site Q, the kinetic terms �σ and �α depend on the
correlation function,

〈K 〉 = 〈nQ(t)NQ(t)〉, (38)

of the electron and proton populations on the site Q,

�σ = κσ (εσ − εQ + λσ )〈nQ〉〈1 − nσ 〉
− κσ (εσ − εQ − λσ )〈1 − nQ〉〈nσ 〉
+ {κσ (εσ − εQ + u0 + λσ ) − κσ (εσ − εQ + λσ )}
× 〈1 − nσ 〉〈K 〉 − {κσ (εσ − εQ + u0 − λσ )

− κσ (εσ − εQ − λσ )}〈nσ 〉〈NQ − K 〉, (39)

where κσ (ε) is the Marcus rate for electron transfer between
the site σ and the interaction site Q,

κσ (ε) = |�σ |2
√

π

λσ T
exp

(
− ε2

4λσ T

)
. (40)

The proton term �α is determined by the expression, similar to
equation (39), as

�α = κα(Eα − EQ + �α)〈NQ〉〈1 − Nα〉
− κα(Eα − EQ − �α)〈1 − NQ〉〈Nα〉
+ {κα(Eα − EQ + u0 + �α)

− κα(Eα − EQ + �α)}〈1 − Nα〉〈K 〉
− {κα(Eα − EQ + u0 − �α)

− κα(Eα − EQ − �α)}〈Nα〉〈nQ − K 〉, (41)

where κα(E) is the proton Marcus rate for the transitions
between the site α and the proton-binding site Q,

κα(E) = |�α|2
√

π

�αT
exp

(
− E2

4�αT

)
. (42)

2.2.4. Equation for the electron–proton correlation function.
For the correlator, 〈K 〉, of the electron (nQ) and proton (NQ)
populations of the interaction site, we derive the following
equation:

〈K̇ 〉 = FL + FR + FA + FB, (43)

where

Fσ = κσ (εσ − εQ + u0 − λσ )〈nσ 〉〈NQ − K 〉
− κσ (εσ − εQ + u0 + λσ )〈1 − nσ 〉〈K 〉,

Fα = κα(Eα − EQ + u0 − �α)〈Nα〉〈nQ − K 〉
− κα(Eα − EQ + u0 + �α)〈1 − Nα〉〈K 〉.

(44)

2.2.5. Electron and proton currents. Electron currents IS, ID

and proton currents IN, IP are determined by an increase of the
number of particles, electrons or protons, in the corresponding
reservoir. In particular, a variation of the electron number in
the drain lead gives a current

ID = d

dt

∑

k

〈c†
kDckD〉 = γD[〈nR〉 − fD(εR)], (45)

whereas the proton current IP is given by

IP = d

dt

∑

q

〈d†
qPdqP〉 = �P[〈NB〉 − FP(EB)]. (46)

Here,
γD = 2π

∑

k

|tkD|2δ(εR − εkD),

5
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and
�P = 2π

∑

q

|TqP|2δ(EB − EqP)

are the electron (γD) and proton (�P) transfer rates between
the electron site R and the lead D, and between the proton-
binding site B and the P-side of the membrane, respectively.
The multiplications of the particle currents introduced above
by the electron or proton charges produce the standard electric
currents.

It follows from equations (36) and (37) that, in the steady-
state, we have the relations

〈ṅσ 〉 = 0, 〈Ṅα〉 = 0,

so that
�L + �R = 0, �A + �B = 0,

and
IS = (d/dt)

∑

k

〈c†
kSckS〉 = −ID,

IN = (d/dt)
∑

q

〈d†
qNdqN〉 = −IP.

2.2.6. Quantum yield of the electron-driven proton pump.
The productivity of the proton pump is determined by a
quantum yield,

QY = IP

ID
, (47)

and by the power-conversion efficiency η,

η = QY × μP − μN

μS − μD
. (48)

With standard conditions, we have

μP − μN = Vp + 60 meV = 210 meV,

and
μS − μD = Ve = 600 meV,

therefore,
η � 0.35 × QY.

If a quantum yield (QY) is of order 1 (or 100%), the power-
conversion efficiency η may be as much as 0.35 (or 35%).

2.3. Langevin equation

For the redox-loop mechanism of a proton translocation
through the membrane, the electron and proton sites, labeled
by the letter Q, are attached to the shuttle: a molecule diffusing
between the N and P sides of the membrane (see figure 2). This
Brownian motion can be described by the one-dimensional
overdamped Langevin equation for the coordinate x of the
shuttle,

ζ ẋ = − dUc(x)

dx
− 〈(nQ − NQ)2〉 dUs(x)

dx
+ ξ. (49)

We assume that the shuttle molecule moves along a line
connecting the sites L and A, located at x = −x0, and the sites

Figure 2. Schematic diagram of the redox-loop mechanism. Here,
the electron–proton interaction site, Q = {Qe, Qp}, is placed on the
molecular shuttle (shown in green), which diffuses along the line
connecting the N and P sides of the membrane. From the source
reservoir S, an electron e− jumps to the site L and, thereafter, to the
shuttle, located at x = −x0. The shuttle also accepts a proton H+
transferred from the N-side of the membrane via the site A. The
loaded shuttle moves randomly toward the P-side of the membrane,
where (at x = x0) the electron is subsequently transferred from the
site Qe to the site R and to the drain reservoir D, and the proton
jumps from the site Qp to the site B and, finally, to the P-side of the
membrane. We note that, in this design, the electron site L and the
proton site A are located near the N-side of the membrane (shown by
the horizontal blue dashed line), and the electron site R and the
proton site B are placed near the P-side.

R and B, both having the coordinate x = x0. The borders of the
membrane, at x = ±x0, are schematically shown in figure 2.
In equation (49), ζ is the drag coefficient of the shuttle, and ξ

is the Gaussian fluctuation force, which is characterized by the
zero-mean value, 〈ξ〉 = 0, and the correlation function,

〈ξ(t)ξ(t ′)〉 = 2ζ T δ(t − t ′),

proportional to the temperature T of the environment. The
diffusion coefficient D of the shuttle is also proportional to
the temperature: D = T/ζ . The motion of the shuttle is
restricted by the membrane walls, which are simulated by the
confinement potential Uc(x),

Uc(x) = Uc0

{
1 −

[
exp

(
x − xc

lc

)
+ 1

]−1

+
[

exp

(
x + xc

lc

)
+ 1

]−1}
, (50)
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having the barrier height Uc0, the width 2xc (xc � x0) and the
steepness lc.

The potential barrier Us(x),

Us(x) = Us0

{[
exp

(
x − xs

ls

)
+ 1

]−1

−
[

exp

(
x + xs

ls

)
+ 1

]−1}
, (51)

does not allow the shuttle with a non-zero charge q = NQ −nQ

(in units of |e|) to cross the lipid interior of the membrane. This
barrier is determined by the height Us0, the steepness ls, and the
width 2xs.

3. Results

We solve the rate equations (36) and (37) for the electron (nσ )
and proton (Nα ) populations jointly with the equation (43)
for the electron–proton correlation function on the site Q,
K = 〈nQ NQ〉. Our approach can describe two mechanisms
of the redox-linked proton translocation across the membrane:
(i) the static interaction site Q and (ii) the situation when
the site Q diffuses between the sides of the membrane.
The mechanism (i) roughly corresponds to the proton pump
operating in cytochrome c oxidase (CcO) [3–6], whereas the
design (ii) can be attributed to the redox-loop mechanism,
which is responsible for electron and proton transfers in the
inner membrane of bacteria [7–12].

3.1. Static proton pump

Here, we consider the mechanism (i), where the interaction
site Q does not change its position (see figure 1). We assume
that protons are transferred across the membrane, from the
negatively charged side N, with an electrochemical potential
μN, to the positively charged side P, having an electrochemical
potential μP. All potentials and energies are measured in meV.

3.1.1. Parameters. The difference of electrochemical
potentials, �μH = μP − μN, is determined by the following
expression:

�μH = Vp − 2.3 (RT/F) × �pH, (52)

where Vp is the transmembrane voltage, R and F are the gas
and Faraday constants, respectively, T is the temperature (in
Kelvins, kB = 1), and the concentration gradient �pH is
about −1 [1, 2]. The coefficient 2.3 (RT/F) is about 60 meV
at room temperature, T = T0 ≡ 298 K. It follows from
equation (52) that the potentials of the N and P sides of the
membrane can be written as

μN = −μH 0 − �Vp/2 − 30 × (�T/T0),

μP = μH 0 + �Vp/2 + 30 × (�T/T0),
(53)

where �Vp = Vp − V0,�T = T − T0. At the standard
conditions, when T = T0, Vp = V0 = 150 meV, for the
electrochemical potential μH 0 we have: μH 0 = 105 meV.
Thus, the total proton gradient across the membrane, �μH ,

is about 210 meV. As in the CcO proton pump [3, 6], we
assume that the proton-binding sites A, Qp, and B are located
approximately on the line connecting the N and P sides of the
membrane with the following coordinates: xA = 0.1, xQ =
0.3, xB = 0.5. The coordinates of the sites are counted from
the middle of the membrane in a direction towards the P-side
and are measured in units of the membrane width W with
W � 4 nm. Protons are delivered from the N-side to the
site A by the so-called D-pathway crossing about a half of the
membrane. We also note that the B-site is located next to the P-
side (see figure 1). An influence of the transmembrane voltage
Vp on the energy levels of the proton sites is described by the
formulas

EA = EA0 + xA × �V , EQ = EQ0 + xQ × �V ,

EB = EB0 + xB × �V .

(54)
For the proton energy levels, EA0, EQ0, and EB0, at the voltage
Vp = V0, we assume the following values (in meV): EA0 =
−155, EQ0 = 250, and EB0 = 185, unless otherwise specified.
This means that at the standard conditions, the proton begins
its journey at the N-side with the potential μN = −105 meV
and jumps to the A-site having a lower energy (−155 meV).
However, the next proton-binding site Qp has a much higher
energy (∼250 meV), so that the proton transfer cannot occur
without a mediation of the electron component. The electron
site Qe is electrostatically coupled to the proton-binding site
Qp with the Coulomb energy u0. Thus, in the presence of an
electron on the site Qe the energy of the Q-proton decreases
to the level EQ0 − u0 � −220 meV, provided that u0 �
470 meV. Now the proton can move from site A to site Q,
since EA0 > EQ0 − u0. Depopulation of the electron site Q
returns the energy level of the Q-proton to its original value
EQ0 = 250 meV, which is higher than the energy level of the
next-in-line B-site, EB0 = 185 meV, and is much higher than
the energy level of the A-site. We assume that the backward
proton transfer (from Qp to the A-site) is described by the
inverted region of the Marcus formula, so that the probability
of such transfer is low compared to the probability of the proton
transfer from the site Qp to the site B. No additional gate
mechanism is necessary here.

For the sake of simplicity, we assume that three electron-
binding sites L, Qe, R as well as the source and drain leads
are positioned on a line, which is parallel to the surface of the
membrane (see figure 1). Thus, the transmembrane gradient Vp

has no effect on electron transport from the electron source S
to the drain D. For the potentials of the electron reservoirs, we
choose the following form:

μS = μe0 + Ve/2, μD = μe0 − Ve/2, (55)

with μe0 = −500 meV and with the electron voltage
gradient Ve = 600 meV, unless otherwise indicated.
The electron voltage gradient Ve roughly corresponds
to the drop of the redox potential along the electron
transfer chain in the cytochrome c oxidase [1–3]. We
assume that the electron pathway includes the source
reservoir (μS = −200 meV), the site L (εL =
−210 meV), the interaction site Qe (εQ = −250 meV),

7
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Figure 3. Proton current versus transmembrane voltage Vp at room
temperature, T = 298 K, and three different electron potentials:
Ve = 500, 600, and 700 meV. The proton current is almost constant
for low values of Vp, and decreases for increasing Vp.

the site R (εR = −770 meV), and the electron drain reservoir
having the potential μD = −800 meV.

We assume that the electron and proton transfer between
the active sites, L–Q, R–Q and A–Q, B–Q, are quite fast,
with amplitudes �L � �R � 0.3 ps−1 and �A � �B �
0.3 ps−1, whereas the transitions to and out of the electron
and proton reservoirs are characterized by much slower rates:
γS � γD � 1.5 ns−1, and �N � �D � 0.75 ns−1.
The responses of the environment to the electron and proton
transitions are described by the corresponding reorganization
energies: λL = λR = λe and �A = �B = �p, respectively.
Here, for the standard case, we assume that λe � 100 meV and
�p � 100 meV. This set of parameters provides an efficient
operation of the redox-linked proton pump.

3.1.2. Dependence of the proton current on the transmembrane
voltage. In figure 3, we show the steady-state proton current
IP as a function of the transmembrane voltage gradient Vp, at
three different values of the electron voltage: Ve = 500, 600,
700 meV. We use here the standard set of other parameters (see
section 3.1.1), where T = 298 K and λe = �p = 100 meV.

The proton current IP is equal to the number of protons
pumped energetically uphill (at Vp > 0), from the N-side
to the P-side of the membrane, per one microsecond. At
the difference Ve = 600 meV of source and drain redox
potentials, the system pumps more than 200 protons per 1 μs
against the transmembrane voltage gradient Vp = 150 meV.
According to equation (53), this voltage corresponds to the
proton electrochemical gradient �μH = 210 meV, which is
usually applied to the internal membrane of mitochondria and
the plasma membranes of bacteria. The number of pumped
protons goes down as the proton voltage Vp increases, and
goes up with increasing electron voltage difference Ve. The
proton current saturates at Ve > 750 meV. It is evident from
figure 3 that at high enough electron voltages (Ve � 600 meV),
the pump is able to translocate more than 100 protons
per microsecond against the proton gradient Vp, exceeding

Figure 4. Proton current (the number of protons translocated across
the membrane per 1 μs) and QY versus temperature for the electron
voltage Ve = 600 meV, transmembrane proton voltage
Vp = 150 meV, and three different reorganization energies: λ = 100,
150, and 200 meV. The proton current and QY both decrease for
increasing λ.

250 meV (�μ > 310 meV). The QY is about 1 (with a
power-conversion efficiency η � 35%) in the whole region
of electron and proton voltages: 500 meV < Ve < 800 meV,
0 meV < Vp < 300 meV.

3.1.3. Proton current and quantum yield as functions of
temperature. Figure 4 shows the pumping proton current,
IP (i.e., the number of protons translocated from the N- to
the P-side of the membrane per 1 μs) versus the temperature
T measured in Kelvins. The graphs are presented at three
values of the electron and proton reorganization energy: λ =
100, 150, 200 meV. We assume here that λe = �p = λ, with
the electron voltage Ve = 600 meV and the proton gradient
Vp = 150 meV. It is of interest that at λ � 150 meV
the pumping current has a pronounced maximum near room
temperature, 200 K < T < 300 K, although the QY is
higher, QY ∼ 1, at lower temperatures. The performance of
the pump deteriorates at higher reorganization energies when
the coupling to the environment increases. Increasing the
reorganization energy leads to an increased probability for
an electron to be transferred through the system, losing all
its excess energy to the environment without transferring this
energy to protons. Such a probability is further increased at
large temperatures leading to the observed decrease of the QY.

3.1.4. Dependence of the proton current on the parameters
of the interaction site. The energy transfer from the electron
to the proton component occurs on the interaction site Q =
{Qe, Qp}, which has one electron (εQ) and one proton (EQ)
energy level (see equation (54)). The electron on the site Qe

is electrostatically coupled to the proton, which populates the
site Qp, with the Coulomb energy u0. It follows from figure 5
that the proton pumping current IP exhibits a resonant behavior
as a function of the charging energy u0 and the position of
the proton energy level EQ0. The dependence of the pumping
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Figure 5. Dependence of the proton current (the number of protons
pumped across the membrane per one μs, see the color bar on the
right side) on the charging energy u0, and on the energy EQ0 of the
central proton site for Ve = 600 meV, Vp = 150 meV, and
T = 298 K.

current on the electron energy εQ has a resonant character as
well. Here we assume that Ve = 600 meV, Vp = 150 meV,
λe = �p = 100 meV, and T = 298 K. The energetically uphill
proton current has a pronounced maximum (IP � 220 μs−1) at
the Coulomb energy u0 = 470 meV and the proton energy
EQ0 = 250 meV, provided that the electron energy εQ =
−250 meV. It is important that the proton pump is robust to
the variations of the Coulomb energy u0 and the proton energy
EQ0 in the range ±50 meV from the resonant values. The QY
is very close to one in the central region of figure 5, so that the
power-conversion efficiency η is about 35%.

Figures 3–5 clearly demonstrate that, at standard
physiological conditions, the static redox-linked proton pump
(‘CcO-pump’) efficiently converts the energy of electrons to
the more stable energetic form of the proton electrochemical
gradient across the membrane.

3.2. Redox-loop mechanism of electron and proton
translocation

In many biological systems, electrons and protons can be
transferred across a membrane by means of a molecular shuttle
diffusing inside the membrane, from one side to another. Here
we show that the mathematical model described in section 2
can be successfully applied for a description of the redox-
loop mechanism, which utilizes the Brownian motion of the
shuttle Q carrying both electron, Qe, and proton, Qp, sites
(see figure 2). As in the previous case, we have to solve
here a system of master equations for the electron (nL, nQ, nR)
and proton (NA, NQ, NB) populations, equations (36) and (37),
and for the correlation function K of electron and proton
populations on the site Q, equation (43). However, these master
equations should be complemented by the Langevin equation,
equation (49), for the time-dependent shuttle position x . We

note that the electron tunneling between the sites L–Q, Q–R,
as well as the proton transfer rates between the sites A–Q and
Q–B, depend on the position x of the shuttle.

3.2.1. Parameters. We assume that the electron site L is
located near the N-side of the membrane, at x = −x0, where
x0 = 2 nm. The other electron site R is near the P-side of the
membrane, at x = +x0. The reservoir S, connected to the site
L, serves as a source of electrons, and the reservoir D, coupled
to the site R, serves as an electron drain (see figure 2). The
tunneling amplitudes �L,�R are determined by the amplitudes
�L0,�R0, and by the electron tunneling length le:

�L(x) = �L0 × exp

(
−|x + x0|

le

)
,

�R(x) = �R0 × exp

(
−|x − x0|

le

)
.

(56)

The proton-binding site A is located at the end of the N-
side proton pathway, whereas the site B terminates a pathway,
which goes into the P-side of the membrane. For the x-
dependences of the proton transfer amplitudes �A and �B, we
choose the following relations:

�A(x) = �A0 ×
[

exp

(
x0 + x

lp

)
+ 1

]−2

,

�B(x) = �B0 ×
[

exp

(
x0 − x

lp

)
+ 1

]−2

,

(57)

where lp is the proton transfer length. It should be noted
that our model produces the same results when the proton
amplitudes are given by expressions similar to equations (56).
For the transfer parameters, we choose the following values:
�L0 ∼ �R0 = 0.04 meV, �A0 ∼ �B0 = 0.04 meV, and le =
0.25 nm, lp = 0.25 nm. Couplings to the electron and proton
reservoirs are described by the rates γS ∼ γD = 0.5 ns−1 and
�N ∼ �P = 0.1 ns−1. The system is robust to significant
variations of the transfer parameters.

The confinement potential Uc(x) is determined by the
height Uc = 500 meV, the steepness lc = 0.1 nm, and the half-
width xc = 2.7 nm. The potential barrier Us(x), preventing
the charged shuttle from entering into the membrane, is
characterized by the height Us = 770 meV, the width xs =
1.7 nm, and the steepness ls = 0.05 nm.

Accordingly, the electron and proton populations of the
shuttle are almost completely compensated, nQ � NQ, so
that the potential Us(x) gives a negligible contribution to the
energies of electrons and protons. However, we have to take
into account the fact that in the presence of the voltage gradient,
Vp � 150 meV, the electron (εQ) and proton (EQ) energies on
the moving shuttle depend on the shuttle position x :

εQ = εQ0 − x

2x0
Vp, EQ = EQ0 + x

2x0
Vp, (58)

with εQ0 = 280 meV, and EQ0 = u0/2 = 200 meV, where for
the charging energy u0 of the shuttle we have: u0 = 400 meV.

9



J. Phys.: Condens. Matter 23 (2011) 234101 A Yu Smirnov et al

Figure 6. Time evolution of the electron–proton translocation
process. Here x is the location of the shuttle, nQ and NQ are the
electron and proton populations of the shuttle, respectively, nD is the
number of electrons transferred from the electron source S to the
electron drain D, and NP is the number of protons translocated from
the N- to the P-side of the membrane. It can be seen from this figure
that the loading/unloading of the shuttle with electrons and protons,
as well as the electron and proton transfer across the membrane, are
clearly correlated with the spatial motion of the shuttle.

Thus, electrons move from the source reservoir, having the
electrochemical potential μS = 420 meV, to the L-site (with
the energy εL = 380 meV), and, thereafter, to the shuttle. On
the opposite side of the membrane, the electron, populating the
shuttle, jumps to the site R (εR = −170 meV) and, finally,
to the drain reservoir (μD = −230 eV). The total drop of the
redox potential in this electron-transport chain can be estimated
as μS − μD = 650 meV.

Protons move from the N-side of the membrane
(μN = −105 meV) to the site A, having a lower energy
EA = −150 meV. The energy level EQ = 125 meV of the
proton on the shuttle, located near the N-side of the membrane
(at x = −x0), is much higher than EA, if the shuttle contains no
electrons. However, the shuttle populated with a single electron
is more attractive for protons, since in this case the effective
energy of the proton, EQ − u0 = −275 meV, is less than
the energy of the proton-binding site A. The shuttle, carrying
one electron and one proton, diffuses to the opposite side of
the membrane (x = +x0), where the electron, with energy
εQ − u0 = −195 meV, is able to tunnel to the site R, having
a slightly higher energy εR = −170 meV. In the absence of an
electron, the energy of the proton on the shuttle (at x = +x0)
increases to the level EQ = EQ0 + Vp/2 = 275 meV, which
exceeds the energy of the proton on the site B: EB = 150 meV.
Consequently, the proton moves from the shuttle to the site B
and, thereafter, to the P-side of the membrane characterized
by the electrochemical potential μP = +105 meV. Thus,
this redox-loop mechanism translocates protons across the
membrane against the proton electrochemical gradient �μH =
μP −μN = 210 meV, and against the transmembrane potential
Vp ∼ 150 meV.

Figure 7. Numbers of electrons, nD, and protons, NP, translocated
across the membrane in one millisecond, versus the transmembrane
proton voltage Vp at room temperature, T = 298 K, and at
(μS − μD) = 650 meV. Clearly, it is much harder to transfer protons
against the higher transmembrane voltages.

3.2.2. Proton translocation process. Figure 6 exhibits the
electron and proton populations of the shuttle, nQ(t) and
NQ(t), correlated with the shuttle’s position x(t) at T = 298 K,
Vp = 150 meV, and at �μ = 210 meV. In this figure, we also
show the time dependences of the number of electrons, nD(t),
transferred to the drain reservoir, and the number of protons,
NP(t), translocated to the P-side of the membrane. The shuttle
diffuses between the membrane walls located at x = ±x0

(x0 = 2 nm) with an average crossing time �t ∼ 2.5 μs.
This timescale is closely related to the diffusion time,

tD ∼ 〈�x2〉/2D ∼ 2.66 μs,

obtained at
√〈�x2〉 ∼ 2x0 = 4 nm, for the diffusion

coefficient of the quinone molecule D ∼ 3 × 10−12 m2 s−1.
At t ∼ 0, the shuttle, located at x ∼ −x0, is loaded

with one electron and one proton taken from the N-side of the
membrane (see figure 2). When t ∼ 2.5 μs, the shuttle reaches
the P-side (x = +x0 = 2 nm) and unloads the electron to the
site R (and later to the drain lead D) and the proton to the site
B, coupled to the P-side of the membrane. Consequently, the
population NP of the P-side grows. The empty shuttle diffuses
back to the N-side, completing the cycle, and the process starts
again. In 20 μs, the shuttle performs four complete trips and
translocates about four electrons and four protons across the
membrane.

3.2.3. Voltage and temperature dependences. The numbers
of electrons and protons, nD and NP, respectively, transferred
across the membrane in one millisecond, are shown in figure 7
as functions of the transmembrane proton voltage Vp. The
electrochemical gradient of protons, �μ = μP − μN, is
proportional to Vp: �μ � Vp + 60 meV (at T = 298 K).
The results in figure 7 are averaged over ten realizations.
The system is able to translocate more than 120 protons ms−1

against the high transmembrane voltage, Vp � 250 meV, that
corresponds to the electrochemical gradient �μ � 310 meV.

It follows from figure 8 that the translocation mechanism
works efficiently in a wide range of temperatures, 250 K <

T < 500 K. In this range, the system pumps more than
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Figure 8. Temperature dependence of the numbers of electrons, nD,
and protons, NP, transferred across the membrane by the diffusing
shuttle, at Vp = 150 meV and (μS − μD) = 650 meV. We also
present here the QY and the power-conversion efficiency, η, of the
process as functions of the temperature. At higher temperatures, the
shuttle moves faster and carries more electrons and more protons.
However, if the temperature is too high, the shuttle does not have
enough time to be loaded with electrons and protons, and sometimes
travels empty. As a result of this, the electron and proton currents
decrease at high temperatures, thus decreasing the efficiency of the
pump.

120 protons ms−1 with a QY exceeding 90% and with a power-
conversion efficiency η higher than 40%. With increasing
temperature, the shuttle performs more trips between the sides
of the membrane, thus carrying more electrons and protons.
This increases the proton current (i.e., the number of protons
translocated per unit time). We note that the proton population
of the shuttle exists only after loading the shuttle with an
electron. At very high temperatures, T > 500 K, the shuttle
moves quite fast, and protons have fewer chances to jump
onto the shuttle. Consequently, the gap between electron and
proton currents grows with the temperature, thus deteriorating
the performance of the pump.

4. Conclusion

Two different mechanisms of energetically uphill proton
translocation across a biomembrane are described by the same
physical model. This model includes three redox sites (L, Qe,
R) and three proton-binding sites (A, Qp, B) attached to the S
and D electron reservoirs, as well as to the proton reservoirs
on the P and N sides of the membrane. We have shown that
it is the strong Coulomb interaction between the electron site

Qe and the proton site Qp which plays the most prominent
role in the process of energy transformation from electrons
to protons. In this case, the whole electron–proton transport
chain can be divided into weakly coupled clusters of sites, so
that the total number of occupation states is equal to the sum
(not to the product) of occupation states in each cluster. With
physiological conditions, our model demonstrates a proton
pumping effect with a QY near 100% and a power-conversion
efficiency of the order of 35%, for both the static proton pump,
related to the cytochrome c oxidase, as well as for the redox-
loop mechanism, where electrons and protons are translocated
by the diffusing molecular shuttle.
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