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Quantum dots (QDs) are one of the promising candidates of interconnection between electromagnetic field and electrons in solid-state devices.

Dark states appear as a result of coherence between the electromagnetic fields and the discrete energy levels of the system. Here, we

theoretically solve the steady-state solutions of the density matrix equations for a thee-level double QD system and investigate the condition of the

appearance of a dark state. We also numerically show the appearance of the dark state by time-dependent current characteristics.

# 2012 The Japan Society of Applied Physics

1. Introduction

Future quantum communication systems might be composed
of optical fiber networks and quantum computers based
on solid-state qubits. Even though quantum computers
made by optical systems would be smoothly connected to
optical communication networks, in order to interface
to mobile electronic systems, such as mobile phones,
quantum computers based on solid-state circuits are desir-
able.1–3) In this respect, an efficient interconnection between
optical and solid-state systems should be developed.
Quantum dot (QD) systems, such as GaAs/AlGaAs4–7) have
discrete energy levels which are suitable for the transfer of
photon or phonon energies to electrons in solid-state circuits
and can be used as elements of qubits.8–12) QD systems
also have the advantage that the distance between energy-
levels can be controlled by the bias, in addition to the sizes
of the QDs. Thus QD systems are one of the promising
candidates for the interconnection between optics and solid-
state circuits.

One of the efficient connection methods is constructed by
using coherent population trapping (CPT) or electromag-
netically induced transparency (EIT).13) CPT is a typical
phenomena of quantum coherence in three-level system and
has been intensively studied in optics.14–19) By adjusting two
laser fields, the electron population between the lowest two
energy-levels are coherently transferred. Here, we theoreti-
cally discuss the interaction between an electromagnetic
field and a coupled double QD (DQD) system by focusing on
transport properties of three-level systems.

Recently CPT has been studied in superconducting qubit
systems.20–22) Double quantum dot (DQD) systems such
as GaAs/AlGaAs4–6) or Si/SiO2 are also candidates for
realizing three-level systems and have been theoretically
investigated.23,24) Tokura et al.12) theoretically investigated
resonant tunneling currents under locally different Zeeman
energies and found that when the magnetic fields in each QD
are non-collinear, four resonant peaks can be observed. Ke
et al.23) constructed density matrix equations and investi-
gates the relation between the phase of the driving lasers and
transport properties. Emary et al.24) investigated transport
properties when three-energy levels exist in the same QD.
From an experimental viewpoint, applying two laser fields is
not easy to control. Here, we mainly discuss the case where

one of the laser fields can be replaced by electronic tunneling
between two QDs.

A three-energy-level DQD system is realized under a
large bias voltage as depicted in Fig. 1, in which there is one
energy-level (E1) in the left QD and two (E2 and E3) in the
right QD. We assume a strong Coulomb interaction between
electrons such that only one excess electron is allowed in the
two QDs. We also assume that the left energy level E1 is
close to the right upper energy level E3 such that electrons in
QD1 tunnel directly into E3 (E3 � E1 � �L; and �L is the
tunneling rate between QD1 and QD2).

The dark state is a state in which there is no electron in the
E3 level and induces interesting phenomena in the transport
properties of the DQD system. Let us first think about the
case of conventional tunneling processes without the dark
state: an electron tunnels from the left electrode to the QD1
with a tunneling rate �1. When the laser pulse is switched
off, the electron is trapped at the E2 level with some
probability. Once the electron is trapped at the E2 level,
because of the Coulomb blockade effect, there is no current
through the DQD. When the laser pulse is switched on, the
electron is excited from the E2 level to the E3 level. By the
electron tunneling from the E3 level to the right electrode,
the current finally flows through the DQD. Then, the
Coulomb blockade is released, and a new electron can
tunnel from the left electrode to the QD1. Thus, as long as
the laser pulse sequence continues, the current continues to
flow. However, when the dark state is realized, the three-
level system is in a coherent superposition state, and because
there is no electron in the E3 level, the current does not flow
through the DQD system in spite of the applying laser field
and bias voltage.
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Fig. 1. (a) A three-level system in double QDs (DQDs). A bias voltage is

applied between the left and right electrodes. (b) A density matrix for the

three level. We define Ex � E3 �E1 and the detuning Ey � E3 �E2 � �R.

The dark state is a state with �33 ¼ 0.
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The purpose of this paper is to show the conditions for the
production of a dark state, as functions of the Rabi frequency
and the detuning parameter of the external laser field. We
derive the density matrix equations in the three-level DQD
system, and derive a steady-state solution for a dark state.
We investigate the relationship between the time-dependent
current characteristic and the dark state.

This article is organized as follows. In x2, the formulation
of our model is presented. In x3, we show the analysis of
the steady-state solution of the dark state. Section 4 is
devoted to the numerical calculations for the time-dependent
current when there is a dark state. The conclusions are
given in x5. The detailed analytical solutions of the
dark state in its steady state are shown in the Appendix.
We also argue the analysis of the �22 ¼ 0 state in the
Appendix.

2. Formulation

The Hamiltonian is H ¼ H0 þHt þHl þH� , where

H0 ¼ E1j1ih1j þ E2j2ih2j þ E3j3ih3j;
Ht ¼ �ð�Lj1ih3j þ�Re

�i�Rtj2ih3jÞ þ h:c:;

Hl ¼
X
�¼L,R

X
k�

Ek� jk�ihk�j;

H� ¼
X
kL

VLjkLih1j þ
X
kR

VRjkRih2j þ h:c: ð1Þ

Here jii (i ¼ 1; 2; 3) is the energy-level in QDs, jkLi (jkRi) is
the left (right) electrode state. �R is the Rabi frequency
between E2 and E3, induced by an external laser field, and
�R is the laser frequency. VL (VR) are the tunneling strengths
of electrons between the left (right) electrode and the left
(right) QD. The density matrix �ij � jiih jj at T ¼ 0 is
derived using

d�

dt
¼ � i

h�
½H; �� � 1

2
f�̂; �g; ð2Þ

where �̂ expresses the dissipation of the system. In the
present case of a QD system, the electron tunnelings
between the QD and the electrodes correspond to this
dissipation (hereafter we set h� ¼ 1). When we define

~�32 ¼ �32e
i�Rt; ð3Þ

~�21 ¼ �21e
�i�Rt; ð4Þ

~�31 ¼ �31; ð5Þ
~�ii ¼ �ii; ði ¼ 1; 2; 3Þ ð6Þ

the density matrix equations are given by23)

d ~�00
dt

¼ �ðhÞ
1 ~�11 þ �ðhÞ

2 ~�22 þ �ðhÞ
3 ~�33

� ð�ðeÞ
1 þ �ðeÞ

2 þ �ðeÞ
3 Þ ~�00;

d ~�11
dt

¼ �ðeÞ
1 ~�00 � �ðhÞ

1 ~�11 þ i��
L ~�31 � i�L ~�13

þ it0ð ~�12 � ~�21Þ;
d ~�22
dt

¼ �ðeÞ
2 ~�00 � �ðhÞ

2 ~�22 þ i��
R ~�32 � i�R ~�23

� it0ð ~�12 � ~�21Þ;
d ~�33
dt

¼ �ðeÞ
3 ~�00 � �ðhÞ

3 ~�33 þ i�L ~�13 � i��
L ~�31

þ i�R ~�23 � i��
R ~�32;

d ~�31
dt

¼ �ði!31 þ �31Þ ~�31 � i�Lð ~�33 � ~�11Þ
þ i�R ~�21;

d ~�32
dt

¼ �½ið!32 � �RÞ þ �32� ~�32
� i�Rð ~�33 � ~�22Þ þ i�L ~�12;

d ~�21
dt

¼ �½ið!21 þ �RÞ þ �21� ~�21 � i�L ~�23 þ i��
R ~�31

� it0ð ~�11 � ~�22Þ; ð7Þ

where �31, �32, and �21 represent decoherence, such as
acoustic phonons. In the present conditions, �i0 and �0i are
given by:

d ~�i
dt

¼ �ið!i0 þ �i0Þ ~�i0: ð8Þ

These equations are solved analytically, but they are
independent of the density matrix equations eq. (5), there-
fore, irrelevant to main transport properties; !ij � Ei � Ej

(i ¼ 1; 2; 3); �e
i represents an electron tunneling from the

DQD to the electrodes, and �ðhÞ
i represents that from the

electrodes to the DQD, where �ðxÞ
i � 2��iðEFiÞjV ðxÞ

i j2, with
��ðEFiÞ (i ¼ 1; 2; 3 and x ¼ e; h), for each electrode at the
Fermi energy EFi (EF1 ¼ �L; EF2 ¼ EF3 ¼ �R).

Depending on the relative positions of E1, E2 and E3, we
can classify the electron transport into the following two
regions.
(1) �ðhÞ

2 ¼ 0 (E2 � �R),
(2) �ðeÞ

2 ¼ 0 (E2 � �R).
Because there is a finite bias between the left and right
electrodes, the electron does not flow into E3 from the eight
electrodes, such that �ðhÞ

1 ¼ 0 and �ðeÞ
3 ¼ 0 are satisfied.

In this paper we consider the case shown in Fig. 1 and set
�ðeÞ
2 ¼ 0, �ðhÞ

1 ¼ 0, and �ðeÞ
3 ¼ 0 (this is the case in which a

dark state explicitly exists). Hereafter we consider �31 ¼
�0 ¼ �32.

3. Steady-State Solutions for the Dark State

Steady-state solutions are obtained from the density matrix
equations when d�ij=dt ¼ 0. Compared with the optical
three-level,25) the existence of the �00 state complicates the
equations. A dark state corresponds to the case where there
is no electron state in E3 as ~�33 ¼ 0. For a given DQD, we
can control the electron tunneling by adjusting the laser field
(�R and �R). When t0 ¼ 0, we can express the steady-state
solution by fourth-order polynomial equations of Ex, Ey, and
�R, such as

~�33 / A33

�R

�L

� �4

þ B33

�R

�L

� �2

þ C33 ¼ 0; ð9Þ

where

A33 ¼ � 0
0ð��0

2 þ � 0
21Þ; ð10Þ

B33 ¼ �E0
yD

0
z�

0
2�

0
21 þD20

z ð�0
2 þ � 0

0Þ� 0
0

þ � 0
21�

0
0 þ �20

21�
20
0 ; ð11Þ

C33 ¼ �0
2�

0
0½ð1þD0

zE
0
yÞ2 þ �20

21E
20
y

þ ðD20
z þ �20

21Þ�20
0 þ 2� 021�

0
0�; ð12Þ

with Dz � Ex � Ey ¼ E2 � E1 þ �R (all quantities are
rescaled by �L and indicated by the prime symbol, such
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as �0
2 ¼ �2=�L). This equation is a parabolic function

regarding �2
R with C33 > 0. Thus, if �2 > �21, �33ð�2

RÞ ¼ 0

has a solution for positive �2
R. Also when �2 > �21, the

coefficient of �4
R has a negative value, therefore, the �2

R of
eq. (9) for the dark state is a maximum value for the
solutions of the density matrix equations to be valid.
Figure 2 plots �R, which satisfies �33ð�2

RÞ ¼ 0 as a function
of Ey=�L. It can be seen that the larger �R is required as Ey

or decoherence �0 increases.
Equation (12) shows the relationship between Ey and

E2 � E1 þ �R. Figure 3 show Ey as functions of E2 � E1 þ
�R and �0 for �21 ¼ 0, and �21 ¼ 0:5�L. We can see that
the region of the existence of Ey for the dark state becomes
smaller in particular when �21 becomes larger. When �21 ¼
0, Ey is given by

Ey ¼ 1

Dx

ffiffiffiffiffiffi
�2

p
�
�

ffiffiffiffiffiffi
�2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�

4
R �D2

xð�2 þ �0Þ�2
R �D2

x�2�2
0

q �
ð13Þ

Because the equation in the root square in this equation
should have a real solution, we have the condition:

E2 � E1 þ �R >
2�2�0

2�2 þ �0
: ð14Þ

Thus, when the decoherence �0 is larger than the tunneling
rate �, E2 � E1 þ �R > 2�, and when the decoherence
�0 is smaller than the tunneling rate �, we have
E2 � E1 þ �R > �0.

4. Time-Dependent Current

Here we show numerical results for the time-dependent
matrix element �33 and current. �R is calculated from
eq. (9) such that the initial Ey is given, e.g., as Ey=�L ¼ 2.
Figure 4 shows the time-dependent density matrix element
�33 when Ex ¼ 0, t0 ¼ 0, and �21 ¼ 0, starting from (a) j1i
and (b) ðj1i þ j2iÞ=2. It can be seen that, as Ey decreases,
�33ðtÞ decreases.

As mentioned above, �R is determined such that
it satisfies the steady-state solution �33ðt ! 1Þ ! 0 for
Ey=�L ¼ 2, where �33ðt ! 1Þ has the lowest values.
Compared with Fig. 4(a), Fig. 4(b) oscillates faster. This is
because, for the superposition state, the density population
of electrons oscillates between j1i and j2i more often than
the case starting from j1i.

Figure 5 shows the time-dependent currents through the
DQD system. The current is derived26) as

IðtÞ ¼ �R �33ðtÞ þ �22ðtÞ
� �

: ð15Þ
Here we consider ~IðtÞ � ei�RtIðtÞ. �R is determined similarly
to Fig. 4. Thus the current is expected to be reduced for
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Ey=�L ¼ 2. Figures 5(a) and 5(c) show that the current
decreases around the expected dark state. Figures 5(c) and
5(d) show the time-dependent currents starting from
a superposition state of ðj1i þ j2iÞ=2. Compared with
Figs. 5(a) and 5(c), Figs. 5(b) and 5(d) show that a finite
leak tunneling (t0 ¼ 0:5 and �21 ¼ 0:5) leads to a small
current reduction, and the evidence of the dark state
disappears regardless of the initial state.

5. Conclusions

We theoretically solved the steady-state solutions of the
density matrix equations for a thee-level DQD system, and
showed the condition for the appearance of a dark state.
Numerical calculations for time-dependent current charac-
teristics showed that the steady-state can be detected by
measuring a current.
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Appendix A: Explicit Form of Density Matrix

Because the equations for t0 ¼ 0 are still too complicated,
we describe the case of Ex ¼ 0.

�11 ¼
�0

Z0

f� 00�20
R ððE20

y þ �2021Þ� 0
0ð1þ �0� 00Þ

þ �0�20
R ð1þ�20

R Þ þ � 0
21½1þ�20

R þ �0� 0
0ð1þ 2�20

R Þ�Þ
þ �0

2ð�0ðE20
y þ �20

21Þ�400
þ ½E20

y þ � 0
21ð2�0 þ � 0

21Þ��30
0 ð1þ�20

R Þ
þ E20

y �
20
R ð� 0

21 þ �0�20
R Þ

þ � 0
0½E40

y þ ð�1þ�20
R Þ2ð1þ�20

R Þ

þ E20
y ð�2þ �20

21 þ 2�20
R þ 2�0� 0

21�
20
R Þ�

þ �20
0 ½2� 0

21ð1þ�40
R Þ þ �0h2�Þg; ðA�1Þ

�22 ¼
�0� 0

0�
20
R

Z0

½h1 þ �0ð1� E20
y þ � 0

21�
0
0 þ�20

R Þ�; ðA�2Þ

�33 ¼
�0

Z0

f� 00�20
Rh1 þ �0

2ð2� 0
21�

20
0 þ ðE20

y þ �20
21Þ�30

0

þ E20
y �

0
21�

20
R þ � 0

0½1þ E40
y ��40

R

þ E20
y ð�2þ �20

21 þ�20
R Þ�Þg; ðA�3Þ

Z0 ¼ �20½� 0
0�

20
R ðE20

y ð�1þ �20
0 Þ þ ð1þ � 021�

0
0 þ�20

R Þ2Þ
þ �0

2�
0
0�

20
Rh1 þ �0

2½ðE20
y þ �20

21Þ�40
0

þ 2E20
y �

0
21�

0
0�

20
R

þ E20
y �

40
R þ 2� 0

21�
30
0 ð1þ�20

R Þ þ �200 h2Þ�;
þ �0½4� 0

0�
20
Rh1 þ �0

2ð3E20
y �

0
21�

20
R

þ �30
0 ðE20

y þ �20
21Þð3þ�20

R Þ
þ � 0

21�
20
0 ð6þ�20

R þ 2�40
R Þ þ � 0

0ð3þ 3E40
y � 2�40

R

þ�60
R þ 3E20

y ð�2þ �20
21 þ�20

R ÞÞÞ�; ðA�4Þ
where

h1 ¼ ðE20
y þ �20

21Þ� 0
0 þ � 0

21ð1þ�20
R Þ; ðA�5Þ

h2 ¼ E40
y þ E20

y ð�2þ �20
21Þ þ ð1þ�20

R Þ2: ðA�6Þ
Here, all quantities are scaled by �L such as �0

R ¼ �R=�L,
�0 ¼ �=�L and so on.

Appendix B: �22 ¼ 0 State

In the main text, we discussed the dark state condition of
�33 ¼ 0. Here, we consider the region of �22 ¼ 0 without
considering the dark state. Because there is no direct
tunneling term between the E1 level and the E2 level, an
electron exists at the energy-level E2 only when there
is some relaxation process of the electron from the E3

level or dissipation. If the electron is transferred from
the left electrode to the right electrode without the E2

level, we can regard the system as a two-level system as
if each QD has one energy-level. The condition �22 ¼ 0

corresponds to:

�22 / ��0ð�� �0ÞðE2
x þ E2

yÞ
þ ½2�0ð�� �0Þ þ ��21�ExEy

þ �0ð�21 þ �Þ½�2
L þ �21�0 þ�2

R� ¼ 0 ðB�1Þ
Thus, Ey is written as function of Ex:

Ey ¼ 1

a2

h
b2Ex þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb22 � 4a22ÞE2

x þ 4a2c2

q i
ðB�2Þ

where

a2 ¼ �0ð�� �0Þ ðB�3Þ
b2 ¼ a2 þ ��21 ðB�4Þ
c2 ¼ �0ð�21 þ �Þ½�2

L þ �21�0 þ�2
R�: ðB�5Þ

This is the condition that the present system can be treated
as a two-level system. When �21 ¼ 0, we can simplify the
condition as

Ey ¼ Ex þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�2

L þ�2
RÞ

�� �0

s
: ðB�6Þ

Ey/ΩLt/ΩL

I/e

Ey/ΩLt/ΩL

I/e

Ey/ΩLt/ΩL

I/e

Ey/ΩLt/ΩL

I/e(a) (b)

(c) (d)

Fig. 5. (Color online) Time-dependent current as a function of Ey starting

from j1i for (a) and (b), ðj1i þ j2iÞ=2 for (c) and (d). �1=�L ¼ �2=�L ¼
�3=�L ¼ 1, �0=�L ¼ 1, (a, c) t0=�L ¼ 0 and �21=�L ¼ 0. (b, d)

t0=�L ¼ 1 and �21=�L ¼ 1.
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